
Acta Cybernetica, Tom. 9, Faac. 4, Szeged, 1990

Preserving two-tuple dependencies under
projection

B. Thalheim* S. Al- Fedhagi*

Abstract
In relational databases, the semantics is modelled by dependencies defi-

ned for the whole set of attributes U and the relations on U. Given a set
of dependencies on U and a relation R defined on a subset X of U, does
there exist an extension of R to a relation R' on U which satisfies the set of
dependencies. This problem is analyzed and a general solution is given in the
context of two-tuple constraints.

1 Introduction
To achieve a certain level of scientific treatment of its subject-matter, many pro-
posed descriptions of database models adopt different types of symbolic notations.
Typically symbols of set theory, formal logic, graph theory, algebra, etc. are utilized
to build a semi-formal language to express the main concepts of the subject matter.
The relational model is the most obvious example of these models. It is typically
described as having "mathematical elegance" and this mathematical characteristic
is mentioned as one of its main advantages.

Dependency theory is a sub-field of the theory of relational database [1] that
deals with formalizing integrity constraints and studying their mathematical struc-
tures. The importance of the theory stems from its implication on the design of
the relational database. Dependency theory started with the very known inference
rules for functional dependencies called Armstrong axioms and has grown into a
very considerable field in the last fifteen years (see for instance [2], [3], [4]).

The influence of dependency theory and normalization theory, in general, on the
database design process is definite. The rigorous treatment of the design process
followed by the dependency theory is the sole attempt in that direction. Even
though its full practicality is still to be proven, dependency theory forms the "show-
case" to the claim that the database design field lends itself to formal treatment.
Other attempts to formalize the database design process reflect types of "rules-off-
thumb" and involve art more than science.

This paper deals with a type of dependency, called propositional dependencies,
that are slightly more general than functional dependencies but still weaker than
join dependencies. All issues that are related to functional dependencies can be

"Department of Mathematics, Faculty of Science, Kuwait University, KUWAIT
^Department of Electrical Ac Computer Engineering, Faculty of Engineering and Pet-

roleum, Kuwait University, KUWAIT

441

442 B. Thalheim and S. Al- Fedhagi

analyzed on a better formal ground in the context of propositional dependencies.
This is a major motivation for introducing propositional dependencies since there
is still a great deal of interest in functional dependencies. Section three introduces
few samples of the benefit of injecting propositional dependencies in the relational
database issues.

Furthermore, propositional dependencies have their own significance since they
form a constraint language. The language is rich as such that it encompasses
all two-tuple constraints, still propositional dependencies are simple to identify,
understand, and manipulate.

Additionally, propositional dependencies are interesting mathematical objects
on their own. The study of their properties and their relationship to several tech-
nical issues, e.g., losslessness, may prove to be beneficial in the future.

The primary goal of this work is to show that propositional dependencies can
be used to develop better solutions to the problems related to the issue of projected
two-tuple constraints. The given set of propositional dependencies are converted in
a standard disjunctive normal form and represented as "constraints tableau". The
constraints tableaux, can be treated as ordinary relations, hence, different relational
operations such as join and project can be applied to these tableaux. Certain
modifications to the join and project operations are necessary since the operands
are now constraints and not instances. In this paper the following problems are
analyzed:

1. Given a set of functional dependencies £ over the universal set of attributes
U, and a relation S(X), X C U such that 5 satisfies 7rx(S), i-e. the projection
of I! over X, then under what conditions does there exist a relation R(U) that
satisfies E such that S = ttjc (R), i.e. 5 is the projection of R.

2. Since functional dependencies are not preserved under projection, then under
what conditions can we have a constraint preserving projection.

These problems are important in the design of the relational database. Let I
be the set of all possible relations that satisfies E. A desired property of database
schemes is that whenever the projection set nx(I) satisfies "projected constraints"
it follows that I satisfies the constraints E. These problems are connected with
three other well known database problems [5]. '

A . The extensibility problem: Let E be a set of integrity constraints on U and
let R be a relation which satisfies E. Suppose that U' is an extension of U
and E' is a set of some additional restrictions. Does there exist an extension
of R on U' which satisfies both E and £ ' ? This problem was considered
in the context of weak instances and the realization of the universal relation
assumption [6]. Problem 1 gives a partial solution to this problem.

B. The view update problem: Given a conceptual scheme (U, E) and a set of views
(Ui, E i) . . . , (Un, En)) let R\,..., Rn be relations for these views. Does there
exist an algorithm to decide whether an update of one relation is consistent
with the other relations?

C. The implied constraint problem: Let Sx = ({7I,E2) and S2 = £2) be two
conceptual schemes. Consider the database mapping 7 : Si —• S2 . Such a
mapping induces in a natural way a mapping 7* : SAT (Si) —• SAT (S2)
where SAT(Sj) denotes the set of all relations on Ui satisfying £,-. We ask
whether 7 is correct, i.e. 7*(SAT(5i)) = SAT(S2). In general, this problem
is undecidable [7]. A solution is known only for some special cases. Problem
2 can contribute to a general solution of this problem.

Preserving two-tuple dependencies under projection 443

Known solutions to problem 1 mentioned previously above require that S(X)
should satisfy additional non-two-tuple constraints in order to guarantee the exis-
tence of R{U). Our solution characterizes the conditions under which there exists
a relation R(U), utilizing only the given two-tuple constraints such as functional
dependencies or propositional dependencies. Similarly, we characterize conditions
under which we can have a constraint preserving projection, utilizing only two-tuple
constraints.

We assume that reader is familiar with relational database theory, and with
some background in propositional logic. U is used to denote the set of attributes
of the universal relation. X, Y, Z, W (possibly subscripted) are used to denote
relation schemes. R(X) are used to denote relations instances over X Ç U.
The relations S(X) and i2(A) may be written as S and R, respectively, when X
is understood or immaterial. Small letters u and w are used to denote tuples in
relation instances (e.g. ui 6 ii). Let us denote by R (or R(U)) the set of all
relations on U. The projection of R to a subset X of U is denoted by iZ[X], i.e.

= {u[-X"]|u € /Z} where u[X] is the restriction of u to X.
A relation R satisfies a set of constraints £ if it satisfies each constraint in E.

SAT(X, E), X Ç U, is the set of all relations over X that satisfy E. SAT(X, E) may
be written as SAT (E) or SAT(X) when E or X are understood respectively.

2 Propositional Dependencies (PDs)
Propositional dependencies form a formal apparatus to express constraints on two-
tuples relations. They provide a foundation based on propositional calculus that is
suitable for this purpose.

Let U = { A i , . . . , A n } be the given set of attributes. With each attribute A
there is associated a propositional variable A'. For two different tuples t,t' on U,
the propositional variable A' denotes the proposition: "The two tuples agree in the
A-value". The negation of A',—A', denotes the contrary, that these tuples have
different A-values. Without any loss of generality we denote by A the attribute
and the propositional variable.

Given the set {A, V, —, —<-•} of logical connectives (conjunction, disjunction,
negation, implication, equivalence) and the set U, the set L(U) of propositions on
U is defined as follows:

1. Any propositional variable is a proposition.

2. If H and H' are propositions then -H, (H A H'), (H V H'), (H — H'), {H ~
H') «ire propositions.

For any pair of different tuples (t, t') and the set L(U) we define an interpretation
of propositions as follows:

1. The propositional variable A is true for [t, t'), if i[A] = t'[A] and otherwise A
is false.

2. —H is valid for (f, t') if H is false; furthermore, for (t, i ') : H A H') is said to
be valid for (t, t ') if H and H' are valid for (i, t') (if ' H and H'")\ analogously
the validity of (- H V H') is defined by " H or H'",(H — H') by (-H V H')
and (H <-> H') by ((# ' — • H) A (H —• H')).

444 B. Thalheim and S. Al- Fedhagi

The validity of H for different t, t' is denoted by (t,t')| — H.
For a set of attributes X = {Bi,..Bm) the set X is also used to denote the

proposition Bi A . . . A Bm -
The notation (tit<) | = H can be extended to R | = H as follows:

The proposition H is valid in the relation R (denoted by /j| = H) iff for any pair
of different tuples (t, t') from R,H is valid; i.e. (t,t')l = H-

A set H_ of propositional dependencies is valid in R (denoted by R | = H_) if all
elements of H_ is valid in R. Note that we will use the under bar notation whenever
sets of relations or formulae are to be denoted.

For a subset /2' of R, a given set H_ of propositional dependencies and a pro-
positional dependency H we say that the set H_ implies H in R if for any relation
R from R' in which H_ is valid, it holds also R \ — H (denoted by H_ R> \ = H or by
H\ = H for R' C R).

Corollary 1 For any relation R with |ii| < 1 and any proposition in L(U)\H_R\ =
H.

The "world of two tuple relations" [8] R2 denotes the set of two-tuple relations that
can be constructed from possible relations with two or more tuples. A two-tuple
constraint is a condition that is imposed in the world of two-tuple relations. For
example, the proposition H = ((—X A Y) V (X A —Y)) expresses the following
constraint: for any two different tuples t, t', (t t/j | = H iff the two tuples differ in
the X-value and match in the Y-value or they match in the X-value and they differ
in the y-value. Functional dependencies are examples of two-tuple constraints.

Any formula from L(U) is called propositional dependency.

Corollary 2 For any set R' which contains R2> any set H_ of propositional depen-
dencies and a propositional dependency H the following are equivalent:

Example 1 [1]. Let U = {A, B, C, D, E}, H = {A E, B —* E, CE —* D}.
Then the following propositional dependencies are equivalent to the dependencies
in E:

-AVE
- B V E
— (C E) V D

E implies that AC is a key of any relation satisfying E. This property is expressed
by the propositional dependency —(AC).

Example 2. Suppose that XY = U where X Y denotes the union of the sets X
and Y. For a functional dependency X —• Y, e.g. X is the key of U, the equivalent
propositional dependency is —X. That is, for any two tuples in the relations on U,
the two tuples differ in the X-value.

Example 2 shows two propositional formulae that have the same meaning on
a given universe U because of the definition of the interpretation of H and the
formula H A -U. The disjunct -U = (- A i V . . . V - A „) for U = { A x , . . . , A n } is
always assumed because relations are defined to be sets and two tuples of a relation
should be different. Therefore, the disjunct — U can be eliminated in all proposi-
tional dependencies or can be added to all propositional dependencies. Instead of
considering the whole propositional logic L(U) we add to all dependency sets H the
axiom (—Ai V . . . V — An) as an axiom in our propositional logic called dependency
propositional logic, DPL.

Preserving two-tuple dependencies under projection 445

Delobel and Casey [9] were the first to relate the functional dependencies to
material implications in the two-valued Boolean algebra which is equivalent to pro-
positional logic. In [17], Demetrovics et al. considered the extension of functional
dependencies to different classes of Boolean dependencies. Using the theory of Bo-
olean functions, there can be derived different algorithms for scheme design [2].
Propositional dependencies were first introduced by Sagiv et al. as "Boolean de-
pendencies" [10]. They were studied in details, independently by Thalheim [12],
Al-Fedaghi [11] and Berman and Blok [13]. In [10] it is claimed that the consequ-
ence relation for the class of Boolean dependencies is equivalent to the consequence
relation for propositional logic. Unfortunately this is not true because If is a con-
sequence of \H A — U) but (H A — U) is not a consequence of H. We notice that the
idea of propositional dependencies is basically a dependency system which can rep-
lace the formal system of functional dependencies. There is a set of propositional
dependencies that is equivalent to any given set of functional dependencies but not
vice versa. For example, the formula (A - t (5 v C)) is not equivalent to any set
of functional dependencies. Therefore the family of propositional dependencies has
more expressive power. Furthermore the simplicity of the propositional calculus
makes the propositional dependencies a very practical tool.

A formula G is said to be in the disjunctive normal form if G has the form of
Gi V (t2 V . . . V Gm, m > 1, where each Gi, 1 < t < to, is a conjunction of literals. A
standard disjunctive normal form (SDNF) is a disjunctive normal form where each
conjunction contains all propositional variables.

Any set E of propositional dependencies corresponds to a unique propositional
logic formula in the standard disjunctive normal form. It is sometimes very con-
venient to work with these standard forms instead of E. Several issues such as
"equivalence" can be easily analyzed through studying standard forms. A constra-
int tableau, c-tableau, E is a 0— 1 matrix that corresponds to the disjunctive normal
form of E. This tableau is denoted by T(E) or T when the set E is understood.

Let Ej\r = (Ci VC2 V. . .VCfc) be the SDNF of E(i7). Each conjunct C, includes
TO = |C/| literals. The tableau T(E) is the 0 — 1 matrix where row t corresponds to
Ci and column j corresponds to attribute (i.e. propositional variable) Ay S U. The
entry (t, j) of T is defined as follows:

Example 3: The set of functional dependencies E, given in Example 1 can be
represented by the c- tableau of Figure 1.
We use the names of attributes to denote the columns of the c-tableau. Since any
row of the c-tableau represents a conjunction of literals in the SDNF, it makes sense
to say that the two-tuple relation R satisfies that row. In general, we say that a
given relation R satisfies that row or it satisfies a given c-tableau T. Furthermore,
SAT(E) may be denoted by SAT(T(£)) or SAT (T) when E is understood.

Definition: Let T be a c-tableau and (A i , . . . , A „ } be the set of its attributes
(i.e. the columns names). Without loss of generality, the projection of T over
X = { A i , . . . , A m } , TO < n, is defined as follows:

3 The Propositional Constraints Tabelaux

7Tx (T) = {t|t is the subrow of T over the attributes X such that

(«[AI] = 0) V (U[A3] = 0) V . . . V (U[AM] = 0)}

446 B. Thalheim and S. Al- Fedhagi

That is, the all l's sub-row is dropped out of nx{T).
A B C D E
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
1
1
1
0
0
0
1
1

0
0
0
0
1
1
1
0
0
1
0
0
1
0
0

0
0

0
1

0
1
0
1
0
0
1
1
1
1
1
1
1
1
1

Figure 1: T(E) of dependencies in example 2
Example 3. (continued). For the tableau presented in Figure 1 the following

projections are denned.
A B C D A B C
0
0
0
0
0
0
0

0
0
0
0
1
1
1
0
0
0
1
1

0
0
1
1
0
0
1
0
0
1
0
0

0
1
0
1
0
1
1
0
1
1
0
1

0
0
0
0
1
1
1

0
0
1
1
0
0
1

0
1
0
1
0
1
0

ÎTABCD(T) TABC{T)

An fl-table au i l (X) is defined as the two-tuple < T(X),R2(X) > where T (X)
is a 0-1 matrix and R2(X) is a set of pairs of labels {(u,-, uy),t < j}. An 0 - tableau
may correspond to a relation R{X) as follows. The set R2(X) represents all pairs
of tuples of Hence |il3(X)| = (f) , n = |i2(X)|. A mapping n is defined
between the pairs {(tij, uy)},t ^ j, in R2(X) and the rows in T(X) as follows:

The Afc-value in row fi(ui, uy) of

T(X) = i 1 u = u^Ak
* ^ 0 otherwise

Preserving two-tuple dependencies under projection 447

Tuple Ai A2

«1 ai bi
«2 Ol b2

«3 02 62
U4 o2 63

T(AI A2)

A1 A2 A2)

1 0 Ui, tt2

00 «1, «3
00 Ui, u4
0 1 «2, «3
00 «2, «4
1 0 «3, «4

(a) *(Aii43) (6) 0 (^ 2)
Figure 2 : Relation and its n — tableau.

for all AK € X.
Example 4: Figure 2 shows a given relation and its corresponding fl-tableau.
Now we formalize this approach.

For any c-tableau T and a relation R on U = { A i , . . . , An} that satisfies T we can
define another extended tableau as follows. Let a be the following function:

, > f 1 if u = to aftt, tw) = < , v ' ^ 0 if u t̂ to

where u, w are values from the domains of R. Then we define a set of rows as
follows:

fi (R) = {(*!,..., <rn,bu Win = «7(6! [Ai], 6 2 [*]) }
where 6^62 are labels of tuples of R.
Notice that for T(R) = {(cti,«r^Kai,. . .er„, 61(62) S il(R)| for 6i, 62 <= R} and
the c-tableau T we get T(R) < T. Furthermore the projection of Cl(R) can be
formalized as follows:
?rx(n(i2)) = {i|i is the projection of a row of £l(R) on X leaving the labels out }.

Example 5. Consider the following relations Ri, R^ defined on U =
{A, B, C, D} and their fi-tableaus.

R1 : A B C D fi(fli) = A B c D ti t2

"1 1 3 5 7 0 0 1 0 "2
«2 2 4 5 8 1 0 0 0 «1 «3
«3 1 4 6 8 0 1 0 1 u2 «3

R2: A B C D fi№) = A B c D ti *2
«1 1 3 5 8 0 0 1 1 u2

«2 2 4 5 8 0 1 0 1 u2 «3
«3 1 4 6 8 1 0 0 1 «1 «3

We can define arbitrary tableaus in the following way. Given a finite abstract
set of tuple names { u j , . . . , u m } and a domain set {Ai,..., An}. Then any set

{(cti, .. Ui, uy)|l < t < j < m,(Tfc e {0,1, } }

448 B. Thalheim and S. Al- Fedhagi

form an Q-tableau.
Example 6. Let u = {A, B}. Consider the following fl-tableau

0 A B h t2

0 0 til U2
1 0 ui u3

1 0 ti2 U3
There exists no relation R with fl = ft(Jt). To prove this, we show that if R exists
then the tuples ui and U2 should be equal on the attribute A. Since " i [A] = «3(A)
and u3[A] = u2[A] then ui[A] = u2[A]. Clearly, this contradicts the ft-tableau
where ui
The tableau fi is said to be realizable if there exists a relation R with fl = Cl(R).
Let us first consider the readability of fl-tableaus. We define a relation for any
attribute AeU= { A i , . . . , A4} as follows:
?^.,o{(ui»u2)| (such that there is a row

f i i 01-, • •• 1 c»i "3s «4) G ft with <7,-= 1, and

((« 3 = «1) « 4 = « 2) or (u3 = u2, u4 = ui)) or ui = u 2 }
Theorem 3 The tableau ft is realizable iff for all A in U $A,N is an equivalence
relation.

Proof .
1. For some A in U let be not an equivalence relation. Since „ is

reflexive and symmetric then there exists in fl three tuples (a j , . . . , cr*, t»i, v2), (crj,
. . . V2, ws)(ffi > • • •, ®SiVi>V3) such that a} = of = 1 and af = 0. Consequ-
ently, we get «i[Aj] = v2[A;] = «3(^1], and vi[Aj] = u2[A<], i.e. a contradiction.
Therefore, ft is not realizable.

2. If for all A in U £4,0 is an equivalence relation and { u i , . . . , u m } is the set of
abstract tuples used in ft then we can define a relation R — { u i , . . . , u m } using the
partitions PA,A defined by fx.n- For PA,A = {Vj, • • •, V/t} where Vj; is an equivalence
class we define u»[A] = j iff Vi € Vy. Obviously ft(-ff) is equal to ft.
For equivalence relations ft, f2 on R = { u i , . . . , u m } , the following operations are
defined: ft A f2 (intersection), ft + f2 (the smallest equivalence relation containing
ft and f2) , and the comparison ft < < ?2 iff («1, u2) G ft implies that
(ui,u2) G f2) .

Corollary 4 Let R be a relation on U = {Ax,..., An}, and X =
{BLT...,BM},Y = {Clt...CK},Z C

{DI,...,D[} C U. Furthermore assume the
il-tableau ft(-ft), and the equivalence relations $A,CI(R) for A&U. Then: i) X —*Y is valid in R iff f B l n (R) A . . . A fBmi0(«, ^ SciiOW for all i, l<i<k.

ii) X -*Y,Z —*Y is valid in R iff for all i,l<i<k (ft,lo(Jl) A... Aft,m n(Jl)) +
&>i,n(«) A . . . A fo (i 0 (J l)) <

Proo f : Suppose that X —*Y is valid in R. Consequently for two tuples ttj, ti2 in R
if ui[X] = u2[X) then m [Y] = u2[y2]. Hence, («1, u2) G (?B1 0 (r) A . . . A ftjm,n(il))
and (ui, u2) G ic. n(R) f o r a n y Ci G Y.
In ft(i?) the property ft?li0(R) A . . . A ft?m>n(R) < is easy to check. If for a
row (CTI , . . . , <rn, u, v) in ft(-R), cr< = 1 for all Aj G X then for any Aj &Y a} = 1.

Example 7: Consider the relations R\ and R2 given in example 5. The re-
lations RUR2 G SAT ({AC D,BC £>}). The dependencies A D,B

Preserving two-tuple dependencies under projection 449

D,C -* D are also valid in R2 whereas only B —• D is valid in Ri- Furthermore
D —* B is valid in Ri but D —• B is invalid in R2.

1) Let fl = Cl(Ri). The relationships

£4,f) £ $B,Q,SA,0 % iD,O,

?B,n £ % ?C,Cli?B,n < iD,n,

?D,n £ ftt.OjfD.O < $B,n,$D,n £ ?C,0
can be represented by

< CA,f) ?B.n ?C,n ?£>,»
ftt.n 1 0 0 0
ft?,n 0 1 0 1

0 0 1 0
0 1 0 1

2) Let fl = n (# 2) . We get the following table

£A.o ?B,n fc.n £d.o
fc.n 1 0 0 1
to, n o i o i

0 0 1 1
0 0 0 1

Notice that corollary 4 can be extended to propositional dependencies. For instance,
the dependency D —• A V B V C is valid in R2. Generally, the dependency X —»
Yi V . . . V Yk is valid in R iff for ft = ft(R)

where U denotes the union of sets, i.e. for sets ft", f 2 of sets ft U f 2 = {V| there are
ViesuVieb-.v = v1uv2}.

4 Projections of Constraints and Relations
According to Maier [ll the notion of "projected constraints" is well defined for
functional and multivalued dependencies. If W C U, and E is a set of functional
and multivalued dependencies then TTW(E) consists of those X —*Y and X —• Y
such that:

i) there is some X —• Z or X —+—» Z in E + where E + is the closure of E,
ii) X C W , and
iii) Y = Z n W.

For functional dependencies, it is always assumed that Y = Z. Hence, for the given
set of attributes U and set of functional dependencies (over U), nw (E) = { X —• Y
in E + A T C W) where E+ is the closure of E.

Example 8. Consider the sets U = {A,B,C,D,E}, E = {A E,B
E. CE D} of example 1. Then for X = { A , B, C, D), TTJE) = {AC — D,BC
D).

450 B. Thalheim and S. Al- Fedhagi

In a similar way, the projections of disjunctive normal forms and of c-tableaus are
defined.
Given a standard disjunctive normal form £/ / = C\ V C2 V . . . V Ck of propositional
dependencies over U. If X C U, then the projection of £jv over X is defined as the
propositional dependency

ME*) = (C'1VC!2V...VC,k)A(-A1V-A2V...V-Al)

where X = {Ai , A2,.. . Aj} C U and C[is the disjunct produced from Cj after
removing all propositional variables not in X.

Example 9. The standard disjunctive normal form of £ is
Ejv = -A-B-C-D-Ev-A-B-C-DEv-A-B -CD-EM-A-B -CDE

V-A-BC-D-EV-A-BCD - E v - A - BCDE
V - AB -C - DEV-AB - CDE
V - ABCDE V A- B - C - DEv A- BCDE V AB - CDE
for X= {A,B,C,D}.

Then vrx(Eiv) = (- A - B - C - D V-A - B - CD V-A - BC - D
V - A - BCD V - A B -C-DV-AB -CDv-ABCD
VA-B-C-DVA-BCD V AB- CD) A (- A V -B V -C V D).

Now let us introduce the extension of fl-tableaux. Given the sets

X =, An}, Y={A1,...,An,B1,...,Bk}

and a set
ft = {(alt. ,.,an,v,w)}.

A tableau ft' = {(cri , . . . , ct„, o\, ..., ok, v, to)} defined on Y is said to be an exten-
sion of ft to Y if Trx(ft') = ft.
For realizable ft-tableaux we introduce the set ^ y = ^y (CI) = {ft'|ft' is an exten-
sion of ft to Y.}

Example 10. Given X = {A, B, C, D}, Y = {A, B, C, D, E}. The following set
of ft'-tableaux are extensions of fti = Cl(Ri) to Y where Rx is given in example 5.

ft^ A B C D E h t2 ft'12 A B C D E t± t2

0 0 1 0 0 «1 «2 0 0 1 0 1 Ul U2
0 1 0 1 0 «2 «3 0 1 0 1 0 «2 "3
1 0 0 0 0 «1 «3 1 0 0 0 0 «1 «3

fi'13 A B c D E h t2 ft'14 A B c D E «1 t2
0 0 1 0 0 «1 «2 0 0 1 0 0 «1 «2
0 1 0 1 1 «2 «3 0 1 0 1 0 «2 «3
1 0 0 0 0 «1 «3 1 0 0 0 1 Ul «3

» i s A B c D E «1 <2
0 0 1 0 1 «1 «2
0 1 0 1 1 «2 «3
1 0 0 0 1 «1 «3

Example 11. Given X = {A, B, C, D}, Y = {A, B, C, D, E} and ftx = n(R2)
where the relation R2 is given in example 5. The set ^y = ^yiftz) can be repre-
sented by the following table

Preserving two-tuple dependencies under projection 451

CL'N ABCD M2 TT^-.E N '22:E N '23-.E N'24 : E n *M:E
0 0 11 «1 «2 0 1 0 0 1
0 10 1 u2 u3 0 0 1 0 1
1 0 0 1 «1 «3 0 0 0 1 1

The first problem presented in section 1 can now be stated as follows: Given a set
E of integrity constraints defined on U and a relation R £ SAT (TTX(E)) where R is
defined on X, then does there exist a relation R' € SAT(E) such that R = 7rx(iZ')?
This problem is equivalent to the following problem: Given a relation R e SAT
(^ (E)) where R is defined on X and E is defined on U. Does there exist a relation
R' E S A T (E) such that IL{R') €
For a given set E of functional dependencies let Eq (E) denote the set of relations-
hips defined in corollary 4.

Example 12. Consider E and Ex given in example 8.

E q ({ A —* E,B E, CE —* D}) = < to, to < to, to A to, < to}

Eq({AC —• D, BC —» £>}) = A i c < to, to A to, < to}-
As a corollary of Theorem 3 and corollary 4 we get directly the solution of the last
problem.
Theorem 5 Let E be a set of functional dependencies defined on X, and let X be
a subset of U. For a relation R defined on X such that R satisfies 7rx(E) there
exists an extension R' in SAT (E) if and only if there is in ¥P(ft(J2)) a set FL' such
that the relationships of Eq(E) are fulfilled in il'.

Example 13. Let us continue examples 5, 8, 10, 11, 12.
The relationship £4 < to from Eq (E) is violated in n ' n , violates
to ^ to, violates to A to — to • Therefore there does not exist any relation
extending relation i2i € SAT (ttx(E)) which satisfies E. The relationships < to
and to ^ to are n o t valid in Cl'21, Cl'22, ̂ 23, ^24- ^he s e t 18 valid for fi25.
Therefore there exists a relation R' in SAT (E)-with R = •KX(R'). An example of
such a relation is the following relation R3

R3 A B C D E
« ! 1 3 5 8 9
u2 2 4 5 8 9
u3 1 4 6 8 9

Based on theorem 5, an algorithm can be developed for the computation of an fl'
tableau if there exists such a set for a given R, E, and ii(R).

Algorithm.

Input. U = { A i , . . . , A„ } , X = { B i , . . . , Bk} Q U, E is a set of functional depen-
dencies defined on U, and the relation R defined on X.

Output. A relation R' € SAT (E) with R = NX(R') if there exists such a relation.

(i) C o n s t r u c t 7TX(E).

(ii) Compute Cl(R).

452 B. Thalheim and S. Al- Fedhagi

(iii) Compute Eq (E), and Eq (Trx(E))

(iv) If ft (.ft) violates Eq (TTX(E)) then output that there does not exist a relation
R.

(v) Construction of ^ tables.

1. If for some YCU-X,ZQX. there is a dependency Z -> Y e E (Z =
(C i , . . . , Cm), Y = {Di,..Dp}) then copy the 1-entries in the columns of
Z'to all columns of Y. The result is the table fti-

2. Compute the 1-entries according to theorem 3. (All columns in U — X must
be represented by equivalence relations). The result is ft2-

3. If for some Y C U - X,Z C X, there is a dependency Z Y e E (Z =
{C1,..., Cm}, Y = {Dx,..., Dp) and a row with O-entry in one of the Z-
columns and for alll Y-columns except one there are 1-entries in that row
then write a 0 in the remaining K-column in that row. The result is ft3.

4. If for some column in U — X, u<[A] = Uj[A] and Ui[A] = Ufc[A] then enter 0 in
this column for the (uy, Ufc)-row (this is the closure for equivalence relations).
The result is ft4.

5. If O4 violates Eq(E) then output that there can not exist such a relation R'.

6. Compute $(^4) and check against Eq (E). If ^ (f ^) is empty then there is
no relation R' satisfying the requirement. If ^(fU) is not empty then use the
proof of theorem 3 for the computation of R'.

Example 14 [15]. Given U = {A, B, C, E, F, G,H),H = {A -+ G,B
G,C H,E —> H, GH —> F), X = {A, B, C, E, F), and the relation R:

R A B C E F
ux 1 1 1 1 1
u2 2 2 2 2 2
ti3 3 3 1 2 3
u4 1 2 3 3 4

We get after (i) in the algorithm:
TI-3 (E) = {AC F,AE-> F, BC —• F, BE —• F} , and after (ii) the O-tableau:

n(JZ) A B C E F tj t2

0 0 0 0 0 u2

0 0 1 0 0 uj tt3

0 0 0 1 0 . tt2 u3

0 1 0 0 0 u2 u4

0 0 0 0 0 u3 u4
1 0 0 0 0 m u4

Since obeys ^ A t c < SF,$A A < fr , A < <rF, and ft? A < ft-
we continue with step (v) using Eq (E) = {FTI < < ?G,?C < <

A f/r < The following table represents the step (v) of the algorithm:

Preserving two-tuple dependencies under projection 453

after applying applying
the first 4 equivalence to a to < to check of

relationships relations on to iî2 : Eq(E)
ABCEF tit2 UiGH fix : 0 2 GH ft a G H in 0 3

0 0 0 0 0 uxu2 1 1 11 contradiction
0 0 1 0 0 uiu3 1 1 0 1
10000 uiu4 1 1 10
0 0 0 1 0 u2u3 1 1 01
0 1 0 0 0 « 2 « 4 1 1 10
0 0 0 0 0 u3u4 00

Therefore we conclude that there can not exist a relation R' in SAT (E) such that
R = nx(R'). Using our approach we get usually a set of contradictions or a set
rp' Ç rp(Ù(R)) of candidate fi-tableaus for extensions of R.

Example 15. Let us continue example 13.
In step (v) we get for = i i f f l j) , and Eq(E) = < to. to ^ to. to A çE < to}-
The following table is the result of the application of the algorithm.

A B C D ii t2 ftn E ftl2 E
0 0 1 0 u2 1 contradiction
0 1 0 1 «2 «3 1 1
1 0 0 0 «1 «2 1 1

For ft2 = Cl(R2) and £g(E) we obtain

A B C D h t2 n 2 i E ÎÎ22 = ÎÎ23 = ÎÎ24 E
0 0 1 1 «2 1
0 1 0 1 u2 «3 1 1
1 0 0 1 «1 «4 1 1

In step (vii) we get the relation

Rs A B C D E
1 3 5 8 9
2 4 ,5 8 9
1 4 6 8 9

For the relations and the dependency sets used in examples 13 and 14, Fagin [14]
defines the following "curious dependency" using the equality generality dependen-
cies as an additional condition to guarantee the preservation of dependencis under
projection:

if U l (5) = u2(B),u1{C) = u3(C),u2(A) = u3(A) and «i(Z?) = u2(D) then
ui(D) = «3>(D):
This condition is not a sufficient condition as it is shown in the following example.

Example 16. Consider U, E, X, 7ra(S) of example 8, and the following relation
R:

454 B. Thalheim and S. Al- Fedhagi

A B C D
«1 1 3 5 7
u2 2 3 6 8
«3 2 4 5 9

Obviously, R obeys AC —• D and BC —• D and the curious dependency. Nevert-
heless, there does not exist an extension of R in SAT (£).
Using our algorithm we obtain

tl j tj t2 A B C D E
ui u2 0 1 0 0 1
ui u3 0 0 1 0 1
u2 u3 1 0 0 0 1

and fa A % iD- This contradicts the dependency CE —* D.
Maier [l] defines the following additional condition: if «i[A| = u3[A], u2[-B] =
u3[5], and ui[C] = tt2[C] then ui[£>] = u2[Z?]. The relation R\ used in examples
5, 10, 13 indicates that this condition is not sufficient. It can be shown that for
any k there does not exist an equality formula

ai A a 2 A . . . A a j —• a

which could be used as a necessary and sufficient condition for the extensibility of
relations in SAT (ira(E)) to relations in SAT (£).
Ginsburg and Zaiddan [15] have shown that the projection of Fd-families is not
necessarily an FD-family. In example 14 it is possible to show that no Horn formula
can be used to express conditions for the extensibility of relations in SAT (TTx (£))
to relations in SAT (E) (see [8]). For example 14 an equality formula similar to the
'curious' dependency presented in example 15 has the form

(ai A a 2 A a 3 A a 4) (fa V fa V . . . V fa).

Formulae of this form are clearly not Horn formulae.

5 Preserving Constraints
We would like to know the conditions under which whenever the relation iffpf)
satisfies TTX(T(E)) it follows that S(X) is a projection of a relation SAT (£({ /)) .
The relations discussed in examples 14 and 15 show that if £ is a set of functi-
onal dependencies over U then functional dependency families or classes are not
preserved under projection.

It should be noted that the above mentioned problem is a special case of the
database satisfaction problem. To solve this problem, some definitions axe needed.

An all l's row or subrow over columns X of T will be denoted by < 1 > x - The
X may be dropped when it is understood. Similarly, an all O's subrow over X is
denoted by < 0 >x - If a row or subrow over X has at least one zero then it is
denoted by < *0 > x -

Let Zn denotes the 2"0 - 1 strings of length n. Given the c-tableau T(X)
then Tz (U) denotes the c-tableau that is constructed as the Cartesian product

Preserving two-tuple dependencies under projection 455

T(X) X Zn where n=\U-X\,XCU. For example if U = ABC, X = AB, and
T(X) is the following c-tableau:

A B
0 0
0 1

when n = 1, Zn = {0, l } ; and Tz(U) is the following c-tableau:

A B C
0 0 0
0 0 1
0 1 0
0 1 1

o
We define a new table called oc-tableau, denoted as T{X), of a given c-tableau

T(X) as follows:

i p r) = r (x) U { < i > x }

o
That is, T(X) is constructed from T(X) plus the all l's row over X.

Definition: The c-join of Ti(Xi) and T2(X2), written T{*T2, is the c-tableau
T(X1X2) = T1(X1)*T2{X2).

The c-join operation is defined in terms of the join operation after adding the
l's rows to the c-tableaux participating in the c-join. Notice that T(X\X2) in
the definition above is a c-tableau and not an oc-tableau, thus the all l's row is
eliminated in T(XiX2). By definition the c-tableau does not include an all 0's row.

Example 17. Let T^(AB) = {(0,1)}, and T2(BC) = {(1,0)}, then:

A B C
0 1 0

TX*T2= 0 0 1
0 1 0

Let Ti(AB) = {(0,1), (0,0)} and T2(BC) = {(0,1), (0,0)}, then:

A B C
0 1 1

Ti * T2 = 0 0 1
0 0 0
1 0 0

Example 18. Let ITABCD(T) be the c-tableau shown in Example 3. As it is
discussed in Example 1, U = ABCDE and U-ABCD = E hence, Z = {(0), (1)}.
Figure 4 shows Tz(U). If T = Tz{U), we can claim that whenever a relation R(X)
satisfies xx{T) it follows that R(X) is a projection of a relation SAT (T).

Theorem 6 SAT (Wx(T(E))) = nx{SAT{T{E))) iff T(U) = TZ(T).

456 B. Thalheim and S. Al- Fedhagi

A B C D E
0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1
0 1 0 0 0
0 1 0 0 1
0 1 0 1 0
0 1 0 1 1
0 1 1 1 0
0 1 1 1 1
1 0 0 0 0
1 0 0 0 1
1 0 0 1 0
1 0 0 1 1
1 0 1 1 1
1 0 1 1 1
1 1 0 0 0
1 1 0 0 1
1 1 0 1 0
1 1 0 1 1
1 1 1 1 0

Figure 4 : Tz of example 18

Proof : Suppose that SAT ¥x(T(S))) = îrx (SAT(r(E))) . Thus S ^ X) €
SAT [irx (r(E))) may be joined with any relation S2{U-X) producing R = Si* S2
where R € SAT (T{£/)) since Xi){U -X)=0. All possible relations over U - X
are projections of R e SAT IT). Thus, a subrow t\U - X\ in T(U) is an ele-
ment in Zn,n = \U - X|; and T(U) = TZ{T{U)Y, where TZ[T(U)) is the Carte-
sian product ¥x(T({ /)) x Zn. Suppose that TZ[T(U)) = T(U). If S ^ X) satisfies
Wx(T),X Ç U, then for any relation S2{U - X), the join 5j * S2 satisfies T(U).
Conversely, if R[U) satisfies T(U) then any projection irx[R) satisfies 7rx(T). Thus
5AT(?x (r (E))) = XSAT(T(É))).

6 Conclusion
Given a set of propositional dependencies E(U) and a relation S over X Ç U, we
have identified conditions under which there exists a relation R € SAT (E(U)) such
that S = irx(R). Also, we have identified the conditions under which whenever the

Preserving two-tuple dependencies under projection 457

projection J T X U) , X C U satisfies i r x SAT (T(E)) it follows that I satisfies T(E),
where I = SAT (E(t/)).

These results are applicable to functional dependencies since they are special
type of propositional dependencies. Only propositional dependencies are utilized
whereas in [6], [8] and [10] non-two-tuple constraints are suggested. The theoretical
significance of our results is clear since our approach is completely new. The prac-
tical significance of these results in the area of the relational database is similar to
the previously mentioned work.

References
[i

[2

D. Maier: The theory of relational databases. Computer Science Press, Eng-
lewood, 1983.

C. Delobel, M. Adiba: Relational databases. North-Holland, Amsterdam,
1985.

J. D. Ullman: Principles of database systems. Computer Science Press, Rock-
ville, 1980.

G. Vossen: Datenbankmodelle, Datenbanksprachen and Datenbank-
Management-System. Addison-Wesley, Bonn, 1987.

B. Thalheim: Open problems in Database Theory. Bulletin EATCS, 40, 1989.

P. Atzeni, R. Torlone: Approaches to updates over weak instances. Lecture
Notes in Computer Science 364, 1989, 12-23.

B.E. Jacobs, A.R. Aronson, A.C. Klug: On interpretations of relational langu-
ages and solutions to the implied constraint problem. ACM TODS, 7,2, 1982,
291-315.

S.S. Al-Fedaghi, B. Thalheim: Logical foundation for two-tuple constraints in
the relational database model. Kuwait 1988. Submitted for publication.

C. Delobel, R.G. Casey: Decomposition of data base and the theory of Boolean
switching functions. IBM J. Res. Dev., 17, 5, 1973, 374-386.

Y. Sagiv, C. Delobel, D.S. Parker, R. Fagin: An equivalence between relational
database dependencies and a fragment of propositional logic. JACM, 28, 3,
435-453.

S.S. Al-Fedaghi: Dependency theory. Draft copy of this book is available as
Technical Report TR 85-0202, Electrical and Computer Engineering Depart-
ment, Kuwait University, Kuwait 1985.

B. Thalheim: Functional dependencies in relational databases. Journal Inf.
Process and Cybernetics, 21,1/2, 1985, 23-33.

J. Berman, W. J. Blok: Positive Boolean dependencies. University of Chicago,
Research Report in Computer Sciences, No. 5, June 1985.

R. Fagin: Horn clauses and database dependencies. JACM 29, 4, 1982, 952-
985.

458 B. Thalheim and S. Al- Fedhagi

[15] S. Ginsburg, S. M. Zaiddan: Properties of functional dependency families.
JACM 29,3, 1982, 678-698.

[16] E. Sciore: Improving database schemes by adding attributes. ACM PODS,
Atlanta, Georgia, 1983, 379-382.

[17] J. Demetrovics, Gy. Gyepesi: On the functional dependency and some gene-
ralizations of it. Acta Cybernetica 5(1981), 295-305.

(Received February 12, 1990)

