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Abstract 

A technique and a tool PICA for rigorous program development with flowcharts is presented. 
This technique uses stuctured program flowcharts extended with assertion nodes containing program 
variable names and assertions about their values. An assertion node is connected to or from a state-
ment node depending on if it represents a pre-condition or a post-condition. A tool for convenient 
use of the technique has been implemented as an Add-On to the Design software of Meta Software 
on a Macintosh II. The feasibility of using PICA is demonstrated by developing an algorithm for 
a small non-trivial programming task. The incentive for presenting the PICA technique is to create 
broader interest for rigorous programming methods by presenting one technique applicable to 
program development using flowcharts. 

Index Terms—Automatic programming, computer-aided design, graphics, 
flowcharting, program correctness, rigorous programming, software design. 

1. Introduction 

There exists a rather extensive littérature on rigorous program development 
only to mention the text books [Jones 1980, 1986; Gries 1981; Reynolds 1981; 
Bj0rner and Jones 1982; Backhouse 1986]. However, at large rigorous methods are 
still rather seldom used by programmers in practice. Reasons for this may be that 
rigorous methods require additional knowledge from their users, that the methods 
are deemed as labourious and thus unpractical, and that they are not easily integrated 
with generally used informal program development methods. 

In order for a technique to be accepted by a larger group the technique should 
not be more formal than necessary and should be naturally integrateable with some 
well known informal program development method. Our choice of informal method 
upon which to build the rigorous tool is the graphical flowchart based method used 
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in HOS [Hamilton and Zeldin 1976] and there adjusted to structured programming 
practice. For rigorous program development using plain text several techniques 
exist, however, since Floyd presented his technique [Floyd 1967] techniques for 
flowcharting tools seem to have rendered very little interest. Despite the fact that 
flowcharts are more expressive and allow easier screening because of their ability to 
efficiently use the possibilities of the two-dimensional medium (paper, screen) used 
by man, their use have decreased over the years. One explanation of this might be 
the shift from off-line to on-line program design using text editors, which normally 
do not support graphical representation. The programmer has thus been forced to 
choose between on-line working — plain text representation or off-line working — 
graphical representation. The effect has been further increased by the same change 
towards plain text representation which can be noticed in the programming literature. 

The rapidly increasing number of installed workstations with graphics makes 
the technique on-line working — graphical representation available to an increasing 
number of programmers. There seems to be a rising interest today in using graphical 
representation to increase the quality (e.g., readability and correctness) of inter-
mediate and final program designs by the proponents of rigorous program develop-
ment [Buhr et al 1989]. We will here demonstrate the use of a graphical tool PICA 
(Program—Information Charts with Assertions) supporting rigorous program devel-
opment. The tool has been implemented as an Add-On to the Design software of 
Meta Software. In PICA pre-and post-conditions are added to the flowcharts as 
explicite graph elements showing the program variable names together with asser-
tions on their values [Torn 1980, 1981]. 

The PICA technique will be explained in Sec. 2 using a trivial programming 
task. In Sec. 3 the PICA tool is used to derive a program for The Longest Upsequence 
problem [Gries 1981]. 

2. The PICA Technique and Tool 

We first discuss formal program development and then illustrate the PICA 
technique and tool using a simple programming task. 

2.1. Formal Program Development. Programming aims at establishing the result 
condition R. Correctness of a program S thus means both finding S and verifying 
that R is true when the program stops (partial correctness) and verifying that the 
program will always stop (correctness). 

Normally developing S and verifying R can be made only if some precondition 
Q is valid when the program starts. For instance, when a program for computing 
the square root of a real number is developed it is naturally assumed that the real 
number is greater than or equal to zero. However, the programmer cannot be sure 
that the program will always be used as intended and good programming practice 
therefore means that the program should address also the complementary case. 

A well designed program should therefore contain an initial part that decides 
whether Q is valid or not and produces some "natural" result (e.g. an error message) 
for ~i Q represented by the truthness of an exception condition Re. Correctness 
further requires that Q and —l Q are evaluable and therefore a pre-initial part S0 of 
the program (possibly containing inputs, must be written that secures this. This is 
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in accordance with Floyd's, PROMP-READ-CHECK-ECHO implementing the 
idea that each component of a program should be protected from input for which 
that component was, not designed [Floyd 1979]). 

A program specified in this way can be said to be properly specified because for 
each possible pre-condition a specification of the corresponding wanted result exists. 
A properly specified program thus has the following general appearance 

S'; 
where 

S": i f - ] Q - 5 e 

I Q - s fi 

2.2. The Flowchart Technique. The flowchart elements used to describe sequence, 
choice, iteration, refinement and assertions are shown in Fig. 1. The elements are 
those used in HOS, with exception for the element of choice here represented struc-
tured in the same way as the element for iteration. Assertions are represented by 
dotted boxes divided into an upper and a lower part. The upper part contains the 
name of a variable, the lower part a predicate on that variable. The implied assertion 
is that the predicate is true. 

Several assertion boxes may be connected by the logical operators and, or 
and =>•. A dotted arrow pointing from a statement box to an assertion box means 
that the assertion is valid after the execution of the statements in the statement box. 
A dotted arrow from an assertion box to a statement box shows that the assertion 
in the assertion box is valid when the computation reaches the statement box. 

The flowchart in PICA notation corresponding to a properly specified program 
is shown in Fig. 2. The usual flowchart notation for the conditions valid at the 
branches of the //-statement (case statement) is used. 

For proving that the program is correct we have to find Se, S and to assert the 
result conditions in the PICA graph. For iterations it must also be proved that they 
are finite. The proof procedure consists of recursive applications of refinements of 
S, R and correctness proofs until such a program detail is reached that every step 
is sufficiently convincingly proved. 

2.2. A Simple Programming Task. The result of using PICA for designing a 
program for adding the elements of a vector ..., xn is shown in the Appendix A. 
Some details of the PICA tool is also explained in the "text pages". 

First a crude design is made. If a statement box must be refined a new flowchart 
page may be opened. On this child page an empty box with the surrounding of the 
refined box from the parent page will be exposed. The details of the design may then 
be introduced into the empty box. For each flowchart page there is a corresponding 
text page which can be used to complement the design so that a complete documen-
tation of the design is obtained. 

The tool is used in a three stage procedure. First the flowcharts together with 
the comments on the text pages are produced. For flowcharting a palette is available 
from which the flowchart elements needed are chosen and copied to the flowchart 
page. The tool is implemented on a Macintosh 11 with big screen which admits to 
have the plaette, the flowchart page and the text page open simultaneously. When 
the flowchart is ready the proof stage is entered. Unproved statement boxes have 
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Sequence 

SI; S2 

SI 
Choice 

Iteration 

Assertion 

if B1 •> SI 
Q B2 •> S2 

0 Bn •> Sn 
n 

do B •> S od 

{x>sO} 
x:= x+l 
iX5«l} 

Fig. 1. PICA flowchart notations 
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thicker border lines than proved boxes. The PICA tool will keep track of the proof 
procedure so that the most refined parts have to be proved prior to cruder ones. 
There is no theorem proving facility available in the tool, i.e., the proofs are made 
informally by the user. In this activity the corresponding text page may be used to 
document the proofs. The tool will however check that pre- and post-conditions, 
and variants are existing where there must be such. It also reminds the user what 

... -te 
n 

: integer 

ft» 
s u m : = l / 0 

s u r a 
s u m : = l / 0 

: overflow 

| s u m 
sum:=x. l+. .x .n —*>• sum:=x. l+. .x .n rl 

j =x. l+. .x .n 

Fig. 2. General form of a program in PICA 

have to be checked in order for a ptoof step to be complete. When the whole design 
has been proved correct the third stage which produces a skeleton program text may 
be entered. A printout from this stage is presented on the second text page of the 
design in Appendix A. 

3. The Longest Upsequence Problem 

The PICA tool will here be applied to the problem of designing an algorithm 
for finding the length of the longest upsequence lup (longest up) of a given vector 
X i , x n , » s 0 . Based on the experiences of this some points are then discussed. 

9 Acta Cybernetica IX/3 
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3.1. The Lenght of the Longest Upsequence. Let a up over x be defined as 

up: (x,{),...,x{l+k)), fcsO, 
(..., JC(/+1),..., = (Xi,..., X„), 

The resulting PICA design is shown in Appendix B. 

3.2. Discussion. The development of an algorithm for the length of longest up 
starts with the division of the task to be performed into two cases, one of which is 
executed on each application of the algorithm. In order to be able to make refirement 
of the algorithm S knowledge about the problem to be solved is needed. This know-
ledge is presented as theorems about problem entities. The development then proceeds 
by successive refinement, using the knowledge contained in the theorems, and verifi-
cation until such a detail is achieved that the algorithm can easily be coded using 
the target programming language. 

4. Conclusions 

The feasibility of using a specific rigorous program development technique PICA 
with flowcharts has been demonstrated by developing an algorithm for a non-trivial 
but small programming task. The PICA design is more easily screened and checked 
because of the greater freedom of flowchart representation. The technique is equiv-
alent to several suggested techniques for plain text algorithm representation. The 
incentive for presenting the PICA technique is to create broader interest for rigorous 
programming methods by presenting one technique for those programmers who are 
proponents of flowcharting techniques for program development. In order to aid 
in using PICA a graphical tool supporting formal program development based on 
PICA is available. In addition to supporting the graphical representation and ad-
ministering the proof procedure the tool is also able to automatically generate the 
equivalent plain text representation of the design including the assertions. This 
skeleton program can then be transformed into a compile ready version by further 
editing. 
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Vector Addition 

A program for computing the sum of the elements of a vector xl+...+xn is to be 
designed. It is decided that n less than or equal to 0 is an exception and that the 
result produced in this case is an overflow condition. 

The first part of the program is an initial part that guarantees that an integer 
is assigned to n. This is shown by the dotted arrow pointing from the box SO to 
the box I. 

From.the condition box we have the two cases n<=0 and n>0. The box Se produces 
the exception and the" box S the result for n>0. 

The boxes have been copied from a palette similar to the one below. 

LINE is chosen when connecting statement 
boxes and COND LINE when connecting a 
statement box and a assertion box. 

There is a menu named FLOWCHART with the 
following options: 

Open Palette 

Open T e x t Page 

Name Node 
Fill in Guard 
Refine-BOK 

Set Obj. Horisontal 
Set Obj. Uertical 

Quit 

We choose the box S and use the option Refine 
Box from the menu. This will produce a new 
flowchart page like the one on the next page 
but with initially empty inner part. Below 
S is initially only the box pointed to from the 
borde r . 

START 

n>A 
<z> 

LINE 

AND 

=s> 

COND-LINE 

STOP 
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The refinement of die box S on the parent page is shown here. In the box SI the 
initialization for the iteration is made and this makes the invariant P valid.. The 
guard is given in box S2 and the variant n+l-i is shown at the end-of-iteration 
symbol. 

The iteration bpx .is connected to the assertion box below S which shows the 
falsification of the guard and P. These together give the postcondition R. 

In the proof stage a menu PROOF is used with the options shown in the box 
below: 

Proue node 
Unproue node 

Print flowchart on file 

Quit 

The proif starts by proving. SI and S21 and then 
S2. It will be checked that the variant box has text 

After proving S2 the remaining boxes on the parent 
page may be proved. After this we may use the 
Print-flowchan-on-file option. The result is shown 
below.'' 

SO: Initialize 
{n : integer) 
i f n < = 0 -> 

Se: sum:=l/0 
{sum : overflow) 

D n > 0 -> 
S: sum:=x.l+..x.n 
{sum =x.l+..x.n} 

S: 
SI: sum:= x.l 
i:=2 
{Invariant: {sum =x.l+.,x.(i-l)} 
Variant: n+l-i) 

do i/=n+l -> 
S21: sum:=sum+x.i 

i:= i+1 
od 
{i =n+l'andsum =x.l+. .x.(M)} 
=>{sum =x.l+..x.n) 



PICA — A Graphical Program Development Tool 313 



138 A. A. Torn 

The longest upsequence problem 

T h e length of the longest upsequence of elements given a vector x.t ..x.n is to be deter-
mined. W e use the notation LUP(n,x) for this number. T h e result of our algorithm is to be 
stored Into the variable tup. Assume further that it is decided that the result for-n<l shall 
b e o . 

•i 
A crude design of our algorithm is given in the page to the right. The following variables 
are used:. 

. integer : 
n = number of elements in the vector , 

: x.1..x.n = vextor containing the n integers 
lup = the variable to contain the result of the algorithm. 

The algorithm consists of a conditional statement covering all values of n. For n<1 Se gives 
lup the value 0 as required, and lor n>0 the statement S assigns the correct value to lup. 
T h e design is obviously correct providing that LUP(n,x) is computed correctly. The 
refinement of S is shown on the next two pages. 
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In order to show how to compute LUP(n.x) we need to state some results. Let LSE(i,x) be the 
longest upsequence ending in x.i. Then 

T H E O R E M 1: LUP(n,x) = max LSE(i,x), where/f=[l.n]. Obvious, 
i in I 

Our problem has now been reduced to computing LSE(i,x). For LSE(i,x) the following is 
valid: 

T H E O R E M 2: LSE(1 ,x) = 1 and LSE(l.x) s i, i= 2,...,n. Obvious. 

T H E O R E M 3: Let ns 2. Then 

LSE(l,x) = 1 + max LSE(j,x), I = 2,..., n If A * a 
jinA 

and 
LSE(i.x) = 1 if A = 0, • 

where 
A ={j 115 j £ i-1 and x.j i x.i]. 

P R O O F : For all upsequences ending in x.j, 1< j s i-1 for which x.j £ x.i the element x.i 
can be added giving an upsequencs one element longer. If A = s then x.i is (he 

smallest element among x.1 x.i and therefore an upsequence ending in x.i 
consists of just the single element x.i, a sequence whose length is 1. 

We use the vector e.1..e.n to store the results of computing LSE(i,x), I = 1..n. 
The computation of e.i can then be performed as follows: 

i=1: 
e.i := 1, 

i = 2..n: 
e.i > 1 + max e.J, 

j in A 

where A = { j 1 1 i j £¡-1 and x.j s x.i}. The design of computing the vector e.1.. e.n is shown 
to the right. The following variables are used: 

i n t e g e r : 
e. l . .e.n = vector to store LSE(l .x) 

i= i n d e x 

The only nontrrvial task is now lo compute e.i. The node Ei is therefore refined-, 
and its design is shown on the next page. 
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The computation of e.i given e.1..e.(i-1) is shown to the right. The set B in the loop invariant is 

B=(j | 15 j s k-1 and x.j s x.j}. 

For k=i, B is equivalent to A. 

The following variables are introduced: 

i n t e g e r : 
m: used to store (max j in B: e.j) for k = 1..I-1 
k = index. 

Note that in the box Ei1 code is written instead for showing the design in the form of a flowchart. 
By utilizing this feature the trivial parts can be written more condensed and only parts where 
formal reasoning is of help are shown as charts. This possibility makes it possible to use the tool 
in a very flexible way and may therefore suit different tastes of programming. 

When the design is ready an explicite proof stage is entered by quitting the PICA Flowchart and 
choosing the PICA Proof Add On from the apple menu. An unproved box has a thicker border line. 
Proving the correctness of a node is done by klicking on the node. The prover then checks that 
subordinate nodes are proved and that the node has necessary pre- and postconditions. 

It is supposed that by separating the design part and the proof part the user will have a better 
chance of finding an error than if both tasks are interviened.' 

When the design is proved correct one may choose the Print Flowchart on File option from the 
Poof menu. This will give a skeleton program consistent with the design given in the flowcharts. 
This program may then be completed by further editing. The skeleton program resulting from the 
design presented in this example Is shown on the next page. A n edited running version in Simula 
is also presented. 
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SO: Initialize' 
{n, x.l..x.n integers) 
i f n c l -> 

Se: lup :=0 
{lup = 0 } 

Q n > 0 -> 
S: lup := LUP(n^t) 

{lup = LUP(n,x)} 

S: 
e.l := 1 
i : = 2 
{Invariant: {i in [2,n+l] and e.j, (j=l. . i- l) =LSE(j,x)) 
Variant: n-i+1) 
do i < n+1 -> 

Ei: e.i :=LSE(i,x) 
i := i+1 

od 
{e.i, (i=l..n) = LSE(i,x)} 
lup := 
(max i in [ l ,n]: e.i) 
{lup =maxLSE(i,x)} 
=>{lup = LUP(n,x)J 

Ei: 
{i in [2,n+1] and e.j, (j=l..i-l) = LSE(j,x)) 
m : = 0 
k := 1 
(Invariant: {m = (maxj inBre . j ) } 
Variant: i-k) 

do k * i -> 
Eil: ifx.k Sx.i and m <e.k 

- > m : = e J c 
• x.k > x.i or m 2 e.k 

->skip fi 
k := k+1 

od 
{m = (max j in A: e.j)} 
e.i := 1+m 

{e.i = LSE(ipc)) 
i := i+1 
{i in [2,n+1] and e.j, (j=l..i-l) = L S E ( j » } 
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comment (lup = 0); 

comment (lup = LUP(n,x)>; 

integer procedure lup (n, x); integer n; integer array x; 
** lup = length longest upsequence 

(n, x. l . . .x.n integers) 
begin 

integer procedure plup (n, x); ... ; 
if n It 1 then 

Se; lup: = 0; 
if n gt 0 then 

S ; lup : = plup (n,x); 
end; 

integer procedure plup(n, x); integer n; integer array x; 
begin 

integer procedure pise (i,x,e); ... ; 
integer array e( l :n); 
integer i, max; 
e ( l ) : = l ; 
i : = 2; 
(Invariant: (i in (2,n+ 1) and e.j, ( j = l...i— 1) = LSE(j,x)) 
Variant : n - 1 + 1) 
while i It n + 1 do 

Ei; begin e(i): = pise (i,x,e); 
i: = i + l 

end; 
<e.i, ( i= 1, , n) = LSE(i, x)> 
max: = e ( l ) ; 
for i := 2 step 1 until n do if max It e(i) then max: = e(i); 
plup:= max; 
(plup = max LSE(i.x)) 

end; 
integer procedure pise (i,x,e); integer i; integer array x, e; 
begin 

(i in (2, n + 1 ) and e.j, ( j = l . . . i - l ) = LSE(j.x)> 
integer m, k; 
m: = 0; 
k : = 1 ; 
(Invariant: (m = (max j in B: e.j)) 
Variant : i—k) 
while k ne i do 

Eil; begin if x(k) Ie x(i) and m It e(k) 
then m : = e ( k ) ; 

k: = k + 1 
end; 

(m = (max j in A: e.j)) 
plse:= 1 + m; 
(pise (i,x,e) = LSE(i,x)) 

end; 

comment 
of x. l . . .x.n; 

comment 

comment; 

comment 
» 

comment 

comment > 

comment > 

comment 
I 

comment 

» 

comment 

comment 

comment 


