
PICA — À graphical program development tool*

AIMO A . TORN

Abo Akademi, Dep. Comput. Sci., DataCity
SF—20520 ÂBO, Finland

Abstract

A technique and a tool PICA for rigorous program development with flowcharts is presented.
This technique uses stuctured program flowcharts extended with assertion nodes containing program
variable names and assertions about their values. An assertion node is connected to or from a state-
ment node depending on if it represents a pre-condition or a post-condition. A tool for convenient
use of the technique has been implemented as an Add-On to the Design software of Meta Software
on a Macintosh II. The feasibility of using PICA is demonstrated by developing an algorithm for
a small non-trivial programming task. The incentive for presenting the PICA technique is to create
broader interest for rigorous programming methods by presenting one technique applicable to
program development using flowcharts.

Index Terms—Automatic programming, computer-aided design, graphics,
flowcharting, program correctness, rigorous programming, software design.

1. Introduction

There exists a rather extensive littérature on rigorous program development
only to mention the text books [Jones 1980, 1986; Gries 1981; Reynolds 1981;
Bj0rner and Jones 1982; Backhouse 1986]. However, at large rigorous methods are
still rather seldom used by programmers in practice. Reasons for this may be that
rigorous methods require additional knowledge from their users, that the methods
are deemed as labourious and thus unpractical, and that they are not easily integrated
with generally used informal program development methods.

In order for a technique to be accepted by a larger group the technique should
not be more formal than necessary and should be naturally integrateable with some
well known informal program development method. Our choice of informal method
upon which to build the rigorous tool is the graphical flowchart based method used

* Lecture presented at the 1st Finnish-Hungarian Workshop on Programming Languages
and Software Tools, Szeged, Hungary, August 8—.11, 1989.

304 A. A. Torn

in HOS [Hamilton and Zeldin 1976] and there adjusted to structured programming
practice. For rigorous program development using plain text several techniques
exist, however, since Floyd presented his technique [Floyd 1967] techniques for
flowcharting tools seem to have rendered very little interest. Despite the fact that
flowcharts are more expressive and allow easier screening because of their ability to
efficiently use the possibilities of the two-dimensional medium (paper, screen) used
by man, their use have decreased over the years. One explanation of this might be
the shift from off-line to on-line program design using text editors, which normally
do not support graphical representation. The programmer has thus been forced to
choose between on-line working — plain text representation or off-line working —
graphical representation. The effect has been further increased by the same change
towards plain text representation which can be noticed in the programming literature.

The rapidly increasing number of installed workstations with graphics makes
the technique on-line working — graphical representation available to an increasing
number of programmers. There seems to be a rising interest today in using graphical
representation to increase the quality (e.g., readability and correctness) of inter-
mediate and final program designs by the proponents of rigorous program develop-
ment [Buhr et al 1989]. We will here demonstrate the use of a graphical tool PICA
(Program—Information Charts with Assertions) supporting rigorous program devel-
opment. The tool has been implemented as an Add-On to the Design software of
Meta Software. In PICA pre-and post-conditions are added to the flowcharts as
explicite graph elements showing the program variable names together with asser-
tions on their values [Torn 1980, 1981].

The PICA technique will be explained in Sec. 2 using a trivial programming
task. In Sec. 3 the PICA tool is used to derive a program for The Longest Upsequence
problem [Gries 1981].

2. The PICA Technique and Tool

We first discuss formal program development and then illustrate the PICA
technique and tool using a simple programming task.

2.1. Formal Program Development. Programming aims at establishing the result
condition R. Correctness of a program S thus means both finding S and verifying
that R is true when the program stops (partial correctness) and verifying that the
program will always stop (correctness).

Normally developing S and verifying R can be made only if some precondition
Q is valid when the program starts. For instance, when a program for computing
the square root of a real number is developed it is naturally assumed that the real
number is greater than or equal to zero. However, the programmer cannot be sure
that the program will always be used as intended and good programming practice
therefore means that the program should address also the complementary case.

A well designed program should therefore contain an initial part that decides
whether Q is valid or not and produces some "natural" result (e.g. an error message)
for ~i Q represented by the truthness of an exception condition Re. Correctness
further requires that Q and —l Q are evaluable and therefore a pre-initial part S0 of
the program (possibly containing inputs, must be written that secures this. This is

PICA — A Graphical Program Development Tool 305

in accordance with Floyd's, PROMP-READ-CHECK-ECHO implementing the
idea that each component of a program should be protected from input for which
that component was, not designed [Floyd 1979]).

A program specified in this way can be said to be properly specified because for
each possible pre-condition a specification of the corresponding wanted result exists.
A properly specified program thus has the following general appearance

S';
where

S": i f -] Q - 5 e

I Q - s fi

2.2. The Flowchart Technique. The flowchart elements used to describe sequence,
choice, iteration, refinement and assertions are shown in Fig. 1. The elements are
those used in HOS, with exception for the element of choice here represented struc-
tured in the same way as the element for iteration. Assertions are represented by
dotted boxes divided into an upper and a lower part. The upper part contains the
name of a variable, the lower part a predicate on that variable. The implied assertion
is that the predicate is true.

Several assertion boxes may be connected by the logical operators and, or
and =>•. A dotted arrow pointing from a statement box to an assertion box means
that the assertion is valid after the execution of the statements in the statement box.
A dotted arrow from an assertion box to a statement box shows that the assertion
in the assertion box is valid when the computation reaches the statement box.

The flowchart in PICA notation corresponding to a properly specified program
is shown in Fig. 2. The usual flowchart notation for the conditions valid at the
branches of the //-statement (case statement) is used.

For proving that the program is correct we have to find Se, S and to assert the
result conditions in the PICA graph. For iterations it must also be proved that they
are finite. The proof procedure consists of recursive applications of refinements of
S, R and correctness proofs until such a program detail is reached that every step
is sufficiently convincingly proved.

2.2. A Simple Programming Task. The result of using PICA for designing a
program for adding the elements of a vector ..., xn is shown in the Appendix A.
Some details of the PICA tool is also explained in the "text pages".

First a crude design is made. If a statement box must be refined a new flowchart
page may be opened. On this child page an empty box with the surrounding of the
refined box from the parent page will be exposed. The details of the design may then
be introduced into the empty box. For each flowchart page there is a corresponding
text page which can be used to complement the design so that a complete documen-
tation of the design is obtained.

The tool is used in a three stage procedure. First the flowcharts together with
the comments on the text pages are produced. For flowcharting a palette is available
from which the flowchart elements needed are chosen and copied to the flowchart
page. The tool is implemented on a Macintosh 11 with big screen which admits to
have the plaette, the flowchart page and the text page open simultaneously. When
the flowchart is ready the proof stage is entered. Unproved statement boxes have

A. A T8rn

Sequence

SI; S2

SI
Choice

Iteration

Assertion

if B1 •> SI
Q B2 •> S2

0 Bn •> Sn
n

do B •> S od

{x>sO}
x:= x+l
iX5«l}

Fig. 1. PICA flowchart notations

PICA — A Graphical Program Development Tool 307

thicker border lines than proved boxes. The PICA tool will keep track of the proof
procedure so that the most refined parts have to be proved prior to cruder ones.
There is no theorem proving facility available in the tool, i.e., the proofs are made
informally by the user. In this activity the corresponding text page may be used to
document the proofs. The tool will however check that pre- and post-conditions,
and variants are existing where there must be such. It also reminds the user what

... -te
n

: integer

ft»
s u m : = l / 0

s u r a
s u m : = l / 0

: overflow

| s u m
sum:=x. l+. .x .n —*>• sum:=x. l+. .x .n rl

j =x. l+. .x .n

Fig. 2. General form of a program in PICA

have to be checked in order for a ptoof step to be complete. When the whole design
has been proved correct the third stage which produces a skeleton program text may
be entered. A printout from this stage is presented on the second text page of the
design in Appendix A.

3. The Longest Upsequence Problem

The PICA tool will here be applied to the problem of designing an algorithm
for finding the length of the longest upsequence lup (longest up) of a given vector
X i , x n , » s 0 . Based on the experiences of this some points are then discussed.

9 Acta Cybernetica IX/3

308 A. A. Torn

3.1. The Lenght of the Longest Upsequence. Let a up over x be defined as

up: (x,{),...,x{l+k)), fcsO,
(..., JC(/+1),..., = (Xi,..., X„),

The resulting PICA design is shown in Appendix B.

3.2. Discussion. The development of an algorithm for the length of longest up
starts with the division of the task to be performed into two cases, one of which is
executed on each application of the algorithm. In order to be able to make refirement
of the algorithm S knowledge about the problem to be solved is needed. This know-
ledge is presented as theorems about problem entities. The development then proceeds
by successive refinement, using the knowledge contained in the theorems, and verifi-
cation until such a detail is achieved that the algorithm can easily be coded using
the target programming language.

4. Conclusions

The feasibility of using a specific rigorous program development technique PICA
with flowcharts has been demonstrated by developing an algorithm for a non-trivial
but small programming task. The PICA design is more easily screened and checked
because of the greater freedom of flowchart representation. The technique is equiv-
alent to several suggested techniques for plain text algorithm representation. The
incentive for presenting the PICA technique is to create broader interest for rigorous
programming methods by presenting one technique for those programmers who are
proponents of flowcharting techniques for program development. In order to aid
in using PICA a graphical tool supporting formal program development based on
PICA is available. In addition to supporting the graphical representation and ad-
ministering the proof procedure the tool is also able to automatically generate the
equivalent plain text representation of the design including the assertions. This
skeleton program can then be transformed into a compile ready version by further
editing.

References

[Backhouse 1986] R. C. BACKHOUSE, Program construction and verification, Prentice-Hall, Englewood
Cliffs, N. J.

[Bjorner and Jones 1 9 8 2] D . BJ0RNER and C. B . JONES, Formal specification and software development,
Prentice-Hall, Englewood Cliffs, N. J.

[Buhr et al 1 9 8 9] R . J . BUHR, G . M . KAREM, C . J . HAYES and C . M . WOODSIDE, Software CAD: A
revolutionary approach, IEEE Trans, on Software Eng. 15 , 2 3 5 — 2 4 9 .

[Dershowits 1980] N. DERSHOWITS, The evolution of programs, Technical Report UIUCDCS—R—
80—1017, Department of Computer Science, Uni. of Illinois at Urbana-Campaign, 212 pp.

[Floyd 1967] R. W. FLOYD, Assigning meaning to programs, In: Mathematical aspects of computer
science 19, Amer. Math. Society, 19—32.

[Floyd 1979] R. W. FLOYD, The paradigms of programming. Comm. of ACM 22, 455—460.

PICA — A Graphical Program Development Tool 309

[Gries 1981] D. GRIES, The science of programming, Springer-Verlag, New York.
[Hamilton and Zeldin 1 9 7 6] M . HAMILTON and S. ZELDIN, Higher order software — A methodology

for defining software. IEEE Trans. Software Eng. SE—2, 9 — 3 2 .
[Hoare 1 9 6 9] C. A . R . HOARE, An axiomatic bases for computer programming. Comm. ACM 1 2 ,

5 7 6 — 5 8 0 , 5 8 3 .
[Hehner 1 9 8 4] E. C. R . HEHNER, The logic of programming, Prentice-Hall, Englewood Cliffs, N . J .
[Jones 1980] C. B. JONES, Software development, a rigorous approach, Prentice-Hall, Englewood

Cliffs, N. J.
[Jones 1986] C. B. JONES, Systematic software development using VDM, Prentice-Hall, Englewood

Cliffs, N. J.
[Reynolds 1981] J. C. REYNOLDS, The craft of programming, Prentice-Hall, Englewood Cliffs, N. J.
[Torn 1980] A. TORN, Structured programming using program flowcharts containing explicite represen-

tation of data including assertions, Technical Report 10, Department of Computer Science,
A b o Akademi, Finland, 16 pp.

[Torn 1981] A. TORN, PICA — A flowchart tool for structured programming supporting proving,
Technical Report 16, Department of Computer Science, Abo Akademi, Finland, 17 pp.

9*

A. A. Töra

Vector Addition

A program for computing the sum of the elements of a vector xl+...+xn is to be
designed. It is decided that n less than or equal to 0 is an exception and that the
result produced in this case is an overflow condition.

The first part of the program is an initial part that guarantees that an integer
is assigned to n. This is shown by the dotted arrow pointing from the box SO to
the box I.

From.the condition box we have the two cases n<=0 and n>0. The box Se produces
the exception and the" box S the result for n>0.

The boxes have been copied from a palette similar to the one below.

LINE is chosen when connecting statement
boxes and COND LINE when connecting a
statement box and a assertion box.

There is a menu named FLOWCHART with the
following options:

Open Palette

Open T e x t Page

Name Node
Fill in Guard
Refine-BOK

Set Obj. Horisontal
Set Obj. Uertical

Quit

We choose the box S and use the option Refine
Box from the menu. This will produce a new
flowchart page like the one on the next page
but with initially empty inner part. Below
S is initially only the box pointed to from the
borde r .

START

n>A
<z>

LINE

AND

=s>

COND-LINE

STOP

PICA — A Graphical Program Development Tool 311

136 A. A . Torn

The refinement of die box S on the parent page is shown here. In the box SI the
initialization for the iteration is made and this makes the invariant P valid.. The
guard is given in box S2 and the variant n+l-i is shown at the end-of-iteration
symbol.

The iteration bpx .is connected to the assertion box below S which shows the
falsification of the guard and P. These together give the postcondition R.

In the proof stage a menu PROOF is used with the options shown in the box
below:

Proue node
Unproue node

Print flowchart on file

Quit

The proif starts by proving. SI and S21 and then
S2. It will be checked that the variant box has text

After proving S2 the remaining boxes on the parent
page may be proved. After this we may use the
Print-flowchan-on-file option. The result is shown
below.''

SO: Initialize
{n : integer)
i f n < = 0 ->

Se: sum:=l/0
{sum : overflow)

D n > 0 ->
S: sum:=x.l+..x.n
{sum =x.l+..x.n}

S:
SI: sum:= x.l
i:=2
{Invariant: {sum =x.l+.,x.(i-l)}
Variant: n+l-i)

do i/=n+l ->
S21: sum:=sum+x.i

i:= i+1
od
{i =n+l'andsum =x.l+. .x.(M)}
=>{sum =x.l+..x.n)

PICA — A Graphical Program Development Tool 313

138 A. A. Torn

The longest upsequence problem

T h e length of the longest upsequence of elements given a vector x.t ..x.n is to be deter-
mined. W e use the notation LUP(n,x) for this number. T h e result of our algorithm is to be
stored Into the variable tup. Assume further that it is decided that the result for-n<l shall
b e o .

•i
A crude design of our algorithm is given in the page to the right. The following variables
are used:.

. integer :
n = number of elements in the vector ,

: x.1..x.n = vextor containing the n integers
lup = the variable to contain the result of the algorithm.

The algorithm consists of a conditional statement covering all values of n. For n<1 Se gives
lup the value 0 as required, and lor n>0 the statement S assigns the correct value to lup.
T h e design is obviously correct providing that LUP(n,x) is computed correctly. The
refinement of S is shown on the next two pages.

PICA — A Graphical Program Development Tool 315

140 A. A. Torn

In order to show how to compute LUP(n.x) we need to state some results. Let LSE(i,x) be the
longest upsequence ending in x.i. Then

T H E O R E M 1: LUP(n,x) = max LSE(i,x), where/f=[l.n]. Obvious,
i in I

Our problem has now been reduced to computing LSE(i,x). For LSE(i,x) the following is
valid:

T H E O R E M 2: LSE(1 ,x) = 1 and LSE(l.x) s i, i= 2,...,n. Obvious.

T H E O R E M 3: Let ns 2. Then

LSE(l,x) = 1 + max LSE(j,x), I = 2,..., n If A * a
jinA

and
LSE(i.x) = 1 if A = 0, •

where
A ={j 115 j £ i-1 and x.j i x.i].

P R O O F : For all upsequences ending in x.j, 1< j s i-1 for which x.j £ x.i the element x.i
can be added giving an upsequencs one element longer. If A = s then x.i is (he

smallest element among x.1 x.i and therefore an upsequence ending in x.i
consists of just the single element x.i, a sequence whose length is 1.

We use the vector e.1..e.n to store the results of computing LSE(i,x), I = 1..n.
The computation of e.i can then be performed as follows:

i=1:
e.i := 1,

i = 2..n:
e.i > 1 + max e.J,

j in A

where A = { j 1 1 i j £¡-1 and x.j s x.i}. The design of computing the vector e.1.. e.n is shown
to the right. The following variables are used:

i n t e g e r :
e. l . .e.n = vector to store LSE(l .x)

i= i n d e x

The only nontrrvial task is now lo compute e.i. The node Ei is therefore refined-,
and its design is shown on the next page.

PICA — A Graphical Program Development Tool 317

142 A. A. Torn

The computation of e.i given e.1..e.(i-1) is shown to the right. The set B in the loop invariant is

B=(j | 15 j s k-1 and x.j s x.j}.

For k=i, B is equivalent to A.

The following variables are introduced:

i n t e g e r :
m: used to store (max j in B: e.j) for k = 1..I-1
k = index.

Note that in the box Ei1 code is written instead for showing the design in the form of a flowchart.
By utilizing this feature the trivial parts can be written more condensed and only parts where
formal reasoning is of help are shown as charts. This possibility makes it possible to use the tool
in a very flexible way and may therefore suit different tastes of programming.

When the design is ready an explicite proof stage is entered by quitting the PICA Flowchart and
choosing the PICA Proof Add On from the apple menu. An unproved box has a thicker border line.
Proving the correctness of a node is done by klicking on the node. The prover then checks that
subordinate nodes are proved and that the node has necessary pre- and postconditions.

It is supposed that by separating the design part and the proof part the user will have a better
chance of finding an error than if both tasks are interviened.'

When the design is proved correct one may choose the Print Flowchart on File option from the
Poof menu. This will give a skeleton program consistent with the design given in the flowcharts.
This program may then be completed by further editing. The skeleton program resulting from the
design presented in this example Is shown on the next page. A n edited running version in Simula
is also presented.

PICA — A Graphical Program Development Tool 319

320 A. A. Torn

SO: Initialize'
{n, x.l..x.n integers)
i f n c l ->

Se: lup :=0
{lup = 0 }

Q n > 0 ->
S: lup := LUP(n^t)

{lup = LUP(n,x)}

S:
e.l := 1
i : = 2
{Invariant: {i in [2,n+l] and e.j, (j=l. . i- l) =LSE(j,x))
Variant: n-i+1)
do i < n+1 ->

Ei: e.i :=LSE(i,x)
i := i+1

od
{e.i, (i=l..n) = LSE(i,x)}
lup :=
(max i in [l ,n]: e.i)
{lup =maxLSE(i,x)}
=>{lup = LUP(n,x)J

Ei:
{i in [2,n+1] and e.j, (j=l..i-l) = LSE(j,x))
m : = 0
k := 1
(Invariant: {m = (maxj inBre . j) }
Variant: i-k)

do k * i ->
Eil: ifx.k Sx.i and m <e.k

- > m : = e J c
• x.k > x.i or m 2 e.k

->skip fi
k := k+1

od
{m = (max j in A: e.j)}
e.i := 1+m

{e.i = LSE(ipc))
i := i+1
{i in [2,n+1] and e.j, (j=l..i-l) = L S E (j » }

PICA — A Graphical Program Development Tool 321

comment (lup = 0);

comment (lup = LUP(n,x)>;

integer procedure lup (n, x); integer n; integer array x;
** lup = length longest upsequence

(n, x. l . . .x.n integers)
begin

integer procedure plup (n, x); ... ;
if n It 1 then

Se; lup: = 0;
if n gt 0 then

S ; lup : = plup (n,x);
end;

integer procedure plup(n, x); integer n; integer array x;
begin

integer procedure pise (i,x,e); ... ;
integer array e(l :n);
integer i, max;
e (l) : = l ;
i : = 2;
(Invariant: (i in (2,n+ 1) and e.j, (j = l...i— 1) = LSE(j,x))
Variant : n - 1 + 1)
while i It n + 1 do

Ei; begin e(i): = pise (i,x,e);
i: = i + l

end;
<e.i, (i= 1, , n) = LSE(i, x)>
max: = e (l) ;
for i := 2 step 1 until n do if max It e(i) then max: = e(i);
plup:= max;
(plup = max LSE(i.x))

end;
integer procedure pise (i,x,e); integer i; integer array x, e;
begin

(i in (2, n + 1) and e.j, (j = l . . . i - l) = LSE(j.x)>
integer m, k;
m: = 0;
k : = 1 ;
(Invariant: (m = (max j in B: e.j))
Variant : i—k)
while k ne i do

Eil; begin if x(k) Ie x(i) and m It e(k)
then m : = e (k) ;

k: = k + 1
end;

(m = (max j in A: e.j))
plse:= 1 + m;
(pise (i,x,e) = LSE(i,x))

end;

comment
of x. l . . .x.n;

comment

comment;

comment
»

comment

comment >

comment >

comment
I

comment

»

comment

comment

comment

