
MICROTEST — A Testing Tool on PC*

ISTVÁN FORGÁCS, ATTILA HORVÁTH a n d ENDRE SOMOS

Computer and Automation Institute
Hungarian Academy of Sciences

H—1518 Budapest. Fob. 63 Kende u. 13—17, Hungary

Abstract

The MICROTEST system is described, which is a tool for decentralized "distributed" testing
of application programs targeted to run on large mainframe computers. It detaches the testing
process from the host environment, thus the programs can be tested on PC. The system includes a
high-level test language for validating program results against the specification. Unlike the other
testing tools, it does not use instrumentation but it compiles the source program into an object code
which is interpreted. (This is the key to the transportation of testing to PC.) MICROTEST has five
components. The Static Analyzer compiles the source program into an intermediate language, and
produces data for a series of quality metrics. The Static Report Generator makes the Static Usage,
the Branch and the Module Quality reports. The Assertion Compiler compiles the test program into
the same intermediate language as the one used by the Static Analyzer. The Dynamic analyzer
links the compiled programs and interprets it. The Dynamic Report Generator makes the Test Log,
the Dynamic Test Path, the Data Coverage, and the Program Coverage reports.

Introduction

In the last few years the theory and practice of program testing came into pro-
minence. The reason of the research is in the recognition of the fact that maintenance
cost is the strongest component of software development expencies. Since error
correcting is about two third of the entire cost of maintainability, the great effort
seems intelligible [1, 2, 3].

There is a lot of testing techniques in the theory, but in the practice only three
of them are used:

* Lecture presented at the 1st Finnish-Hungarian Workshop on Programming Languages
and Software Tools, Szeged, Hungary, August 8—11, 1989.

10 Acta Cybernetics IX/3

324 I. Forgács, A. Horváth, E. Somos

— structural testing,
— functional testing,
— code reading.

In case of structural testing, the program is investigated as a white box. The
test cases are created based on the flow-graph of the program to reach a high pro-
gram coverage ratio. Many criteria for program coverage were suggested from state-
ment testing to path testing. The partial ordering of these strategies are in [4, 5].
In [4] a worst case estimation is given for the number of test cases.

In case of functional testing the program is investigated as a black box. The
test cases are gathered from the specification and from other user information
named 'oracle' [6, 7].

In case of code reading the function of the program is determined manually and
compared against the specification. Although this method seems the less effective,
experience shows that code reading sometimes can do better then the two others [8].

The development of testing tools

Most of the tools are based upon instrumentation. During instrumentation, traps
or counters are inserted into the source code to measure the program coverage.
These tools work on the basis of the structural testing method.

In case of earlier tools the test data was typed manually from the keyboard,
while the result was read from the screen. The inserted counters measured the test
coverage.

The next step was the automatic validation of the program. The validation
procedures (assertions) were built into thé program conditionally, thus the program
could be executed with or without validation. (E.g. in [9], assertions were written as
special comments, and an optional preprocessor compiled them into the source
code.) This way the output can be validated but the input is not a basic component
of the validation system (especially in the case of keyboard input). These assertion
instructions were the predecessors of the test languages.

Since one of the essential requirements of testing is the reproducibility of tests,
it is necessary to store the test data for all the test cases. This is done in some testing
tools (e.g. in [10] the inpu tis received from the keyboard, it is recorded in a file, and
when the test is repeated, this file substitutes the input device).

The last generation of testing tools detaches the description of test data (both
input and output) from the program. It provides an opportunity to generate the
test data from the specification itself (either manually or automatically) even before
the implementation of the program. This method summarizes the advantages of
structural and functional testing.

An example is the assertion language of the SOFTEST system [11] which uses
first order predicate logic to define the program specification. The program behavior
is specified in terms of PRE and POST assertions for the data states and INPUT/
OUTPUT assertions for the data base file accesses. The test data is generated from
the PRE and INPUT assertions and the test results are checked against the POST
and OUTPUT assertions. All the assertions can be given in the forms, of individual

MICROTEST — A Testing Tool on PC 325

values, sets, ranges, functions, and relations. The SOFTEST system instruments the
object code with assembly routines, to execute the assertions.. Directly the program
variables are used, therefore the object code of the program should be handled by
the testing system, which decreases the portability.

Now we can summarize the lequirements of a good test system:
-r-. the input and output test, data should be stored separately from the program

under test,
— the test data should be described with the help of a high level test language

which supports all the conditional and cyclic data assignments,
— both the program under test and the test program should be compiled and

linked into one executable or interpretable code, .
— the system should be independent from the hardware environment,
— both the executed program and all kinds of data should be under complete

control of the test system.

The MICROTEST system

The MICROTEST is a module test system which can test and debug COBOL
programs on PC-s. The system contains two compilers to translate both the COBOL
and the assert program into the same binary code named AL (assembly like) lan-
guage. In this AL language the commands are coded binary and the Dynamic Analy-
zer interprets the commands. For example the COMPUTEp3—pl J-p2 statement is
translated to ADD p\,p2,p3 which are four integers in the command table. The
first integer stores the code of the addition, the others store the pointers to the
pl,p2 a n d p3.

The system consists of five elements:

— Static Analyzer,
— Static Report Generator,
— Assertion Compiler,
— Dynamic Analyzer,
— Dynamic Report Generator.

The Static Analyzer has two functions. First, it compiles the source code into
the AL; second, evaluates the source program to produce data for a series of analy-
tical reports and a number of quality metrics. The Static Analyzer differs from the
others not only in compiling the program but in the instrumentation, too. It is
needless to instrument the source code. During the static analysis, each I/O and
external function calls are translated into an assertion call which calls the appro-
priate assertion program module. The Static Analyzer was made with the: PROFLP
compiler generator which was very useful in making the compiler part of the static
analyzer for different COBOL versions.

The Static Report Generator produces the following reports:

— Module Quality Report (see TABLE I),
— Static Data Usage Report (see TABLE II),
— Branch Report (see TABLE III).

10»

326 I. Forgács, A. Horváth, E. Somos

TABLE I

MODULE QUALITY REPORT

Module name: CMERGE Date: 12. 5. 1988 Page: 1;

Static Metrics:
Data Complexity = 0.31
Control Flow Complexity = 0.92
Data Flow Complexity = 0.33
Interface Complexity = 0.27
Portability = 0.78
Maintainability = 0.46
Testability = 0.31

TABLE II

STATIC DATA USAGE REPORT

Module name: CMERGE Date: 12. 5. 1988 Page: 1

Data
no.

Lv
no Data Name Strg

Type
Data
Type

Data
Lng. Dim Picture Data usage

file
1 1 REC—1 disp 10 a t
2 2 KEY—1 disp 3 X(3) P r
3 2 SAL—1 disp 7 9(5)V99 a
4 1 REC—2 disp 10 a t
5 2 KEY—2 disp 3 X(3) P r
6 2 SAL—2 disp 7 9(5)V99 a
7 1 OUTREC disp 10 r . t
8 2 KEY—3 disp 3 X(3) *
9 2 SAL

work
disp 7 9(5) V99 *

10 1 W disp 17 *
11 3 SUM—SAL disp 10 9(8)V99 a r
12 3 MAX—SAL disp 7 9(5)V99 P a r
13 77 N '-! comp3 3 9(5) a r i
14 77 PAR—SAL disp 7 9(5)V99 P à r
15 77 DISP—RESULT

link
disp 8 ZZZZ9.99 a r

16 1 LINK—DATA disp 8 *
17 2 PAR disp 1 A P a
18 2 RESULT disp 7 9(5)V99 a r

Number of predicates: 5 Nùmber of arguments: 11
Number of results: 9 Number of transients: 3
Number of inits: 1

Total number of data items used : 14
Total number of data items not used: 4 •

MICROTEST — A Testing Tool on PC 327

The Module Quality Report computes the following static metrics:
— data complexity,
— control flow complexity,
— data flow complexity,
— interface complexity,
— maintainability,
— testability.

The Static Data Usage Report contains information on the data fields which
can be gained from the source code: data names, level number, data length, data
type, dimension, picture, and data usage. A data can be predicate, argument, result,
transient (parameter of an I/O or CALL statement), or it can get an initial value.
A '*' character indicates when the data is not used at all.

The Branch Report describes the control flow of the program under test. The
branches are identified by a branch number. The report contains the line number,
the branch number and the source program lines.

The Assertion Compiler compiles the assertions into the AL language. The
original SOFTEST language was developed to a high level language. In our system
the assertion variable declaration, FOR, REPEAT—UNTIL, WHILE—DO, and
CASE statements permit the sophisticated input and output test data assignment/
validation. An example:

FOR $i = 1 TO 10 DO
ASSERT IN abc[$i] E SET(1, 2, $i)

END;

At the first call the ten array elements of abc get the value 1, at the second call
get 2, while at the third call abc[1] = 1, ..., a6c[10]^10.

The compiler has a built-in editor too.
The Dynamic Analyzer first links the compiled COBOL and test programs then

interprets the linked code. This way the Dynamic Analyzer contains a driver, which
interprets the object code and produces all the necessary statistics. During the run it
reads the test data either from the assert file or from the keyboard, and validates
the results against the data read from the assertion file. It produces statistics in order
to obtain some dynamic metrics which qualify the program and the testing process.

The MICROTEST Dynamic Analyzer operates in an interactive dialogue mode;
the user has the opportunity

— to stop the run at any moment,
— to take breakpoints into the program,
— to use step-by-step execution,
— to display/change any'data item.

Though these are debugger functions, they can help the testing, too.
Whenever a validation error occurs (the actual data differs from the prescribed

one), an assertion violation interrupt is executed. The error message contains both
the COBOL and the assertion line number, the data name as well as ¡the prescribed
value or interval, and the actual value. !

328 í . Forgács, A. Horváth, E. Somos

TABLE III

STATIC BRANCH REPORT

Module name: CMERGE Date: 12. 5. 1988 Page: 2

Line Brch. PROCEDURE DIVISION statement no. no.

93A 26 * * * EMPTY BRANCH for statement in line 92 * * *
94 *
95 27 FILE—READ—2.
96 27 MOVE SAL—2 TO PAR—SAL.
97 27 PERFORM SAL—COMP.
98 27 WRITE OUTREC FROM REC—2.
99 27 READ INFILE—2

100 28 AT END MOVE ALL HIGH—VALUES TO KEY—2.
100 A 29 * * * EMPTY BRANCH for statement in line 99 * * *
101 1 2c.
102 30 SAL—COMP.
103 30 IF PAR — „A"
104 31 ADD PAR—SAL TO SUM—SAL
105 31 A D D 1 TO N
106 ELSE
107 32 IF PAR—SAL > MAX—SAL
108 33 MOVE PAR—SAL TO MAX—SAL.
108A 34 * * * EMPTY BRANCH for statement in line 107 * * #
109 35 FINISH SECTION.
110 35 STOP RUN.

Total number of statements : 51
Total number of branches: 35

TABLE IV

DYNAMIC TEST PATH REPORT

Module name: CMERGE Date: 12. 5. 1988 Page: 1

Testcase Date Time
Branch Start Statements

1 12. 5. 1988 12:39:21
51 52, 53A, 55, 59, 62, 64, 65, 67, 83, 85, 88, 102, 104, 65, 67, 83, 87 , 95, 102,
104, 100, 100A, 65, 67, 83, 85, 88, 102, 104, 65, 67,83,85,88, 102 104, 93,
93A, 65, 68A, 69, 75, 78, 100

2 12. 5. 1988 12:41:19
51, 52, 54, 55, 59, 62, 64, 65, 67, 83, 87, 95, 102, 107, 108, 65, 67, 83, 87, 95,
102, 107. 108 100, 100A, 65, 67, 83, 85, 88, 102, 107,108A.93, 93A, 65, 68A,
69, 77, 78, 100, *
Error message : Assert violation

MICROTEST — A Testing Tool on PC

TABLE V

329

PROGRAM COVERAGE REPORT

Module name: CMERGE Date: 12. 5. 1988 Page: 1

Branch no. Start stmt. Total execution Last execution Not executed

1 51 3 1
2 52 3 1
3 53A 2 1
4 54 1
5 55 3 1
6 58 1 1
7 58A 1
8 59 3 1
9 61 1 1

10 61A 1 1
11 62 3 1
12 64 3 1
13 65 10 1
14 67 7
15 68A 3 1
16 69 3 1
17 75 1 0
18 77 1 0
19 78 2 0
20 82 0 0 *
21 83 7 0
22 85 4 0
23 87 3 0
24 88 4 0
25 93 2 0
26 93A 2 0
27 95 3 0
28 100 2 0
29 100 A 2 0
30 102 7 0
31 104 4 0
32 107 3 0
33 108 2 0
34 108A 1 0
35 110 2 0

Total number of branches: 35
Number of brartches executed: 34
Program coverage ratio: 97.14%

Dynamic Metrics:
Reliability = 0.33
Integrity = 0 . 1 1
Test Coverage = 0.79

330 I. Forgács, A. Horváth, E. Somos

TABLE VI

D A T A COVERAGE REPORT

Module name: CMERGE Date: 12. 5. 1988 Page: 1

Data
nr.

Lv.
nr. Data Name

Static Usage Dynamic Usage
Data
nr.

Lv.
nr. Data Name

Prd Arg Res Trn Ini Pre Inp Post Out N.
A.

FILE SECTION
1 1 REC—1 a t *
2 2 KEY—1 P r in
3 2 SAL—1 a in
4 1 REC—2 a t *
5 2 KEY—2 P r. in
6 2 SAL—2 a in
7 1 OUTREC r t *
8 2 KEY—3 out
9 2 SAL out

WORKING—STORAGE SECTION
10 1 W *
11 3 SUM—SAL a r *
12 3 MAX—SAL P a r *
13 77 N a r i *
14 77 PAR—SAL P a r *
15 77 DISP—RESULT a r *

LINKAGE SECTION
16 1 LINK—DATA *
17 2 PAR P a pre
18 2 RESULT a r post

Total number of data items (without Filler-s): 18
Number of predicates : 5 : Number of PRE asserted data: 1
Number of arguments 11 Number of INPUT asserted data: 4
Number of results: 9 Number of POST asserted data: 1
Number of transients: . 3 : Number of OUTPUT asserted data: 2
Number of units: 1 Number of NOT asserted data: 10

Data coverage ratio : 61.54 %

The dynamic report generator produces the following reports:

— Test Log,
— Dynamic Test Path Report (see TABLE IV),
— Program Coverage Report (see TABLE V),
— Data Coverage Report (see TABLE IV).

Test Log contains everything which was displayed during the test run including
all the assertion violations.

The Dynamic Test Path Report describes the test paths of each test case run
executed by the Dynamic Analyzer. The report contains the test case number and
the executed program path by printing the branch numbers in the same order as
they were executed.

MICROTEST — A Testing Tool on PC 331

The Program Coverage Report is a table of program branches with their number
of traversions since testing began. Branches which were not traversed are marked,
this way new test data can be created to cover them, or unexecutable paths of the
program can be revealed.

The Data Coverage Report describes the behavior of data items during the
test run. It repeats some entries of the Static Data Usage Report to help the user to
compare the static and dynamic results. The report describes the relation between the
data items and the assertions. It indicates which data was input and/or output asserted
or which data was not used at all.

The testing process using MICROTEST

The best known structural testing strategies are segment, branch and path testing.
Segment testing requires each statement to be executed at least once during the test.
Branch testing requires each branch (including the empty branches too) to be
executed at least once. Path testing requires that all the paths in the program to be
tested by at least one test case.

We chose the branch testing strategy because the segment testing is not effective
enough [8] while the others require 0(n2) [4] or more test paths in worst case, where
n is the number of branches. (Branch testing requires 0(n) test paths.)

The process is the following: the programmer develops the COBOL program,
and the tester develops the test program, independently. The tester selects test data
from the specification. Then the Static Analyzer compiles the COBOL module, while
the Assertion Compiler compiles the test program. The Dynamic Analyzer links the
object codes and interprets it. If there are assertion violations, then either the COBOL
or the test program should be corrected and compiled again.

In lack of assertion violations, the reports are investigated. If all the branches
are covered then the testing is over, else new test data should be selected from the
structure of the program. The new test program should be compiled again, and the
process goes on until there are no assertion violations, and the branch coverage is
acceptable.

Conclusions

We reviewed the development of test systems, and described the requirements
of a high effective testing tool. The MICROTEST system is a result of these specifi-
cations. In the test data selection, both the functional and the structural methods
are present.

The test data are separated from the program, so the test run can be repeated.
At program execution, however, both the program and the test data are in a single
interpretable binary program code. Since the Static Analyzer compiles the source
code into the AL code, it is needless to instrument the source. Moreover, each
module can be executed independently from the others since the assertion program
simulates the calling and the called module. Thus bottom-up, top-down, and mixed
testing strategies can be used as well.

332 I. Forgâcs, A. Horvâth, E. Somos: MICROTEST — A Testing Tool on TC

The thorough evaluation of reports (especially the static and the coverage infor-
mation) can significantly improve the program quality. The built-in debugger func-
tions help program development.

The authors wish to express their gratitude to Mr. Harry Sneed, who has
initiated the MICROTEST project and was the source of many ideas included in
the system.

References

[1] M. V. ZELKOWITZ, Perspectives on Software Engineering, Computing Surveys, Vol. 10, No. 2,
p p . 1 9 7 — 2 6 0 , 1 9 7 8 .

[2] D. S. ALBERTS, "The Economics of Software Quality Assurance," Proc of National Computer
Conference 1976, pp. 433—442.

[3] P. J. SMITH, "The Requirement for Quality in the Design of Programming System," Proc. of
Pragmatic Program and Sensible Software Conf., pp. 491—508, 1978.

[4] S. C. NTAFOS, A "Comparison of Some Structural Testing Strategies," IEEE Trans. Software
Eng., vol. 14. no. 6 , pp. 8 6 8 — 8 7 5 , June 1 9 8 8 .

[5] M. D. WEISER, J. D. GANNON, and P. R. MCMULLIN, "Comparison of Structured Test Coverage
Metrics," IEEE Trans. Software Eng., vol. 2. no. 2, pp. 8 0 — 8 5 , March 1 9 8 5 .

[6] W. E. HOWDEN, Functional Program Testing, IEEE Trans. Software Eng., vol. 6. no. 3, pp.
162—169, May 1980.

[7] W. E. HOWDEN, "The Theory and Practice of Functional Testing," IEEE Software vol, 2. no. 5,
pp. 6—17, Sept. 1985.

[8] W . R . BASILI, R . W . SELBV, "Comparing the Effectiveness of Software Testing Strategies, "IEEE
Trans. Software Eng., vol. 13. no. 12, pp. 1278—1296, Dec. 1987.

[9] J. C. HUANG, "Program Instrumentation and Software Testing," IEEE Computer vol. 11, pp.
25—32, April 1978.

[10] T. J. MCCABE, G. G. SCHULMEYER, "System Testing Aided by Structured Analysis: A Practical
Experience," IEEE Trans. Software Eng., vol. 11. no. 9, pp. 917—921, Sept. 1985.

[11] M . MAJOROS, H. M . SNEED "The Softests Program Test System," Systems and Software vol. 2.
pp. 289—296, 1982.

