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The complexity of a 
counting finite state automaton 

C. A. Rich1 and G. Slutzki2 

Abstract 

A counting flnite-state automaton is a nondeterministic finite-state automaton 
which, on an input over its input alphabet, (magically) writes in binary the number 
of accepting computations on the input. We examine the complexity of computing 
the counting function of an NFA, and the complexity of recognizing its range as a 
set of binary strings. We also consider the pumping behavior of counting flnite-state 
automata. The class of functions computed by counting NFA's 

(1) includes a class of functions computed by deterministic finite-state transducers; 
(2) is contained in the class of functions computed by polynomial^ time- and 

linearly space-bounded Turing transducers; 
(3) includes a function whose range is the composite numbers. 

1. Introduction 
A counting finite-state automaton is a nondeterministic finite-state automaton 
which, on an input over its input alphabet, (magically) writes in binary the number 
of accepting computations on the input. Tne counting finite-state automaton—or 
counting NFA—is a finite-state analogue of the counting Turing Machine of Valiant 
l7l- . ' 

It is known that the class # P of functions computed by polynomially time-
bounded counting TMs includes the class FP of functions computed by polynomi-
ally time-bounded Turing transducers; however, it is riot known if this inclusion is 
proper. Valiant [7,8] has shown several functions to be complete for #P, and these 
functions in # P are not computable in polynomial time if P ^ NP. These results 
suggest that FP is properly included in #P. 
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We consider finite-state analogues of these questions. We show that the class 
#NFA of functions computed by counting NFAs includes a class #DFT of counting 
functions computed by deterministic finite-state transducers. Although it is not 
known whether FP ^ #P , we show that #DFT is properly included in #NFA by 
exhibiting a counting NFA whose range as a set of binary strings is not context-free, 
whereas the ranges of deterministic finite-state transducers are regular [2]. While 
some functions in # P are apparently not computable in polynomial time, we show 
that functions in #NFA can be computed using time polynomial and space linear 
in the the length of the input. 

Since functions in #DFT have ranges which are regular and functions in #NFA 
have ranges which are not necessarily context-free, it is natural to investigate the 
complexity of counting NFA ranges. Intuitively, one might expect the range of a 
counting NFA to be efficiently recognizable simply because it is a finite-state model, 
but that is apparently not the case. We establish an upper bound by showing 
that the range of a counting NFA is recognizable nondeterministically using space 
linear in the length of the input, i.e., a context-sensitive language. We suggest an 
intractable lower bound by showing that the composite numbers—which are not 
known to be in P—are the range of a counting NFA. 

In §2, we give notational conventions and formally define, the counting function 
of an NFA. In §3, we show that the counting functions computed by deterministic 
finite-state transducers are properly included among those computed by nonde-
terministic finite-state automata, and give a counting NFA whose range is not 
context-free. In §4, we examine the complexity of computing the counting function 
of an NFA, and the complexity of recognizing its range as a set of binary strings. In 
§5, we consider the pumping behavior of a counting finite-state automaton. For a 
fixed input string, we show that the number of accepting computations—considered 
as a function of the number of times a fixed substring is pumped—satisfies a ho-
mogeneous linear recurrence equation of finite degree having integer coefficients. 

2. Preliminary Definitions 
In this section, we present notational conventions and our notions of counting func-
tion computed by finite-state automata. A string x is a finite sequence of symbols 
from a finite alphabet. The length of x, denoted |z], is the number of symbols 
composing x. The empty string, denoted e, is the string having length 0. The 
concatenation of two strings x and y is the string consisting of the symbols of x 
followed by the symbols of y, denoted xy. A language £ is a set of strings over an 
alphabet, and ||£]| denotes the cardinality of L. The empty set is denoted by <f>; the 
set of integers { . . . , — 1,0,1, . . . } is denoted by Z; and the set of natural numbers 
{0 ,1 ,2 , . . . } is denoted by M. 

In this work, we frequently consider natural numbers as binary strings and vice 
versa. Formally, these conversions are functions s: M —* {0, l }* and {0,1}* —* M 
defined by 

s(k) = the binary representation of k without leading zeroes, 
# ( z ) = the number represented in binary by x. 

Note that s(0) = e. We extend s and # to sets of natural numbers and binary strings 
in the usual way by defining s(K) = {s(ifc) I KE K), and # (L ) = {#(-e)J X e £}. 

A nondeterministic finite automaton (NFA) is a 5-tuple M = (Q, E, 6,1, F), 
where Q is a finite set of states', E is a finite input alphabet; S is a transition function 
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from QxS* to subsets of Q; I C Q is a set of initial states; and F C Q is a set of 
final states. The counting function #5 : QxE* —* M is defined recursively by 

Intuitively, the counting function #M(x) (if 6 (q. x)) is the number of accepting com-
putations of M on input x (starting from state q). We extend the counting functions 
to languages L C E* in the usual way by defining #6(q, L) = { #6(q, x i I x G L }, 
and (L) = { # M ( x ) | x € L } . We consider the range of a counting NFA M to 
be the set of binary strings s(#M(E*)) . The class of counting functions of NFAs is 
defined by #NFA = { # M | M is an NFA }, and the class of their ranges is defined 
by range(#NFA) = { s(#Af(E*)) | M is an NFA with input alphabet E } . 

We also want to consider a deterministic counterpart of the counting NFA 
which produces a binary string by transduction rather than counting accepting 
computations. Intuitively, our deterministic finite-state transducer is a special case 
of the deterministic Generalized Sequential Machine (GSM) [l] in which the out-
put alphabet is fixed to be {0,1} and all states are considered final, so that its 
computation on any input produces a binary string. 

Formally, a deterministic finite-state transducer (DFT) is a 5-tuple D = (Q, E, 
?l)> where Q is a finite set of states; E is a finite input alphabet, 6: Q x E —» Q 

is a transition function; X: QxE —• {0,1}* is an output function; and qi & Q 
is the initial state. The transition function and output function are extended to 
6: QxE* Q and A: QxE* {0,1}*, defined recursively by 

The output function D: E* —• {0,1}* is defined by D(x) = A(?i, x) and the counting 
function #D: E* M is defined by #£»(x) = #(D(x)). Intuitively, the counting 
function #D(x\ is the number represented by the binary string produced by the 
transduction of D on input x. We extend the output and counting functions to 
languages L C E* in the usual way. We consider the range of a DFT to be the 
set of binary strings s(#D(E*)). Note that it can be obtained from D(E*) by 
truncating the leading zeroes of each string. The class of counting functions of 
DFTs is defined by #DFT = { #Z> I D is a DFT }, and the class of their ranges is 
defined by range(#DFT) = { s(#I>(E*)) | D is a DFT with input alphabet E } . 

#%, ax) = £ #S(p, x). 
peS(q,a) 

The counting function #M: E* —» M is defined by 

# M ( x ) = £ # % . * ) • 
qel 

S(q,e) = q, 

6(q,ax) = 6(S(q,a),x)-, 
A (q, e) = e, 

A(g. <rx) = A(g, <r)A(%, <r), *)• 

k 
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3. Inclusions among Counting Functions and 
their Ranges 
In this section, we show that the counting functions computed by deterministic 
finite-state transducers are properly included among those computed by nonde-
terministic finite-state automata, and give a counting NFA whose range is not 
context-free. We denote the class of regular and context-free languages by REG 
and CFL, respectively. Since the range of every deterministic Generalized Sequen-
tial Machine (DGSM) is regular [2], and a DFT is a special case of a DGSM, it 
follows that the range of a DFT (with leading zeroes truncated) is regular. 
Theorem 3.1. range(#DFT) C REG. 
Theorem 3.2. #DFT C #NFA. 
Proof. Let D = [Q, E, 6, A, be a DFT, and construct an NFA M with input 
alphabet E such that for x & E*, # M ( x ) = #D(x). Suppose Q = { f l i , . . . , ? « } , 
and let I = max{ |A(g, tr)| | q G Q A a 6 E }. Let M = ( Q £ , S\ {qi}, F) , where 
Q' = Q U { | 1 < » < s A 1 < j < 2l } , F = { q{ | 1 < t < a A 1 < j < 2l } , and 6' 
is defined by 

Next we prove, by induction on |x|, the claim (*) #5'(qf,-, x) = #(A(g,-, x)). For the 
empty string e, 

and for strings ax of length at least 1, 

# 6 \ q l a x ) = £ #5 ' (p ,z) 
p€S'(qf,a) 

l<j<2lA(«t>',)l 

. = 2|A(?<,<7)A(i(9il<7)|iC)| 

= 2lA(i»'tTI)l. 

#S'(qi,e)= | 1, i f 9 , e F ; 
0, if q i ? F = 0 = # ( € ) = # ( A (g,-,e)), 

and for strings ax of length at least 1, 
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p€6'{qito) 

E # S ' ( S ( q i , a ) j , x ) ) + *) 
l<J<#(A(9<1a)) 

= a ) ) • + # ( A ( % - , a ) , x ) ) 

= # ( A ( g f , a ) A ( % t - , < 7 ) , x ) ) 

= # ( A ( 9 i , a x ) ) . 

Proof idea, (addition) Let M' = [Q1, E, 6', P, F'), M" = (Q",H,S",I",F") be 
(VT U A a nn/4 «/vtta^miof i n MPA Kjf «ri 'ik i n r v n a ItvIi kat V1 aii/*lt f Vi o + f/M« rt> d V?* NFAs, and construct an NFA M with input alphabet E such that for x € E*, 
# M ( x ) = # M ' ( x ) + # M " ( x ) . M is obtained by a disjoint union construction. 
The states, transitions, initial states, and final states of M are the disjoint unions 
of those in M' and M". 

(multiplication) Let M' = (Q't E, £', / ' , F'), M" = (<?", E, 6", I", F") be 
NFAs, and construct an NFA M with input alphabet E such that for x (= E*, 
#Af(x) = #Af ' (x ) • # M " ( x ) . M is obtained by a cartesian product construc-
tion. The states, transitions, initial states, and final states of M are the cartesian 
products of those in M' and M " . 1 

In this research, we give two examples of counting NFAs whose ranges tire not 
context-free. The first is presented here, and the second—whose range is the binary 
encodings of the composite numbers—is presented in §4. 
Example. A counting NFA whose range is L = { l n 0 " l " | n € M }. 
We construct an NFA M with input alphabet {0} such that s (#M(0*) ) = L. For 
k 6 M, define an NFA Mk = (Q, {0} , 6,1, F), where Q = (qi,..., q2k,Pi, • • 
p2/t+i}, 1 = {91}, F = { p i , . . . , p 2 f c + i } , and 6 fe defined by 

First we prove, by induction on n, that #<5(pt-,0") = 2( f c+1)n. For n = 0, 

£(Pi,0) = {Pl»---,P2fc+i}-

1, i f p , e f ; 
0, if Pi<£F 

= 1 = 2( f c + 1)°, 

and for n > 0, 
# 6 ( p i , o n ) = E o " " 1 ) 

pes(Pi.o) 

= E # « ( P > , ° n _ 1 ) 
l < j < 2 f c + 1 

_ 2*+l . 2(*+l)(n-l) = 2(Jt+1)n. 
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Next we prove, by induction on n, the claim (*) # % , - , 0") = 2 ( t + 1 ) n - 2 k n . For 
n = 0, 

#«<*•«>={£ "IIf = °=2{k+1)0-2k0> 
and for n > 0, 

# % • , o n ) = E # ^ ( p . o n - 1 ) 
pe«(9i, o) 

= ( E #6(qitW-lj) + ( E #S(Pj,0n~1)) 
l<J<2fc l<y<2fc ' 

= 2* • (2( f c + 1)(n-1) - 2*(n~1)) + 2* • 2(*+ 1Kn -1 ) 
_ 2(M-l)i _ 2k n 

Using Lemma 3.3, construct an NFA Af with input alphabet {0} such that for 
n € M, # M ( 0 " ) = #M 2 ( 0 n ) + #M 0 (0 n ) . If we take t" = 1 in (*), then 

s(#M(0*)) = { s ( # M ( 0 " ) ) | n e > / } 
= { s (#M 2 (0") + #M 0 (0 " ) ) | n<=M} 
= { s((23n - 2 2 n ) + (2n - 2°)) | n € M } 
= { s(8n - 4n + 2n - 1) | n e U } 
= { i n o n i " \ne JJ} = L. • 

Corollary 3.4. range(#NFA) % CFL. 
Corollary 3.5. range(#DFT) c range(#NFA) frange(#DFT) is properly conta-
ined in range(#NFA)). 
Proof. It follows from Theorems 3.1, 3.2, Corollary 3.4, and the fact that REG C 
CFL. • 

4. The Complexity of Counting Functions and 
their Ranges 
In this section, we examine the complexity of computing the counting function of 
an NFA, and the complexity of recognizing its range. The latter problem—deciding 
whether a given binary string represents the number of accepting computations on 
some input—is considered both for a fixed NFA and when the NFA is given as 
an additional parameter. We show that a fixed counting NFA's range is context-
sensitive, and suggest an intractible lower bound by showing that the composite 
numbers—which are not known to be in P—are the range of a counting NFA. The 
second of these is called the range membership problem for counting NFAs and is 
shown to be PSPACE-complete. 

An important tool which we use in solving these problems is a matrix algebraic 
characterization of the counting function of an NFA which allows us to compute it 
in polynomial time and linear space. Let M = (Q, E, 6, /, F) be an NFA with state 
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set Q = { g i , . . . , qt), and let x = an ...o\ S E*. For each a e E, let e, A", f be 
the lxs , 3X3, s x l matrices defined by 

' I \ ^ / 1 , if iy e / ; 
= {ei e2 ... et), where e, = | Q> jf / f 

A° = 

f = 

U'n A|a . . . 
Af i A\2 • • • A\t 

\ Aii Kl A?, 

, where A?, = { I' " « ¡ H M ' *J \0, if qj<£6(qi, a), 

ts J 
(h\ 

h 
, where /,• = #%,- ,€ ) . 

The symbol * denotes the usual matrix multiplication. 

Lemma 4.1. e* A°n * • • • * Aai * / = #M(x). 

Proof. We prove, by induction on n, the following claim for 1 < i < s: 

(*) (A"» . • • • * * f)i = #5(<7,-, <rn... <7X). 

For n = 0, {f)i = fi = e), and for n > 0, 

{A°n * •••* A"! * f)i= E Afr» • ( A ^ - i * • • • * A*! * /),• 
j= l 

= E A ^ - ^ ^ . a , » . ! . . . ^ ) 
i= i 

Applying (*), we have 

e* A°n *•••* A"1 * / = E ey • (A»» * - *Aai*f)j 

J=1 
t 

= E ey #6{qj,x) 
3 = 1 

= E # % , * ) 

= #M(x). • 
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The algebraic characterization of Lemma 4.1 gives us the following algorithm 
for computing #A/ (x) which processes the symbols of x from right to left, producing 
an a-entry column vector after each of n matrix multiplications. 

input x; { = <rn ...<7i € E*} 

for t := 1 to n do 
v := Aai * v; 

output e * v 

After n multiplications, we obtain A°n * • • • * A"1 * / , whose tth entry is x). 
This computation can be done in time polynomial in n and, since #6(<7,-, x) < a , 
each entry can be represented in binary using space linear in n. 

In the remainder of this section, we turn our attention to the ranges of counting 
NFAs. We apply the method of computing (x) given by the previous algorithm 
to show that the range a(#M(E*V) of a counting NFA M is context-sensitive, i.e., 
is in NSPACE(n). 

Given a binary string y, how can we decide if y € a(#Af(E*))? That is, how 
can we decide if y represents the number of accepting computations of M on some 
input x? A first approach using Lemma 4.1 is to guess symbols a i , . . . , a n of x 
from right to left, computing after each guess a column vector v whose tth entry 
is V,- = x), and accepting if and only if y is the binary representation of 
e-*v = # M ( x ) : 

input y; 
v:=f; 
while true do 

begin 
if s(e*v) = y then accept; 
guess a € E; 
t>:= A" *v 

end 
Some computations of this nondeterministic algorithm may not halt and will require 
an unbounded amount of space in which to store the entries of v. In the following 
development, we show how to impose a linear space bound on the computations of 
this algorithm by placing a cap on the size of the entries of v. 

Let y e {0,1}*. We define cap^: M —> M by cap„(m) = min{m, # (y ) + 1}. 
We extend captf to matrices of natural numbers by applying capv to each entry of 
the matrix. We will need the following properties of the cap function in order to 
impose a bound on the space required by the previous algorithm and maintain its 
correctness. 

Lemma 4.2. Let y € {0,1}*; m, I e M; and A, B compatible matrices of natural 
numbers. 

(1) a(cap„(m)) = y a(m) = y 
(2) capy(m + /) = capy(capy(m) + capy(/)) 
(3) capy(m • Z) = cap„(m • captf(Z)) 
(4) capy(A * B) = capv(A * capv(£)) 
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Proof. (1) s(capy(m)) = y <=> s(min{m,#(y) + 1}) = y <=> s(m) = y. 
(2) We consider two cases. If m + / > #(y) , then cap„(m + I) = cap„(capy(m) + 
capy(/)) = #(y) + l- If m+l < #(y) , then capy(m+/) = capy (capy (m)+capy (/)) = 
m + l. 
(3) Proof is similar to (2). 

W / \ capy(A * B)I¡k = capy A,;- • BJKJ 

= capy capy(A i j • Bjkf), by (2); 

= capy ( E c a P y { A i j ' caPy(5ifc)))> b y (3); 

= capy (¿2 Aij • caPy {Bjk)), by (2); 

= capy(A*capy(B))tifc. • 
Theorem 4.3. range(#NFA) C CSL. 
Proof. We show that for a fixed NFA M with input alphabet E, s(#M(E*)) is in 
NSPACE(n). Consider the following modification of our previous algorithm which 
decides whether or not y € s(#M(E*)) : 

input y; 

while true do 1 

begin 
if s(capy(<T* w)) = y then accept; 
guess a € E; 
v := capy(Aff * v) 

end 

The matrices e, A", and / can be kept in finite control and the space required 
by v is 0(|y|), since its entries are at most #(y) + 1; therefore, this algorithm 
can be implemented by a nondeterministic linear space-bounded Turing machine. 
To show correctness, let a\,.. .,<rn be a sequence of guesses of the algorithm and 
x = on.. .<x\. By Lemma 4.2(4), the value of v at the beginning of the while-loop 
after guessing x will be 

v = captf (A"n * capy (A*7"-1 * • •• * capy(A"i «/)•••)) 

= capy(Aan * • • • * A"1 * f). 

By this observation, Lemma 4.1, and Lemma 4.2(1,4), we have 

s(capy(r* «)) = y s(capy(e * cap y(A"n * •• •* A"1 * / ) ) ) = y 
s(caPy(e * A"n *•••* A"1 * f)) = y 

«=>s(cap y (#M(x) ) ) = y 

<=> s(#M{x)) = y, 
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so the algorithm accepts y if and only if s{SM(x)) = y, for some i g E * . I 
It is interesting to consider whether tne information in this algorithm can be 

farther compressed into space which is logarithmic in |y|, giving us an 
NSPACEflogflyl))' algorithm for recognizing the range of a counting NFA. In the 
following example, we give evidence that, if possible, it will be difficult to achieve, 
by showing that the composite numbers—which are not known to be in P—are the 
range of a counting NFA. 
Example. A counting NFA whose range is Composites U {0}. 
We construct an NFA M with input alphabet E such that #Af (E*) = CompositesU 
{0}. First, construct an NFA M ' with input alphabet E = {0,1} such that 

= m • I. Let M' be the NFA pictured in the transition graph of 
Figure 4.1. 

0 

0 

Figure 4.1. A counting NFA which multiplies unary numbers 

We prove, by induction on I, the following claims: 

#% 2 ,o ' ) = i. 

For I = 0, 

and for I > 0, 
# « ( « i , o » ) = E #«(P, o ' " 1 ) 

pei(ii.o) 

= ( / - l ) + l = Z; 

= # % 2,0' 

pes(q2fi) 
n ' - l 
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Next we prove, by induction on m, the following claims: 

#5( g i ,0 r o10' ) = m Z ; 

For m = 0, 
# % 1 , 1 0 ' ) = £ #i(p,0<) = 0 = 0 i ; 

pefffai.i) 

# i ( ? 2 , i o ' ) = E #HP,O') 
p £ % 2 li) 

and for m > 0, 

o m i o ' ) = E ^ (p .O^-HO 1 ) 
pes{q i,0) 

= ^ ( « . o — h o 1 ) + #5(92, o™-1 io') 
= [m-l) 1+1 = m l; 

#6(q2,0m10l) = E # * ( p . ° m - 1 1 0 ' ) 
PG% 2.0) 

= # % 2 , o w l - 1 i o ' ) = z. 

Therefore, we have #M'(0m10l) = # % i , 0 m 1 0 ' ) = m • Z. Consider the regular 
language R = { 0m10J \m,l>2}. Let M" be a DFA which accepts R. Then 

#M»(0"10- ) = { J : 

Using Lemma 3.3, construct an NFA M such that # M ( x ) = #M' (x ) • #Af"(x) . 

#A/(0m10') = #M'(0m10' ) • #M"(0 m 10 ' ) 
_ (m l, if m,l> 2; 

\ 0, otherwise, 

so # A f ( E * ) = Composites U {Ok • 
When the range membership problem is considered as a function of both a 

given NFA and binary string, we are able to pinpoint its complexity by giving a 
completeness result for PSPACE. 
Range Membership 

Instance: M, an NFA with input alphabet E; y € {0, l}*. 
Question: y € s(#M(E*))? 
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Theorem 4.4. Range Membership is PSPACE-compIete. ° 
Proof. We have shown in Theorem 4.3 that membership can be decided nonde-
terministically using space 0(||Q|| • |t/|), where ||Q|| is the number of states in M. 
By Savitch's Theorem, Range Membership G NSPACE(n2) C PSPACE. We show 
hardness by logspace reduction from the nonuniversality problem for NFAs, which 
was proved PSPACE-complete by Stockmeyer and Meyer [5,6]. Let M be an NFA 
with input alphabet E. 

L{M) ± E* <=> 3x e E*, x # L(M) 
3x e E*, #M(x) = 0 

< i = > o e # M ( E * ) 
<^ees(#M(E*)). • 

5. Pumping Behavior and Linear Recurrences 
In this section, we consider the pumping behavior of a counting finite-state automa-
ton. For a fixed input string, we show that the number of accepting computations— 
considered as a function of the number of times a fixed substring of the input is 
pumped—satisfies a homogeneous linear recurrence equation of finite degree having 
integer coefficients. We precede this result with some relevant definitions and facts 
from the theories of recurrence equations and matrices. 

Let g: H —• M. g satisfies a homogeneous linear recurrence equation of degree 
s having integer coefficients if there exist ai o , e 2 such that for n € M, 

i 
+ s) = £ ajfc • ff(n + s - A). 

Jfc=l 

Let A be an sXs matrix of integers, and I be the 3X3 identity matrix with l's on the 
diagonal and O's elsewhere. The characteristic polynomial of A is the polynomial p 
defined by p(A) = det(A — X I ) , where det is the determinant function. Note that 
the characteristic polynomial is of degree s and has integer coefficients, since A has 
integer entries. The characteristic equation of A is the equation det (A — A • / ) = 0. 
The characteristic polynomial is said to be monic, since the coefficient of Xs is 
(—1)J = ±1; therefore, the characteristic equation can be written as 

fc=l 

where o i , . . . , ae £ Z. One of the most important results in matrix theory is the 
Cayley-Hamilton Theorem, which states that a matrix satisfies its own characteris-
tic equation. We use it to analyze the pumping behavior of a counting finite-state 
automaton. 
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Theorem 5.1. Let M = (Q, £, 6,1, F) be an NFA with state set Q = {qlt..., gs}, 
and let w, x, z G E*. There exist ai,..., aa € Z such that for every n € M, 

#M{wxn+'z) = E at • #M{wxn+'-kz). 
Jfc= 1 

Proof. Let e, A", f be defined as in section 4, and let Ax = A°i * • • • * Aa\x\, 
where x = o\ ... j- We define Aw and A' similarly. As discussed before, the 
characteristic equation of Ax can be written as 

Jt=l 

where aB € Z. By the Cayley-Hamilton Theorem, 

A*' = E akAx'~k. 
k=l 

By this observation and Lemma 4.1, we have for 1 < t < a and n £E M, 

wxn+"z) = {Aw * Axn+' * A* * /"),-

= (Aw * Axn * Ax' * Az * f)i 

= (A* * Ax" * ( £ afc • Ax"k) * A* * f ) . 

= ( E *k- (A* * A'n * Ax'~k *Az*f)Y 

t 
= E«* (Aw* Ax * Az * f)i 

k=l 

= E ak #6(qi,wxn+*-kz). 
k=l 

#M(wxn+*z) = £ #6(qi>wxn+>z) 

= E ( E a* » « - + • - * » ) ) 
9,-Gl k=l ' 

= X > * ( E # % , « « » + • - * * ) ) 
*=i \ei ' 

= E a* • #M(wxn+'-kz). • 
k=l 

Stearns and Hunt [4] showed that the number of accepting computations over 
all inputs of a given length—considered as a function of the length—satisfies a 
homogeneous linear recurrence equation of finite degree having rational coefficients. 
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The technique of Theorem 5.1 can be used to strengthen and simplify the proof 
of their result, obtaining integer coefficients and a recurrence equation which is 
satisfied regardless of which state is considered to be the start state, by applying 
the Cayley-Hamilton Theorem with the matrix A = £ A". 

<res 

6. Summary and Open Questions 
We summarize some of the results contained heretofore, and ask open questions 
about improvements and extensions of our results. 

In §3, we showed that range(#NFA) includes range(#DFT)—the ranges of 
deterministic finite-state transducers. It follows from the Generalized Sequential 
Machine results of Ginsburg and Greibach [2] that the latter is the class of all 
regular languages comprised of binary strings without leading zeroes. Is the class 
of all context-free languages comprised of binary strings without leading zeroes 
included in range(#NFAl? 

In §4, we showed tnat the range s (#M(S*) ) of a counting NFA M is in 
NSPACE(n). How tight is this upper bound? Respecting the fact that the compo-
site numbers are the range of a counting NFA, is there a subclass of NSPACE(n) 
which contains range(#NFA)? Are there ranges of counting NFAs which are comp-
lete for NSPACE(n)? NP? some other time- or space-bounded complexity class? 

In §5, we showed that for a fixed input string, the number of accepting comput-
ations—considered as a function of the number of times a fixed substring of the 
input is pumped—satisfies a homogeneous linear recurrence equation of finite degree 
having integer coefficients. Does this lead to a simple pumping lemma which can be 
used to show that a function is not in #NFA or a language is not in range(#NFA)? 
Which arbitrary functions satisfying linear recurrences as in Theorem 5.1 are com-
puted by counting NFAs? That is, can we precisely characterize #NFA as a class 
of functions satisfying a restricted class of recurrence equations? 
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