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Abstract 

In this note we propose a definition of a notion of automaton recognizing 
finite bilabelled transition systems, i.e. finite directed graphs with labels 
attached to both vertices and edges. The family of recognizable sets is a 
boolean algebra. Moreover every recognizable set contains the images and 
the inverse images of each of its element under surjective homomorphisms. 

1 Introduction 

Recognizable sets of finite words and of finite trees are defined by mean of 
automata: a recognizable set consists in all the elements recognized by such an 
automaton. Since words are special kinds of trees, the notion of tree automaton 
is an extension of the notion of word automaton. But trees are special kinds of 
directed acyclic graphs (dags, for short) and indeed a notion of dag automaton was 
recently introduced [3], which is an extension of the notion of tree automaton. 

Since dags are special kinds of graphs, one can think of a notion of graph 
automaton which is an extension of the notion of dag automaton. However there is 
a major distinction between dags and graphs: when an automaton reads in a dag it 
goes from vertices to vertices along the directed edges, and, because of acyclicity, it 
never reads in twice the same vertex; therefore it is possible to assign a unique state 
of the automaton to every newly read in vertex according to the states assigned 
to previous vertices as specified by the transition function of the automaton. For 
graphs, the situation is different, since a vertex can be read in several times and then 
the state assigned to a vertex can change during the computation of the automaton. 

But it is possible to interpret the results of Buchi on infinite words [4j, and of 
Rabin on infinite trees [8], as an intuitive support to the thesis that there is a close 
connection between the notion of recogniz ability and the notion of definability by 
some monadic second order logic (see for instance [5]). Therefore one can investigate 
for a characterization of the set of graphs which axe models of a given monadic 
second order formula in terms of automata. 
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Since Branching Time Temporal Logics as well as the ¿»-calculus [6] are special 
cases of monadic second order logics which are used to express properties of pro-
cesses, and since processes are usually represented by finite transition systems, one 
can expect to get a notion of automaton which recognizes those transition systems 
satisfying some given temporal properties. Indeed, the /¿-calculus already gives a 
precious hint on what a graph automaton could be: when computing the value 
of a formula over a graph, the boolean value of each subformula is computed at 
every vertex of the graph; hence one can see every vector of boolean values of these 
subformulas as a possible state of the automaton. This set of states is naturally 
ordered by a partial order. This led us to consider as the set of states of a graph 
automaton a finite partially ordered set. Provided this set has a minimal element 
and the transition function is monotonic, one can define a computation of such an 
automaton in the following way: initially the minimal state is assigned to every 
vertex; due to the monotonicity of the transition function, when the state assigned 
to a vertex has to change it can only increase; when the states assigned to the 
vertices cannot be increased, the computation ends. In other words the assigment 
reached at the end of the computation is the least fixed-point of some mapping 
associated with the transition function. Let us remark that in the case of infinite 
trees, a run is sometimes defined as an assigment of states to nodes which satisfies 
some relations determined by the transition relation of the automaton. 

In the first part we consider the simple case of complete deterministic bilabelled 
transition systems. They are defined as a set of vertices with a label attached 
to each vertex and with a mapping from the set of vertices into itself associated 
with each element of some alphabet. We define our notion of automaton in this 
simple case. In the second part, we consider the more general case where, with 
each element of the alphabet is associated a mapping from the set of vertices into 
its powerset. In the third part we define the product of automata and in then 
we define the acceptance criteria for these automata and give some properties of 
recognizable sets: the family of recognizable sets is a boolean algebra and each 
recognizable set is closed under surjective homomorphisms and inverse surjective 
homomorphisms. Therefore, every recognizable set is a union of fibers, where a 
fiber is a set of inverse surjective homomorphic images of one bilabelled transition 
system, and we show that a fiber is a recognizable set. The automata previously 
defined are deterministic and the sets they recognized are called "deterministically 
recognizable"; we define also "nondeterministically recognizable sets" as beeing the 
projections of deterministically recognizable ones. 

This note consists mainly in definitions although some elementary open ques-
tions remain to be answered. But the main question raised by this definition of 
recognizable sets is the following: it is well known that, in the cases of words and 
of trees, there exist special kinds of grammars (the regular grammars) which ge-
nerates exactly the recognizable sets; thus, among the large number of kinds of 
graphs grammars already introduced in the litterature, do there exist some kinds 
of them which can generate exactly the determistically or non deterministically 
recognizable sets of bilabelled transition systems. 1 

2 A simple case 
2.1 Complete deterministic bilabelled transition systems 
A complete deterministic bilabelled transition system over an alphabet A and a set 
L of labels is a tuple S =< V, 7, A > where 

- V is a finite set of vertices, 
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- 7 is a mapping from AX V into V; 7(0, v) is the unique vertex of V which is 
reachable from v by an edge labelled by a, 

- A is a mapping from V into L. 

2.2 Deterministic cdbts automata 
A deterministic cdbts automaton is a tuple S =< A,L,Q, qo, 6 > where 

- A is an alphabet and £ is a set of labels, 
- Q is a finite partially ordered set of states, and qo is its minimal element, 

- 6, the transition function, is a monotonic mapping from L x QA, ordered 
componentwise, into Q. 

Given a cdbts S =< V, 7, A > over A and L and a deterministic automaton A = 
< A, L,Q,qo,S > , the set A of assignments is the ordered set Qv, the minimal 
element of which is {90 The mapping 6 is extended into a monotonic mapping 
6$ from A into A defined as follows: 

Let a be an element of A = Qv; let t; be an element of V; its environment 
under a is the tuple env|(v) = < A(t>),0(7(01, t>)),.. . ,a(-f(an , v)) >, where A = 
{01,. . . , a „ } , which is an element of L X QA and 5(envJ(v)) is an element of Q. 
Then 5s (a) is the element of A defined by 6$ (a)(v) = i (env| (u)). 

Obviously the mapping 6s is monotononic, and since A has a minimal element, 
6s has a least fixed point in A which will be denoted by ¡16$. 

The following example mainly shows in which sense deterministic word auto-
mata are a special kind of cdbts automata. This construction can easily be extended 
to bottom-up deterministic tree automata. 

Example 1. Let us consider a usual deterministic word automaton A over an 
alphabet L with Q as a set of states. 

With a word u = /1. . .ln we associate the cdbts Su over a single-letter alphabet 
and with L U {h } as set of labels defined as follows: 

- the set of vertices is {0 ,1 , . . . , n}, 
- there is an edge from i to t — 1 (with 0—1 = 0) 
- 0 is labelled with b, and t, for 1 < i < n is labelled with ¡¿, 
Then we define a cdbts automaton over a single-letter alphabet and the set of 

labels L U {I-} by 
- the set of states is Q U { ± } , where X is less than any other element, 
- the transition function is defined by 

— 9) is the initial state of Q, for every q in Q U {X } , 
— 6(1, _L) =_L for every I in L, 
— 6 (I, q) is the state obtained by applying the transition function of the 

deterministic word automaton to I € L and q&Q. 

It is easy to see that in the assignment which is the least fixed point of , the 
initial state of A is assigned to the vertex 0 and the state reached by A reading 
l\... and starting in the initial state is assigned to the vertex i. • 
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2.3 Homomorphisms of cdbts 
Let Si = < V i , 7 i ,A i > and S2 = < V2,12>^2 > be two cdbts. An homomorphism 
from Si into $2 is a mapping h : Vi — • Vj such that h(71 (a ,« ) ) = 72(01 h{v)) and 
Ai(t>) = A 2 ( M f ) ) -

If A =< A, L, Q, go, S > is a cdbts automaton over A and L, let n&sl and (16$, 
be the least fixed points of Sst and 8$,. 

For every assignment f) in Qv*, ¡3 o h, defined by 

0oh{v) = P{h{v)) 

is an assignment in QVl. In particular we have: 

L e m m a 2.1 If h is a homomorphism from Si into S2, and if f) is an assignment 
in Qv*, then for any v in Vi, 

e n vSa (Mw)) = envj°' l(t;) 

P r o o f By definition of env we have 

envSj(Mw)) =< Hh[v)),P('12{ai,h(v))),...,^2(an,h(v))) > 

and 
envf°h = < \1(v),p(h(11{auv))),...,{}(h{'n(an,v))) > 

Since h is an homomorphism, the two right-hand sides of these equations are equal, 
hence the result. • 

It follows 

L e m m a 2.2 If h, is an homomorphism from Si into S2, and if ¡3 is an assignment 
in QVl, then 

6Sl(P°h) = 6S,(P)oh 

P r o o f For any v in Vi we have 

6Sl(P°h)(v)=e nvf^H 

and 
6Si (0) O h(v) = 6s, (/9)(fc(«)) = env* (*(„ ) ) 

and the result immediately follows from Lemma 2.1 • 

Then we get 

T h e o r e m 2.1 If h is an homomorphism from Si into S2, then 

fiSSl = fiSs2 o h 
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Proof Let us denote by J.*, for k = 1, 2 the least mapping in QVk which associates 
the minimal element qo of Q with every vertex v of V*. 

a, the least fixed point of S$1, is the limit of the increasing sequence (a{)¿>o 
defined by ao =-Li and a¿+i = Ssl (a¿). Similarly, /3, the least fixed point of S¡,, is 
the limit of the increasing sequence (/9»)»>o defined by fio =J-2 and fii+i — 8s3 (&)• 

We prove by induction that a¿ = # o h. 
Obviously 

fio o h =J_2 oh =-Li= ao 
and, by Lemma 2.2, 

ft+1 oh = 6s,[Pi)oh = 6Sl№ o h) 
which is equal, by induction hypothesis, to 

¿Si (<*•) = a«+i 
• 

3 A more general case 
We want to extend the previous definition of automata to the case of non determi-
nistic bilabelled transition systems (bts). In this case "i(a,v) is no longer a single 
vertice, but a set (possibly empty) of vertices. Hence the following definition: 

3.1 Non deterministic bilabelled transition systems 
A non deterministic bilabelled transition system over an alphabet A and a set L of 
labels is a tuple S =< V, 7, A > where 

- V is a finite set of vertices, 
- 7 is a mapping from A x V into p(V); 7(0, v) is the set of vertices of V which 

are reachable from v by an edge labelled by a, 
- A is a mapping from V into L. 

3.2 The powerset of states 
If Q is a partially ordered set of states with a minimal element ± , we can still define 
the image of a set of vertices under an assignment in Qv, but, for the mapping 
S being monotonic we need some partial order on p{Q)- We choose to use the so 
called Egli-Milner preorder [7] defined by 

X C Y iff Vx € X, 3y 6 Y : x < y 
and Vy e Y, 3x G X : x < y. 

This preorder has the following properties: 
Proposition 3.1 

• The empty set is not comparable with any non empty set. 

• The set { J L } is less than any non empty set. 

• If a and P are two assignments in Qv, and if U is a set of vertices, then 
ct<P implies a(U) C p(U) 
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3.3 Deterministic bts automata 
A deterministic bts automaton is a tuple S =< A, L, Q, qo, 6 > where 

- A is an alphabet and £ is a set of labels, 

- Q is a finite partially ordered set of states, and qo is its minimal element, 
p(Q) being ordered by the Egli-Milner preorder, 

- 6, the transition function, is a monotonic mapping from L x p(Q)A, ordered 
componentwise, into Q. 

Given a bts 5 = < V, 7, A > over A and L and a deterministic automaton A = 
< A, L,Q,qo,6 > , the set A of assignments is the ordered set Qv, the minimal 
element of which is {io}V ' - The mapping 8 is extended into a monotonic mapping 
6s from A into A defined as in the previous case, where the notion of environment 
is modified to take into account the fact that the bilabelled transition system S is 
no longer deterministic: 

Let a be an element of A = Qv; let v be an element of V\ its environment under 
a is the tuple envj («) = < A(t>), a{i(ai, t i ) ) , . . . , a.(~)(an, t>)) > , which is an element 
of L x p(Q)A and 5(env| (v)) is an element of Q. Then 6s (a) is the element of A 
defined by ¿5(a)(v) = 6(envf (u)). 

Obviously the mapping 6s is monotononic, and since A has a minimal element, 
6s has a least fixed point in A which will be denoted by /¿¿5. 

3.4 Homomorphisms of bts 
Let 5i = < Vi, 7i, Ai > and S2 ' T ' * " v " 1 * 1 * ' 

72(0, h(v)) are equal and Ai(w) = A2 . 
This definition of an homomorpnism is related to the notion of bisimulation 

of transition systems [ll: two transition systems (all vertices of which having the 
same label) are in the Disimulation relation if and only if they have a common 
image under two surjectives homomorphisms. 

It is clear from the definitions of homomorphisms and of environments that the 
Lemma 2.1 remains true (its proof does not change) and also the Lemma 2.2 and 
the Theorem 2.1. 

Theorem 3.1 If h is an homomorphism from Si into S?, then 

3.5 Other extensions 
The value of the transition function 6 of an automaton at some vertex v of a 
transition system S under an assignment a depends on the environment of v under 
a, which consists in the label of v and the image under a of some sets of vertices 
associated with v. One can imagine others transition functions which depend on 
larger environments of a vertex. Here we present two such extensions. In the first 
one 6 take into account the state assigned to the vertex and we show that this 
extension is not more powerful. In the second one we put in the environment of v 
under a the sets 7 - 1 ( o , t;), equal to G 7(0, u)}. If one considers bts automata 
as bottom-up automata because states are propagated back along the edges (the 

from Si into $2 is a mapping 

fi6Sl = n6Sl o h 
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state of v depends on the states of 7(0, v)), then top-down automata are those where 
only the sets 7 " 1 (a, v) are in the environments, instead of the sets 7(a, t>), and, when N 

both are in the environment, we get something like a bidirectional automaton. 

3.5.1 Vertices need not to be in their environment. 

Here we assume that the transition function of an automaton is a monotonic map-
ping from Q X L x p(Q)A, ordered componentwise, into Q. Then ¿5 (a) is the 
element of A defined by «s (<*)(«) = 6(a(v),envs(t>)). 

Let us define the mapping 6* from L x p(Q)A into Q by: 
6*(I, Xai,..., Xan) is the limit of the sequence (?,)»<0 defined by 

• 90 is the least element of Q, 

• 9i+i = S(qi,l,Xai,...,XaJ. 

This sequence is increasing and we have 

6*(l,Xait.. .,-XcJ = 6 (6* (I, Xai,. ..,Xan),l,Xait.. .,XaJ 

Let a and ¡3 be the least fixed points of 6$ and of Sg. Then we can show that 
a = /3. 

Prom the definitions of 5J, 6s, and by the previous equality, we have 

m = ¿I (£)(«) 
= tf*(envfW) 
= Bvf(u)),envf(«)) 
= *(0(«»),envf(«)) 

and then a is less than p. 
Conversely, let us define ¡3 as the limit of the increasing sequence (A)»<o with 

Po =-L and /3i+1 = 8$ (Pi). We prove by induction that Pi is less than a. 
Obviously, Po is less than a. 
Since Pi+i = 6$ (Pi), since, by induction hypothesis, Pi is less than a, and since 
is monotonic, we get 

Pi+i <S*s(a) 
and it remains to prove: 

For any v we have 
i| (o ) ( » )=^ (envg (v ) ) 

and let 6*(envç(v)) be the limit of the increasing sequence (?,)«<o with qo = ± and 
1 = 6(qi, envj(v)). We prove by induction that g» < a(v)> hence the result. 
qo is less than a(u). Let us assume that qi is less than a. Then Çj+i = 

S(qi,envj(v)), and since 6 is monotonic, < 6(a(v), env|(f)). But 
5(a(u),env2(t;)) = 6s(a)(v) = a(w), which ends the proof. 
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a b b 

a b 

Figure 1. 

3.5.2 Bidirectional automata 

Let us consider the two following cdbts pictured in figure 1 with {a, 6} as set of 
labels and a single-letter alphabet. 

Let us consider the set Q — {go, 9i, 92} with 90 < 91 < 92, and the function 6 
from {a, 6} x p(Q) x fp(Q) inti Q, where the second argument of 6 corresponds to 
7 - 1 and the third one to 7, defined by: 

6(a,X,Y) = q0,VX,YCQ 
¿ ( M ? o } , y ) = VF C Q 

S(b,X,Y) = q2>VX,YCQ,XjL{qo} 

Then, on the first bts of the figure 1, the assigment a which is the least fixed 
point of 5 is 

a ( l ) = q0 

a(2) = q i 

a(3) = q2 

and for the second one, the least assignment p is 

№ • qo 
№ = 92 

On the other hand, the mapping which sends 1 on 4 and 2 and 3 on 5 is a surjective 
bts homomorphism, and because of Theorem 2.1, the least assigment a and y9 of a 
"bottom-up"deterministic bts automaton should satisfy a ( l ) = /9(4) and a(2) = 
a(3) = /9(5), which shows up that bidirectional bts automata are more powerful 
than bottom-up bts automata. 
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4 Products of deterministic bts automata 
Let Ai = < A,L,Qi,ii,Si > and A2 = < A, L, Q2>*2i $2 >, where 

SuLx p(Qi)A —» Qi 

for i = 1,2, be two deterministic bts automata over the alphabet A and the labels 
L. 

The product A = AI x A2 of AI and A2 is the deterministic bts automaton 
< A, L, Q, i, 8 > with 

Q = QI x g 2 , 

t =< ilt%2 >, 

6 :Lx p(QI x Q2)A —• QI x Q2 defined by ' 
8(1 1 Pai) • • • 1 Pan) —^ Si (I, »1 (P«x),.... Tl(PaJ) , 62H, 1*2 (Pa, ) , . . . . T2(P„ J ) > 

where is the canonical projection of Q1 x Q2 onto Q,-. 
Indeed, it is straightforward from its definition that 8 is monotonic because it 

is very easy to prove that if P E P', P, P' C x Q2, then 7r,(P) C N(P')-

Let us consider a bts S =< V, 7, A >. If a is an assigment in (Qi x Q2)V, it can 
be seen as the product ai X c*2 of the assignments a; in Q̂ f defined by ai x 0:2(u) = 
< ai (v) ,a2(f ) > . It follows: 

Ss[oc) = ¿iS(<*i) x i 2 s ( "2 ) 

and the least fixed point n&s of 8 is equal to the product /¿¿15 X fi82s of the least 
fixed points of 6\ 5 and 62 s • 

Theorem 4.1 If 8 = 81 x 62 then ¡x8s = p8iS x /¿52 j 

5 Acceptance criterion 
In order to have a notion of recognizable set of bts we have to define an accep-
tance criterion for the bts automata. The criterion we choose is such that boolean 
combinations of recognizable sets are still recognizable, which is a very natural 
assumption. 

5.1 Definitions 
Let A =< A,L, Q,%,8 > be a bts automaton. An acceptance criterion for A is a 
set 7 of subsets of Q. 

Given a bts S =< V, 7, A > and the least fixed point fi6s in Qv of 8, we say that 
S is accepted by the pair < A, 7 > iff /¿5$ (V) is an element of 7. A recognizable 
set is the set of all bts accepted by some pair < A, 7 >. 

5.2 Properties of recognizable sets 
Let B(A, L) the set of all bts over the alphabet A and the labels L. 
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The following property is a straightforward consequence of the definitions: 

Lemma 5.1 If R is a subset of B(A,L) recognized by the pair < A, 7 > then its 
complement is recognized by the pair < A, p(Q) — 7 >. 

Let us consider two bts automata Aj =< A, L, Q]t ij, 6j > for j = 1,2, and 
two acceptance criteria 7j in p(Qj). Let us denote by Qu (resp. § n ) the set of all 
subsets F of Qi x Qi such that tti [F) € 7i or (resp. and) ^(F) £ 72 where Try is 
the canonical projection of Qi X Q2 on Q} . 

Lemma 5.2 A bts is accepted by the pair < Ai X A2, Qu > iff it is accepted by the 
pair < A1, 7\ > or by the pair < A2, ?2 >• 

A bts is accepted by the pair < Ai X Ai, $n > iff 13 accepted by the pair 
< A1, 7\ > and by the pair < A2, 7i >• 

Proof We consider only the first case; the second one is proved exactly the same 
way. 

From the definition of the product of automata we have (Theorem 4.1) 

n6s = p6 l s x nS2s 

Hence Ki(n6s(V)) = p6ij{V), and /16$ (V) belongs to (Ju iff M^is(^) belongs to 7\ 
or /¿62s ( m belongs to J2- • 

Theorem 5.1 The set of all recognizable subsets of B(A,L) is a boolean algebra. 

Proo f By lemma 5.1, this set is closed under complement. By lemma 5.2 the 
union and the intersection of the two subsets recognized by the pairs < Ai,7i > 
and < A2, 72 > are recognized by the pairs < A\ X A2, $u > and < Ai X A2, 9n >• 
• 

A less usual property is: 

Proposition 5.1 Let h : Si —• 52 be a surjective homomorphism of bts. Then Si 
is accepted by the pair < A, 7 > iff $2 is accepted by this pair. 

Proof We already know, by Theorem 3.1 that /ifisj = /xij, oh. Hence /¿5$, (V) = 
n6Sl(h(V)) = rfS2(V') = Q. • 

6 Fibers 
Let us define the following binary relation between bts: two bts tire in the relation 
if they have a common homomorphic image. It can be proved (see Jl]) that this is 
an equivalence relation and, moreover, that each equivalence class has a canonical 
representant which is minimal in the following sense: it is an homomorphic image 
of every bts in its equivalence class. Therefore we call fiber such an equivalence 
class. From proposition 5.1 every recognizable set is a union of fibers. Here we 
prove that every fiber is recognizable. 

Let S =< V, A > be a bts. Let us define, for every vertex v and for every 
natural number n the bts T(v, n), which is indeed a tree, as follows: 

• T{v, 0) is a single vertex labelled by a special symbol, say ± , 
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• T(v, n+1) is the disjoint union of all T(v', n) for all v' in [JaeA 7(a, t>) together 
with a new vertex t>o labelled by A(v) and, for any letter a in A, a set of edges 
labelled by a from «0 to every T(v', n), for v' in 7(0, w). 

For short, T(v, n + 1 ) can be written as A(t>)(|Jo€il U»'ei(o,») 0 " T(v >>n))-
The set of all such T(v, n) can be ordered, by induction on n, by: 

• T(v, 0) is less than anything, 

• T(v, n + 1) is less than T(v', n' + 1), for n < n' iff 

- A(v) = X(v'), 
- for any a in A, the set {T(v", n) | v" € 7(a, w)} is less (with respect to the 

induced Egli-Milner ordering) than the set {T(u", n') | v" e 7(0, «')}. 

Lemma 6.1 If T(v, n + 1) = T(v', n + 1), then T(v, n) = T(v', n). 

Proof The proof is by induction on n. 
•If T(v, 1) = t(v', 1), then obviously T(v, 0) = T(v', 0) = ± . 

•If T (v ,n+2 ) = T(v',n+ 2), then A(v) = A(«') and for any a, {T(v", n + 1) | v" e 
7(a, w)} = {T(v", n+1) | v" € 7(a, w')}. Then for any u G 7(0, v), (resp. € 7(0, w')) 
there exists « ' € 7(a, w') (resp. € 7 (0,«)) such that T(u, n + 1) = T ( u ' , n + 1). 
By induction hypothesis, T(u, n) = T(u', n); hence {T(v", n) | v" e 7(0, v)} = 
{T{v", n) I v" S 7 (a, v')} and T{v, n + 1) = T(v', n + 1 ) . • 

Then we define the following family of equivalence relations between the vertices 
of a bts. 

vt- v' iff T(w,i) = T(v',i) 

By the previous lemma we get 

*+i / » / v ~ v => v ~ v 

Let ki be the number of classes of We have 

• 1 < A;» < |V̂  |, where |VJ is the number of elements of V; 

• ki < ki+i; 

• if ki — ki+i then ~ = , i 1 = ' i J for every j > 1. 

This last point can be easily proved in the following way: since 'i-1 is included 
in if they have the same number of classes, they are equal. Now let us assume 
that ~ = n i 1 . T(v, n + 2) can be written as 

A H ( U U « - 2 V . » + ! ) ) , 
a€A v'ei(a,v) 
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and T(u, n + 2) as 

A(u)( |J U « - r i « 1 , » + ! ) ) • 
aBA o'€7(O,B) 

If they are equal, it means that A(t>) = A(u) and that for every o, if v1 € 7(0, u), 
there is some u' €E 7(0, u) (and conversely) such that T(v', n + 1) = T(u', n + 1), 
hence T(t/, n) = T(u', n) and T[v, n + l) = T(u, n+ 1). 

Thus we get the following lemma: 

Lemma 6.2 

Let us define ~ to be ~ and let us denote by [v] the equivalence class of v for 
and for any subset V of V, by [V] the set {[«] | v € V'}. We can define the 

quotient bts $ / ~ = < [V], 7'', A'" > of S in the following way: 

• A'([v]) = A(v); this is independent on the choice of v in [v] because of the 
very definition of 

• 7'(o, [w]) = [7(0, t>)|; this is also independent on the choice of v because v ~ v' 

implies v '^ii1 v', hence T(v, \V\ + l ) = T(v', \V\ -f l) ; it follows that 
{ T W , |V|) I e 7(0,«)} = (T(v",|F|) I v" e 7(a,«/)} , hence [7(0,»)] = 

«'Ji-
lt follows from this definition that 5 / ~ is the image of S under a surjective 

homomorphism, from which we derive the lemma: 

Lemma 6.3 If S is minimal, then S = S/ and this implies that v v' => 
T{vt\V\)?T(v',\V\). 

Now let us consider a minimal bts $. Let us define the finite set Q as beeing the 
set of all (tree-shaped) transition systems obtained by deleting some subtrees in 
some T(v, jV^) and replacing them by a vertex labelled by _L. This set is obviously 
ordered and contains {T(v, n) | v € V, n < |V|} as an ordered subset. Let us define 
the following bts automaton A =< A, L, Q U {a } , ± , 5 > where Q is defined as 
above, a is a new state greater than any other state and where S is defined by 

S(l,Xai,...,Xan) = t 

where r is defined as follows: 
•first, let t' be 

i ( U U «•»)> 
a£A ueX„ 

•second, replace all subtrees of r' at depth greater than \V\ by _L, getting r", 
•then if r " € Q then r = r" otherwise r = a. 

It is easy to see that 5 is increasing. 
Finally let us define the acceptance condition as consisting only of the set F = 

{T(v, |V|) | v € V ) which is obviously included in Q. 
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Let now ¡16$ the least fixed point of the transition function 6 over S. Then it 
can be shown that fi6s(v) = T(v, |V|): clearly all the states assigned to v during 
the computation of uS$ are less than T(v, |V|); let us assume that some (¿6$ (t>) is 
strictly less than T(v, |V|); that means that in this state iiSs(v), ±&appears at a 
depth less than |V | which implies by an inductive argument that fiSs(t/) =_L for 
some v1 which is impossible because every vertex is assigned at least a tree whose 
root is labelled by the label of this vertex. 

Thus S is accepted by the pair < A, {F} >. 
Conversely, let us assume that some $' is also accepted by the pair < A, { F } >. 

We have to show that 5 is a homomorphic image of S'. 
Let at = fiSg. Let us define the mapping associating with a vertex v of S' a 

vertex u of S such that a(u) = T(u, |V|); the result does not depend on the choice 
of u since, S beeing minimal, by lemma 6.3, T(u, |V|) = T(u\ implies u = u'. 
Moreover it is suriective since for every vertex v of S, there exists a vertex v' of 
S' such that a(t / j = T(v, |V|). It remains to prove that this mapping is a bts 
homomorphism, which is a straightforward consequence of the fact that a is a fixed 
point of the transition function S and of the definition of 6. 

7 N o i deterministic bts automata 
The bts automata previously defined are deterministic in the sense that the transi-
tion relation S is indeed a function from L x p(Q)A into Q. If an automaton is non 
deterministic, then 6 has to be one-to-many, but in this case it is difficult to define 
a condition of monotonicity which guarantees the existence of a least fixed point. 

A first approach to this problem is to consider that a non deterministic transi-
tion relation is not a one-to-many mapping but a set of functions: applying such a 
transition relation consists in choosing one of the function in the set and applying 
it. In this case, one has just to assume that each one of these functions is monoto-
nic. Such a point of view about non deterministic functions (sets of deterministic 
functions rather than multivocal functions) has already been fruitfully applied to 
the semantics of non deterministic recursive program schemes [2j. For the classical 
cases (words, trees), a transition function can always be defined this way provided 
two sets 7 and 7' of functions are considered equivalent if for every argument x 
the two sets { / ( x ) | / 6 7} and {/(x) | / G 7'} are equal, which means that the 
two sets define the same multivocal function. 

This is probably not enough to guarantee the exixtence of a least fixed point: 
each time a vertex is "visited* one has to apply one of the transition functions 
appliable to this vertex; since it is not necessarily the same one which is chosen at 
every visit, there is no reason for the value of the state assigned to this vertex only 
increases. This problem disappears if, once one of the function appliable to some 
vertex is chosen, at each further visit, this function will be chosen too. In this case 
we are sure that a least fixed point will be reached. 

But then, it is equivalent to add to each vertex another label, which indicates 
which is the function to be applied at this vertex and, on such a transition system, 
the automaton becomes deterministic. Therefore one can say that a set of bts is 
non deterministically recognizable if it is the projection of a set recognized by a 
(deterministic) bts automaton, where the projection of a bts is defined as follows: 

A bts S = < V, 7, A > over A and L is a projection of S' = < V , 7', A' > over A 
and L' if there exist a bijection ft between V' and V and a mapping p from L' in 
L such that 

o for every v in V, A'(/3(v)) = p(X(v)); 



346 A. Arnold 

• for every v in V and for every a in A, ~f(a, P(v)) = v)). 

In other words, S is obtained from S' by replacing the label of every vertex by its 
image under p. 

A n example Let us define the binary operator © which associates, with two bts, 
their disjoint union. Let us extend this operator to sets of bts by 

K © K' = {S © S' | S € K, S' € K'}. 

It is easy to see that if K and K' are both recognizable by (deterministic) automata, 
then K © K' is non deterministically recognizable: 

• first of all, consider two isomorphic copies Ki and K2 of K and K', with 
disjoints sets of vertex labels. 

• Ki and K2 are still recognizable by two deterministic automata and one can 
assume that they have disjoint sets of states. 

• the "disjoint union" (the intuitive meaning of this notion is obvious) is still a 
deterministic bts automaton and one can easily define an acceptance criterion 
such that it recognizes Ki © 

Then if © i f ' is the projection of K\ © K2- Intuitively speaking the modifications 
of the vertex labels of K and K' simply allows to select which automaton has to 
run when visiting some vertex of K or K'. 

On the other hand the disjoint union (in the sense defined above) of two de-
terministically recognizable sets is not necessarily deterministically recognizable. 
Indeed, it seems probable that there exist examples of deterministically recogni-
zable sets, disjoint union of which is not. But it remains to find out such examples 
and to show that their disjoint union is not deterministically recognizable, which 
could be not so easy. 

Also the family of nondeterministically recognizable sets need not to be a bo-
olean algebra: it is obviously closed under union but probably not under comple-
mentation, nor even under intersection. Here again counter-examples and proofs 
have to be given and are presumably not immediate. 

8 Recognizable sets and graph grammars 
It is well known that in the cases of words and of trees, there exist some kinds 
of grammars, the regular grammars, which generate exactly the recognizable sets 
of words and of trees. The question is quite open for the case studied here: a lot 
of different kinds of graph grammars have already been defined in the litterature; 
do there exist some kinds of graph grammars which generate exactly the determi-
nistically and/or the nondeterministically recognizable sets of bilabelled transition 
systems, and which, therefore, will be deserved to be named regular, as far as 
the notion of recognizability defined in this paper can be considered as a correct 
extension of the similar notion for words and trees. 
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