
Acta Cybernetica, Tom. 9, Fasc. 4, Szeged, 1990

The complexity of a
counting finite state automaton

C. A. Rich1 and G. Slutzki2

Abstract

A counting flnite-state automaton is a nondeterministic finite-state automaton
which, on an input over its input alphabet, (magically) writes in binary the number
of accepting computations on the input. We examine the complexity of computing
the counting function of an NFA, and the complexity of recognizing its range as a
set of binary strings. We also consider the pumping behavior of counting flnite-state
automata. The class of functions computed by counting NFA's

(1) includes a class of functions computed by deterministic finite-state transducers;
(2) is contained in the class of functions computed by polynomial^ time- and

linearly space-bounded Turing transducers;
(3) includes a function whose range is the composite numbers.

1. Introduction
A counting finite-state automaton is a nondeterministic finite-state automaton
which, on an input over its input alphabet, (magically) writes in binary the number
of accepting computations on the input. Tne counting finite-state automaton—or
counting NFA—is a finite-state analogue of the counting Turing Machine of Valiant
l7l- . '

It is known that the class # P of functions computed by polynomially time-
bounded counting TMs includes the class FP of functions computed by polynomi-
ally time-bounded Turing transducers; however, it is riot known if this inclusion is
proper. Valiant [7,8] has shown several functions to be complete for #P, and these
functions in # P are not computable in polynomial time if P ^ NP. These results
suggest that FP is properly included in #P.

1 Computer Science Department, California State Polytechnic University, Po-
mona, Pomona, CA 91768-4034, USA

2 Computer Science Department, Iowa State University, Ames, IA 50011, USA

404 C. A. Rich and G. Slutzki

We consider finite-state analogues of these questions. We show that the class
#NFA of functions computed by counting NFAs includes a class #DFT of counting
functions computed by deterministic finite-state transducers. Although it is not
known whether FP ^ #P , we show that #DFT is properly included in #NFA by
exhibiting a counting NFA whose range as a set of binary strings is not context-free,
whereas the ranges of deterministic finite-state transducers are regular [2]. While
some functions in # P are apparently not computable in polynomial time, we show
that functions in #NFA can be computed using time polynomial and space linear
in the the length of the input.

Since functions in #DFT have ranges which are regular and functions in #NFA
have ranges which are not necessarily context-free, it is natural to investigate the
complexity of counting NFA ranges. Intuitively, one might expect the range of a
counting NFA to be efficiently recognizable simply because it is a finite-state model,
but that is apparently not the case. We establish an upper bound by showing
that the range of a counting NFA is recognizable nondeterministically using space
linear in the length of the input, i.e., a context-sensitive language. We suggest an
intractable lower bound by showing that the composite numbers—which are not
known to be in P—are the range of a counting NFA.

In §2, we give notational conventions and formally define, the counting function
of an NFA. In §3, we show that the counting functions computed by deterministic
finite-state transducers are properly included among those computed by nonde-
terministic finite-state automata, and give a counting NFA whose range is not
context-free. In §4, we examine the complexity of computing the counting function
of an NFA, and the complexity of recognizing its range as a set of binary strings. In
§5, we consider the pumping behavior of a counting finite-state automaton. For a
fixed input string, we show that the number of accepting computations—considered
as a function of the number of times a fixed substring is pumped—satisfies a ho-
mogeneous linear recurrence equation of finite degree having integer coefficients.

2. Preliminary Definitions
In this section, we present notational conventions and our notions of counting func-
tion computed by finite-state automata. A string x is a finite sequence of symbols
from a finite alphabet. The length of x, denoted |z], is the number of symbols
composing x. The empty string, denoted e, is the string having length 0. The
concatenation of two strings x and y is the string consisting of the symbols of x
followed by the symbols of y, denoted xy. A language £ is a set of strings over an
alphabet, and ||£]| denotes the cardinality of L. The empty set is denoted by <f>; the
set of integers { . . . , — 1,0,1, . . . } is denoted by Z; and the set of natural numbers
{0 ,1 ,2 , . . . } is denoted by M.

In this work, we frequently consider natural numbers as binary strings and vice
versa. Formally, these conversions are functions s: M —* {0, l }* and {0,1}* —* M
defined by

s(k) = the binary representation of k without leading zeroes,
(z) = the number represented in binary by x.

Note that s(0) = e. We extend s and # to sets of natural numbers and binary strings
in the usual way by defining s(K) = {s(ifc) I KE K), and # (L) = {#(-e)J X e £}.

A nondeterministic finite automaton (NFA) is a 5-tuple M = (Q, E, 6,1, F),
where Q is a finite set of states', E is a finite input alphabet; S is a transition function

The complexity of a counting finite-state automaton 405

from QxS* to subsets of Q; I C Q is a set of initial states; and F C Q is a set of
final states. The counting function #5 : QxE* —* M is defined recursively by

Intuitively, the counting function #M(x) (if 6 (q. x)) is the number of accepting com-
putations of M on input x (starting from state q). We extend the counting functions
to languages L C E* in the usual way by defining #6(q, L) = { #6(q, x i I x G L },
and (L) = { # M (x) | x € L } . We consider the range of a counting NFA M to
be the set of binary strings s(#M(E*)) . The class of counting functions of NFAs is
defined by #NFA = { # M | M is an NFA }, and the class of their ranges is defined
by range(#NFA) = { s(#Af(E*)) | M is an NFA with input alphabet E } .

We also want to consider a deterministic counterpart of the counting NFA
which produces a binary string by transduction rather than counting accepting
computations. Intuitively, our deterministic finite-state transducer is a special case
of the deterministic Generalized Sequential Machine (GSM) [l] in which the out-
put alphabet is fixed to be {0,1} and all states are considered final, so that its
computation on any input produces a binary string.

Formally, a deterministic finite-state transducer (DFT) is a 5-tuple D = (Q, E,
?l)> where Q is a finite set of states; E is a finite input alphabet, 6: Q x E —» Q

is a transition function; X: QxE —• {0,1}* is an output function; and qi & Q
is the initial state. The transition function and output function are extended to
6: QxE* Q and A: QxE* {0,1}*, defined recursively by

The output function D: E* —• {0,1}* is defined by D(x) = A(?i, x) and the counting
function #D: E* M is defined by #£»(x) = #(D(x)). Intuitively, the counting
function #D(x\ is the number represented by the binary string produced by the
transduction of D on input x. We extend the output and counting functions to
languages L C E* in the usual way. We consider the range of a DFT to be the
set of binary strings s(#D(E*)). Note that it can be obtained from D(E*) by
truncating the leading zeroes of each string. The class of counting functions of
DFTs is defined by #DFT = { #Z> I D is a DFT }, and the class of their ranges is
defined by range(#DFT) = { s(#I>(E*)) | D is a DFT with input alphabet E } .

#%, ax) = £ #S(p, x).
peS(q,a)

The counting function #M: E* —» M is defined by

M (x) = £ # % . *) •
qel

S(q,e) = q,

6(q,ax) = 6(S(q,a),x)-,
A (q, e) = e,

A(g. <rx) = A(g, <r)A(%, <r), *)•

k

406 C. A. Rich and G. Slutzki

3. Inclusions among Counting Functions and
their Ranges
In this section, we show that the counting functions computed by deterministic
finite-state transducers are properly included among those computed by nonde-
terministic finite-state automata, and give a counting NFA whose range is not
context-free. We denote the class of regular and context-free languages by REG
and CFL, respectively. Since the range of every deterministic Generalized Sequen-
tial Machine (DGSM) is regular [2], and a DFT is a special case of a DGSM, it
follows that the range of a DFT (with leading zeroes truncated) is regular.
Theorem 3.1. range(#DFT) C REG.
Theorem 3.2. #DFT C #NFA.
Proof. Let D = [Q, E, 6, A, be a DFT, and construct an NFA M with input
alphabet E such that for x & E*, # M (x) = #D(x). Suppose Q = { f l i , . . . , ? « } ,
and let I = max{ |A(g, tr)| | q G Q A a 6 E }. Let M = (Q £ , S\ {qi}, F) , where
Q' = Q U { | 1 < » < s A 1 < j < 2l } , F = { q{ | 1 < t < a A 1 < j < 2l } , and 6'
is defined by

Next we prove, by induction on |x|, the claim (*) #5'(qf,-, x) = #(A(g,-, x)). For the
empty string e,

and for strings ax of length at least 1,

6 \ q l a x) = £ #5 ' (p ,z)
p€S'(qf,a)

l<j<2lA(«t>',)l

. = 2|A(?<,<7)A(i(9il<7)|iC)|

= 2lA(i»'tTI)l.

#S'(qi,e)= | 1, i f 9 , e F ;
0, if q i ? F = 0 = # (€) = # (A (g,-,e)),

and for strings ax of length at least 1,

407

p€6'{qito)

E # S ' (S (q i , a) j , x)) + *)
l<J<#(A(9<1a))

= a)) • + # (A (% - , a) , x))

= # (A (g f , a) A (% t - , < 7) , x))

= # (A (9 i , a x)) .

Proof idea, (addition) Let M' = [Q1, E, 6', P, F'), M" = (Q",H,S",I",F") be
(VT U A a nn/4 «/vtta^miof i n MPA Kjf «ri 'ik i n r v n a ItvIi kat V1 aii/*lt f Vi o + f/M« rt> d V?* NFAs, and construct an NFA M with input alphabet E such that for x € E*,
M (x) = # M ' (x) + # M " (x) . M is obtained by a disjoint union construction.
The states, transitions, initial states, and final states of M are the disjoint unions
of those in M' and M".

(multiplication) Let M' = (Q't E, £', / ' , F'), M" = (<?", E, 6", I", F") be
NFAs, and construct an NFA M with input alphabet E such that for x (= E*,
#Af(x) = #Af ' (x) • # M " (x) . M is obtained by a cartesian product construc-
tion. The states, transitions, initial states, and final states of M are the cartesian
products of those in M' and M " . 1

In this research, we give two examples of counting NFAs whose ranges tire not
context-free. The first is presented here, and the second—whose range is the binary
encodings of the composite numbers—is presented in §4.
Example. A counting NFA whose range is L = { l n 0 " l " | n € M }.
We construct an NFA M with input alphabet {0} such that s (#M(0*)) = L. For
k 6 M, define an NFA Mk = (Q, {0} , 6,1, F), where Q = (qi,..., q2k,Pi, • •
p2/t+i}, 1 = {91}, F = { p i , . . . , p 2 f c + i } , and 6 fe defined by

First we prove, by induction on n, that #<5(pt-,0") = 2(f c+1)n. For n = 0,

£(Pi,0) = {Pl»---,P2fc+i}-

1, i f p , e f ;
0, if Pi<£F

= 1 = 2(f c + 1)°,

and for n > 0,
6 (p i , o n) = E o " " 1)

pes(Pi.o)

= E # « (P > , ° n _ 1)
l < j < 2 f c + 1

_ 2*+l . 2(*+l)(n-l) = 2(Jt+1)n.

408 C. A. Rich and G. Slutzki

Next we prove, by induction on n, the claim (*) # % , - , 0") = 2 (t + 1) n - 2 k n . For
n = 0,

#«<*•«>={£ "IIf = °=2{k+1)0-2k0>
and for n > 0,

% • , o n) = E # ^ (p . o n - 1)
pe«(9i, o)

= (E #6(qitW-lj) + (E #S(Pj,0n~1))
l<J<2fc l<y<2fc '

= 2* • (2(f c + 1)(n-1) - 2*(n~1)) + 2* • 2(*+ 1Kn -1)
_ 2(M-l)i _ 2k n

Using Lemma 3.3, construct an NFA Af with input alphabet {0} such that for
n € M, # M (0 ") = #M 2 (0 n) + #M 0 (0 n) . If we take t" = 1 in (*), then

s(#M(0*)) = { s (# M (0 ")) | n e > / }
= { s (#M 2 (0") + #M 0 (0 ")) | n<=M}
= { s((23n - 2 2 n) + (2n - 2°)) | n € M }
= { s(8n - 4n + 2n - 1) | n e U }
= { i n o n i " \ne JJ} = L. •

Corollary 3.4. range(#NFA) % CFL.
Corollary 3.5. range(#DFT) c range(#NFA) frange(#DFT) is properly conta-
ined in range(#NFA)).
Proof. It follows from Theorems 3.1, 3.2, Corollary 3.4, and the fact that REG C
CFL. •

4. The Complexity of Counting Functions and
their Ranges
In this section, we examine the complexity of computing the counting function of
an NFA, and the complexity of recognizing its range. The latter problem—deciding
whether a given binary string represents the number of accepting computations on
some input—is considered both for a fixed NFA and when the NFA is given as
an additional parameter. We show that a fixed counting NFA's range is context-
sensitive, and suggest an intractible lower bound by showing that the composite
numbers—which are not known to be in P—are the range of a counting NFA. The
second of these is called the range membership problem for counting NFAs and is
shown to be PSPACE-complete.

An important tool which we use in solving these problems is a matrix algebraic
characterization of the counting function of an NFA which allows us to compute it
in polynomial time and linear space. Let M = (Q, E, 6, /, F) be an NFA with state

The complexity of a counting finite-state automaton 409

set Q = { g i , . . . , qt), and let x = an ...o\ S E*. For each a e E, let e, A", f be
the lxs , 3X3, s x l matrices defined by

' I \ ^ / 1 , if iy e / ;
= {ei e2 ... et), where e, = | Q> jf / f

A° =

f =

U'n A|a . . .
Af i A\2 • • • A\t

\ Aii Kl A?,

, where A?, = { I' " « ¡ H M ' *J \0, if qj<£6(qi, a),

ts J
(h\

h
, where /,• = #%,- ,€) .

The symbol * denotes the usual matrix multiplication.

Lemma 4.1. e* A°n * • • • * Aai * / = #M(x).

Proof. We prove, by induction on n, the following claim for 1 < i < s:

(*) (A"» . • • • * * f)i = #5(<7,-, <rn... <7X).

For n = 0, {f)i = fi = e), and for n > 0,

{A°n * •••* A"! * f)i= E Afr» • (A ^ - i * • • • * A*! * /),•
j= l

= E A ^ - ^ ^ . a , » . ! . . . ^)
i= i

Applying (*), we have

e* A°n *•••* A"1 * / = E ey • (A»» * - *Aai*f)j

J=1
t

= E ey #6{qj,x)
3 = 1

= E # % , *)

= #M(x). •

410 C. A. Rich and G. Slutzki

The algebraic characterization of Lemma 4.1 gives us the following algorithm
for computing #A/ (x) which processes the symbols of x from right to left, producing
an a-entry column vector after each of n matrix multiplications.

input x; { = <rn ...<7i € E*}

for t := 1 to n do
v := Aai * v;

output e * v

After n multiplications, we obtain A°n * • • • * A"1 * / , whose tth entry is x).
This computation can be done in time polynomial in n and, since #6(<7,-, x) < a ,
each entry can be represented in binary using space linear in n.

In the remainder of this section, we turn our attention to the ranges of counting
NFAs. We apply the method of computing (x) given by the previous algorithm
to show that the range a(#M(E*V) of a counting NFA M is context-sensitive, i.e.,
is in NSPACE(n).

Given a binary string y, how can we decide if y € a(#Af(E*))? That is, how
can we decide if y represents the number of accepting computations of M on some
input x? A first approach using Lemma 4.1 is to guess symbols a i , . . . , a n of x
from right to left, computing after each guess a column vector v whose tth entry
is V,- = x), and accepting if and only if y is the binary representation of
e-*v = # M (x) :

input y;
v:=f;
while true do

begin
if s(e*v) = y then accept;
guess a € E;
t>:= A" *v

end
Some computations of this nondeterministic algorithm may not halt and will require
an unbounded amount of space in which to store the entries of v. In the following
development, we show how to impose a linear space bound on the computations of
this algorithm by placing a cap on the size of the entries of v.

Let y e {0,1}*. We define cap^: M —> M by cap„(m) = min{m, # (y) + 1}.
We extend captf to matrices of natural numbers by applying capv to each entry of
the matrix. We will need the following properties of the cap function in order to
impose a bound on the space required by the previous algorithm and maintain its
correctness.

Lemma 4.2. Let y € {0,1}*; m, I e M; and A, B compatible matrices of natural
numbers.

(1) a(cap„(m)) = y a(m) = y
(2) capy(m + /) = capy(capy(m) + capy(/))
(3) capy(m • Z) = cap„(m • captf(Z))
(4) capy(A * B) = capv(A * capv(£))

The complexity of a counting finite-state automaton 411

Proof. (1) s(capy(m)) = y <=> s(min{m,#(y) + 1}) = y <=> s(m) = y.
(2) We consider two cases. If m + / > #(y) , then cap„(m + I) = cap„(capy(m) +
capy(/)) = #(y) + l- If m+l < #(y) , then capy(m+/) = capy (capy (m)+capy (/)) =
m + l.
(3) Proof is similar to (2).

W / \ capy(A * B)I¡k = capy A,;- • BJKJ

= capy capy(A i j • Bjkf), by (2);

= capy (E c a P y { A i j ' caPy(5ifc)))> b y (3);

= capy (¿2 Aij • caPy {Bjk)), by (2);

= capy(A*capy(B))tifc. •
Theorem 4.3. range(#NFA) C CSL.
Proof. We show that for a fixed NFA M with input alphabet E, s(#M(E*)) is in
NSPACE(n). Consider the following modification of our previous algorithm which
decides whether or not y € s(#M(E*)) :

input y;

while true do 1

begin
if s(capy(<T* w)) = y then accept;
guess a € E;
v := capy(Aff * v)

end

The matrices e, A", and / can be kept in finite control and the space required
by v is 0(|y|), since its entries are at most #(y) + 1; therefore, this algorithm
can be implemented by a nondeterministic linear space-bounded Turing machine.
To show correctness, let a\,.. .,<rn be a sequence of guesses of the algorithm and
x = on.. .<x\. By Lemma 4.2(4), the value of v at the beginning of the while-loop
after guessing x will be

v = captf (A"n * capy (A*7"-1 * • •• * capy(A"i «/)•••))

= capy(Aan * • • • * A"1 * f).

By this observation, Lemma 4.1, and Lemma 4.2(1,4), we have

s(capy(r* «)) = y s(capy(e * cap y(A"n * •• •* A"1 * /))) = y
s(caPy(e * A"n *•••* A"1 * f)) = y

«=>s(cap y (#M(x))) = y

<=> s(#M{x)) = y,

412 C. A. Rich and G. Slutzki

so the algorithm accepts y if and only if s{SM(x)) = y, for some i g E * . I
It is interesting to consider whether tne information in this algorithm can be

farther compressed into space which is logarithmic in |y|, giving us an
NSPACEflogflyl))' algorithm for recognizing the range of a counting NFA. In the
following example, we give evidence that, if possible, it will be difficult to achieve,
by showing that the composite numbers—which are not known to be in P—are the
range of a counting NFA.
Example. A counting NFA whose range is Composites U {0}.
We construct an NFA M with input alphabet E such that #Af (E*) = CompositesU
{0}. First, construct an NFA M ' with input alphabet E = {0,1} such that

= m • I. Let M' be the NFA pictured in the transition graph of
Figure 4.1.

0

0

Figure 4.1. A counting NFA which multiplies unary numbers

We prove, by induction on I, the following claims:

#% 2 ,o ') = i.

For I = 0,

and for I > 0,
« (« i , o ») = E #«(P, o ' " 1)

pei(ii.o)

= (/ - l) + l = Z;

= # % 2,0'

pes(q2fi)
n ' - l

The complexity of a counting finite-state automaton 413

Next we prove, by induction on m, the following claims:

#5(g i ,0 r o10') = m Z ;

For m = 0,
% 1 , 1 0 ') = £ #i(p,0<) = 0 = 0 i ;

pefffai.i)

i (? 2 , i o ') = E #HP,O')
p £ % 2 li)

and for m > 0,

o m i o ') = E ^ (p .O^-HO 1)
pes{q i,0)

= ^ (« . o — h o 1) + #5(92, o™-1 io')
= [m-l) 1+1 = m l;

#6(q2,0m10l) = E # * (p . ° m - 1 1 0 ')
PG% 2.0)

= # % 2 , o w l - 1 i o ') = z.

Therefore, we have #M'(0m10l) = # % i , 0 m 1 0 ') = m • Z. Consider the regular
language R = { 0m10J \m,l>2}. Let M" be a DFA which accepts R. Then

#M»(0"10-) = { J :

Using Lemma 3.3, construct an NFA M such that # M (x) = #M' (x) • #Af"(x) .

#A/(0m10') = #M'(0m10') • #M"(0 m 10 ')
_ (m l, if m,l> 2;

\ 0, otherwise,

so # A f (E *) = Composites U {Ok •
When the range membership problem is considered as a function of both a

given NFA and binary string, we are able to pinpoint its complexity by giving a
completeness result for PSPACE.
Range Membership

Instance: M, an NFA with input alphabet E; y € {0, l}*.
Question: y € s(#M(E*))?

414 C. A. Rich and G. Slutzki

Theorem 4.4. Range Membership is PSPACE-compIete. °
Proof. We have shown in Theorem 4.3 that membership can be decided nonde-
terministically using space 0(||Q|| • |t/|), where ||Q|| is the number of states in M.
By Savitch's Theorem, Range Membership G NSPACE(n2) C PSPACE. We show
hardness by logspace reduction from the nonuniversality problem for NFAs, which
was proved PSPACE-complete by Stockmeyer and Meyer [5,6]. Let M be an NFA
with input alphabet E.

L{M) ± E* <=> 3x e E*, x # L(M)
3x e E*, #M(x) = 0

< i = > o e # M (E *)
<^ees(#M(E*)). •

5. Pumping Behavior and Linear Recurrences
In this section, we consider the pumping behavior of a counting finite-state automa-
ton. For a fixed input string, we show that the number of accepting computations—
considered as a function of the number of times a fixed substring of the input is
pumped—satisfies a homogeneous linear recurrence equation of finite degree having
integer coefficients. We precede this result with some relevant definitions and facts
from the theories of recurrence equations and matrices.

Let g: H —• M. g satisfies a homogeneous linear recurrence equation of degree
s having integer coefficients if there exist ai o , e 2 such that for n € M,

i
+ s) = £ ajfc • ff(n + s - A).

Jfc=l

Let A be an sXs matrix of integers, and I be the 3X3 identity matrix with l's on the
diagonal and O's elsewhere. The characteristic polynomial of A is the polynomial p
defined by p(A) = det(A — X I) , where det is the determinant function. Note that
the characteristic polynomial is of degree s and has integer coefficients, since A has
integer entries. The characteristic equation of A is the equation det (A — A • /) = 0.
The characteristic polynomial is said to be monic, since the coefficient of Xs is
(—1)J = ±1; therefore, the characteristic equation can be written as

fc=l

where o i , . . . , ae £ Z. One of the most important results in matrix theory is the
Cayley-Hamilton Theorem, which states that a matrix satisfies its own characteris-
tic equation. We use it to analyze the pumping behavior of a counting finite-state
automaton.

The complexity of a counting finite-state automaton 415

Theorem 5.1. Let M = (Q, £, 6,1, F) be an NFA with state set Q = {qlt..., gs},
and let w, x, z G E*. There exist ai,..., aa € Z such that for every n € M,

#M{wxn+'z) = E at • #M{wxn+'-kz).
Jfc= 1

Proof. Let e, A", f be defined as in section 4, and let Ax = A°i * • • • * Aa\x\,
where x = o\ ... j- We define Aw and A' similarly. As discussed before, the
characteristic equation of Ax can be written as

Jt=l

where aB € Z. By the Cayley-Hamilton Theorem,

A*' = E akAx'~k.
k=l

By this observation and Lemma 4.1, we have for 1 < t < a and n £E M,

wxn+"z) = {Aw * Axn+' * A* * /"),-

= (Aw * Axn * Ax' * Az * f)i

= (A* * Ax" * (£ afc • Ax"k) * A* * f) .

= (E *k- (A* * A'n * Ax'~k *Az*f)Y

t
= E«* (Aw* Ax * Az * f)i

k=l

= E ak #6(qi,wxn+*-kz).
k=l

#M(wxn+*z) = £ #6(qi>wxn+>z)

= E (E a* » « - + • - * »))
9,-Gl k=l '

= X > * (E # % , « « » + • - * *))
*=i \ei '

= E a* • #M(wxn+'-kz). •
k=l

Stearns and Hunt [4] showed that the number of accepting computations over
all inputs of a given length—considered as a function of the length—satisfies a
homogeneous linear recurrence equation of finite degree having rational coefficients.

416 C. A. Rich and G. Slutzki

The technique of Theorem 5.1 can be used to strengthen and simplify the proof
of their result, obtaining integer coefficients and a recurrence equation which is
satisfied regardless of which state is considered to be the start state, by applying
the Cayley-Hamilton Theorem with the matrix A = £ A".

<res

6. Summary and Open Questions
We summarize some of the results contained heretofore, and ask open questions
about improvements and extensions of our results.

In §3, we showed that range(#NFA) includes range(#DFT)—the ranges of
deterministic finite-state transducers. It follows from the Generalized Sequential
Machine results of Ginsburg and Greibach [2] that the latter is the class of all
regular languages comprised of binary strings without leading zeroes. Is the class
of all context-free languages comprised of binary strings without leading zeroes
included in range(#NFAl?

In §4, we showed tnat the range s (#M(S*)) of a counting NFA M is in
NSPACE(n). How tight is this upper bound? Respecting the fact that the compo-
site numbers are the range of a counting NFA, is there a subclass of NSPACE(n)
which contains range(#NFA)? Are there ranges of counting NFAs which are comp-
lete for NSPACE(n)? NP? some other time- or space-bounded complexity class?

In §5, we showed that for a fixed input string, the number of accepting comput-
ations—considered as a function of the number of times a fixed substring of the
input is pumped—satisfies a homogeneous linear recurrence equation of finite degree
having integer coefficients. Does this lead to a simple pumping lemma which can be
used to show that a function is not in #NFA or a language is not in range(#NFA)?
Which arbitrary functions satisfying linear recurrences as in Theorem 5.1 are com-
puted by counting NFAs? That is, can we precisely characterize #NFA as a class
of functions satisfying a restricted class of recurrence equations?

References

[1] Ginsburg, S. "Examples of abstract machines," IEEE Trans, on Electronic Com-
puters 11: 2 (1962), 132-135.

[2] Ginsburg, S., and Greibach, S.A. "Abstract families of languages," Studies in
Abstract Families of Languages, pp. 1-32, Memoir No. 87, American Mat-
hematical Society, Providence, R.I., 1969.

[3] Hopcroft, J.E., and Ullman, J.D. "Introduction to automata theory, languages,
and computation," Addison-Wesley, Reading, Mass., 1979.

[4] Stearns, R.E., and Hunt, H.B. III. "On the equivalence and containment prob-
lems for unambiguous regular expressions, regular grammars, and finite
automata," SIAM J. Comput. 14 (1985), 598-611.

[5] Stockmeyer, L.J., and Meyer, A.R. "Word problems requiring exponential time,"
Proc. Fifth Annual ACM Symposium on the Theory of Computing (1973),
1-9.

The complexity of a counting finite-state automaton 417

[6] Stockmeyer, L.J. "The Complexity of Decision Problems in Automata Theory
and Logic," Doctoral Thesis, Dept. of Electrical Engineering, Massachu-
setts Institute of Technology, Cambridge, Mass., 1974.

[7] Valiant, L.G. "The complexity of computing the permanent," Theor. Corn-
put. Sci. 8 (1979), 189-201.

[8] Valiant, L.G. "The complexity of enumeration and reliablity problems," SIAM
J. Comput. 8: 3 (1979), 410-421.

(Received July 29, 1988)

