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Abstract 
The 0-1 min-knapsack problem consists in finding a subset of items such 

that the sum of their sizes is larger than or equal to a given constant and the 
sum of their costs is minimized. We first study a greedy-type heuristic having 
a worst-case bound of 2. This heuristic is then refined to obtain a new one 
with a worst-case bound of 3/2. 

1 Introduction 
The classical 0-1 knapsack problem (max-knapsack) has been extensively stud-
ied in the literature. Some greedy-type heuristics have been analysed and e-
approximation schemes are known for this problem ([2,5,6,7]). On the contrary, 
the min-knapsack problem has found until now only few interest in the English 
literature. Most of the results and algorithms are translated from Russian ([1,3,4]), 
and are given without proof. 

The min-knapsack problem is formulated as follows: 
given n pairs of positive integers (cy, ay) and a positive integer M, find i l f z2> • • • > xn 
so as to 

minimize cixi 
S.t. £ y = l CLjXj > M 

xy e { 0 , i } , y = I , . . . , n . 

The problem is clearly NP-hard, and so finding a good heuristic solution is of 
interest. Obviously, the problem is feasible if and only if X)y=i a i — M. Next we 
assume that this condition is satisfied for the considered problems. 

In this paper, we analyse a greedy heuristic proposed by Gens and Levner [4]. 
A similar heuristic also exists for the max-knapsack problem. However, for the 
min-knapsack, we need a slight modification of the main idea. Then, the different 
behaviour of this heuristic for the max and min problems is shown, when the item 
sizes ay are bounded by M/k,k > 2. The heuristic we consider has a worst-case 
bound of 2. We then provide a refinement with worst-case bound of 3/2, with 
a possible e-approximation scheme extension. We finally propose some practical 
improvement. 
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2 The Heuristic 
We will use throughout ay to denote an item as well as its size, while cy represents 
its cost Furthermore, cy/ay is defined as the relative cost of item ay. 

Algorithm GR 
Step 1. Sort the items in nondecreasing order of their relative costs. From now 

on, we assume that 
c i /a i < C3/a2 < • • • < c „ / a n . 

Step 2. (a) Let ki be the index for which 
fci fci+i 

£ a,- < M < £ a,-. 
< = i < = i 

Then the sublist (c*i, 02,. . . , aj^+i) is a candidate for the solution given by the 
heuristic GR. Let 

Si = (a i ,a 2 , . . . ,a f c l ) , 
then this candidate can be written as 

Sx U { a f c l + 1 } . 

(b) Let ki + 2, ki + 3 , . . . , k? — 1 be a (possibly empty) series of indices so that 
for all of the corresponding items (i.e. / € {ki + 2,...,k2 — 1}) the following holds: 

fcx 
£ o< + ay > M. 
t = i 

Let 
Bi = (afci+i afc3-i)i 

then all Si U {ay}, / € {fci + 2 , . . . , k2 — l } , are also candidate solutions. 

(c) Now, let k2 be the first next index for which 
fci 

»=1 
and let ¿3 > k2 be the index for which 

fci fcj k\ fcj+i 

5 3 a, + 5 3 a, < M < 5 3 a,-+ 5 3 a, . 
t=l i—k? <=1 t=fcj 

Set 
S2 = (afcj ,afc3+i,- -..o*, )• 

Then, S\ U S2 U { a k J + i } is also a candidate solution. 

Now iterate from (b), with, in the first iteration, ¿3 instead of ki and ¿4 instead 
of k2; in the i-th iteration, use k2i+i and k2i+2. Repeat this until the end of the 
list. The solution given by heuristic GR is the mini mum cost candidate. It is 
easy to see that Steps 1 and 2 have a computational complexity of 0 ( n log n) and 
0(n) respectively. 
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3 Results 
Let us denote the cost of an fixed optimal solution X for the list 

L = (dii Qji • • • i °f») 

by OPT(L), and the cost of the solution given by heuristic GR for the same list 
by GR(L). 

Lemma 1 For all lists L, 

GR(L) < 2 • OPT(L). 

Proof . By applying heuristic GR to list L, we subdivise L into a sequence of 
alternating sublists as follows: 

Si B\ S, B, 
, s S , V , * , Oi, a 2 l . . . )a f c l ,afc l + 1 , . . .1afcJ_1 ,afc , , . . . , a*,, o f c ,+i ) . . . ,ojfc4 

Bt si+1 , * , » 
> • • • i a*jt-i + l) • • • > afcji-li ak3t afejt+i) • • • I 

BM SM+1 
/ s / s 

I • • • ) afcjm-l + ll •••) °k|»-llf lklml • • • 1 an 

where the last set is possibly empty, in which case fc2m — 1 = n. 
Let us call the elements in S-lists small and in 5-lists big. Then, clearly, the 

heuristic solution has exactly one big element and contains all small elements before 
this big element. Furthermore, it is the cheapest solution among all such candidates. 

From the algorithm, we have: 

Oi + ar > M, for all I = 1 , . . . , m - 1 and all ar e Bt, (l) 
« ¡ G U ^ j S y 

and 
5 3 < M.for a l l £= l , . . . , m + 1. (2) 

Since inequality (2) holds in particular for I = m +1 , we know that the optimal 
solution contains at least one big element. Let a* be the big element with small-
est index in the optimal solution and let Bq be the set containing at. FYom the 
algorithm, we know that 

GR(L) < £ a+ 
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Now, let J* = {t : 1 < *' < nkXt = 1}, I = {»' : a,- G U$= 15/} , J = {i : i e 
JkXi = 1}, K = {t' :'* e ItiXi = 0}. Then I=JuK and JnK = $. Since all 
items a,- with t < t have a relative cost not larger than ct/at we obtain 

E *+c*= 53 ci + E c < + ( 3 ) 
i€I « '€ / ¿GK 

< 5 3 c,• + — 5 3 + 

«i6(uJ.lSJ)nL<»" a,e(U«DlSy)\Z,<"'* 
«6 J 

Applying (2) to the second term in the above inequality yields that the upperbound 
in (3) is bounded from above by 

53 + E «) + * 
¿e/ ieJ 

and this implies by the feasibility of X that 

53 53 E (4) 
«6/ »6/ iej'-j 

Finally, since the first big element in the optimal solution is at € Bq and hence all 
items in J* — J have a relative cost not smaller than c t /ot, we obtain by (4) that 

E c»'+ Ct - E c< + E + Ct (5) 
¿GJ <6/ iSJ'-J 

= OPT(L) + c t , 

and using X« = 1 the expression in (5) is bounded above by 2 • OPT(L). 

It is easy to show that the bound given in Lemma 1 is tight. Consider the list 
L = (1, M-2, M-1) with relative costs of (1.1, l ) . Then, OPT{L) = AT, GR(L) = 
2M - 2 and that yields that GR{L)/OPT(L) can be arbitrarily close to 2. 

It is interesting to note that, Contrary to the max-knapsack greedy heuristic, 
this bound remains the same if the items are small. Let k be a positive integer such 
that k > 2 and k -C M. Assume that a,- < M/k for all items, and let 

L = (M/k,M/k, M/k - 1, M/k) 
V V ' 

(fc—X)time« 
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with costs of 
( W ,M/k-l,M/k). 
(k-l)times 

Then, OPT(L) = M/k+k-1 and GR{L) = 2M/k+k-2. Hence, GR{L)/OPT[L) 
can be arbitrarily close to 2 if M is large enougn. 

Using GR, we can derive a better heuristic as follows. For all big items a< 6 
Bl = UjL1B]-1 we define a new knapsack problem. Let L{ = L \ {a , } and let the 
capacity of the knapsack M< = M — Oi. The improved heuristic IGR is: for all 
o; S BL, apply GR to the problem defined by Li and knapsack capacity M,-. Let 

IGRi = GR{Li) + c,. 

Then, the cost of the solution obtained with IGR is 

IGR(L) = min{ min IGRi, GR{L)}. (6) 

Since \BL,| = O(n) and since, once the items are ranked by order of nonincreas-
ing relative costs, the application of GR for each big item can be performed in 
linear time, the time complexity of IGR is 0(n2 ) . 

Lemma 2 For all lists L, 

IGR{L) < 3/2 • OPT(L). 

Proof . Let at be the smallest-index big item in a fixed optimal solution X. We 
distinguish two cases. 

(a) ct < 1/2 • OPT(L). 
In this case it follows directly from the proof of Lemma 1, that 

GR(L) < 3/2 • OPT(L), 

and the result follows from (6). 

.(b) ct > 1/2 • OPT(L). 
In this case we obtain by (6) that 

IGR{L) < GR(Lt) + ct 

and hence by the worst-case result for GR(L) mentioned in Lemma 1 

IGR{L) < 2 • OPT(Lt) + ct. 

Observing now that Xt = 1 finally yields 

IGR{L) < 2 • OPT(Lt) + ct < 2 • (OPT{L) - ct) + ct< 3/2 • OPT[L). 

We could get heuristics with better and better worst-case bounds by applying 
successively the improved method to pairs, triplets,... of big elements. This would 
lead to a heuristic similar to the one given by Sahni [7] for the max- knapsack 
problem. The result of this series of improvements is a polynomial approximation 
scheme, which is not fully polynomial. 
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PVom a practical point of view, we can improve the behaviour of GR, without 
changing its worst-case bound. This improved heuristic will be called GR+ and 
consists in the following. Let . . ,a'k be a candidate solution for GR (i.e. 
°'i» a2> • • • i a 'k-i a r e small and a!k is a big item). We delete if 

fc-2 

E a J + a U M . 
< = i 

If we could delete a j ^ , then we try to delete This is possible if 

Jt-3 

• = i Hence, we delete items until 

i-i 

« = i 
and the candidate solution for G R + is: 

„i i _/ „/ 

The solution given by GR+ is the minimum cost candidate. 

Clearly, the candidates for GR+ are not more expensive than the candidates 
for GR, so that 

GR+[L) < GR(L) < 2 • OPT(L). 
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