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On strict codes

Nguyen Huong Lam and Do Long Van *

Abstract

This paper continues an earlier paper of the authors. The maximality, the
decomposability etc. for infinitary strict codes are considered. Every infini-
tary strict code is shown to be included in an infinitary strict-maximal one.
The so-called Theorem of Defect for infinitary strict codes is proved. Some -
conditions for an infinitary strict code to be written by an indecomposable
ones are stated.

1 Preliminaries

The concept of strict codes has been first mentioned in [3]. The classical definition
of a code says that the (finite) identity relations are the only (finite) relations
satisfied by the code. For a strict code the demand is stronger: any relation, finite
or infinite, which is satisfied by the code is an identity one. So, strict codes form
. a subclass of codes. In [7] a particular case of strict codes, namely, that of finitary
strict codes was considered. In our paper [6] we studied infinitary strict codes; we
proposed some procedures to verify whether a given language is a strict code. Also,
we characterized strict codes by co-submonoids generated by them. In the present
article, which is a sequel to [6], we mostly adapt some well-known notions and
properties of codes for strict one such as maximality, decomposability, Theorem of
Defect, etc. - :

In what follows we mostly use standard terminology and notation (see, e.g. [5],
(1]). Let A be an alphabet, finite or countable, A* the free monoid generated by

A whose elements are called finite words. We denote AN the set of infinite words
over A and A® = A* U AN whose elements we call simply words. We make A® a
monoid equipping it with the product defined as: .

For any words «, § of A%, '

o=@ HacAV ped>
) af fac A ,feA™

where aff means the catenation of @ and f (see [6]). Clearly, the empty word,
denoted by ¢, is the unit of A*. ‘

We call a subset X of A (respectively, of A*) an infinitary language (respec-
tively, finitary language). For a finite subset X, CardX denotes its cardinality;
also, to simplify the notation we often identify a singleton set with its element. For
a word z € A*,|z| denotes the length of z and we say by convention that |¢] = 0
and |z|=w if z € AV.
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For any infinitary language X we denote:
Xen=XNA* Xint = XnAaN
XY ={af:a€X,PEY}, Y C A®

(the product extended to languages).

X2 =XX
Xr1=XXm n=1,2,...
X* = UnZOXﬂ

(the smallest submonoid of A* containing X).
Xt=X*-¢
Xv = {-2;1:52... : T € Xga,t = 1,2,“.}

(the set of all infinite products of elements in Xgy).
X® =X*uXxv
Xt® = X —¢.

For every n > 1 we introduce the set X(,) of n-tuples defined as:
X(n) = {(zlyzZ:"-)zn) ‘T30 %1 € Xfin,%n € X}
and the set X(,) of w-tuples defined as:
Xw) = {(z1,22,...) 1 2; € X, = 1,2,...}
and we put
X(e) = Un>1 X(n)
Xi(o0) = X(0) U Xw)

We say that a word z of A®® admits a *-factorization (resp. an w-factorization)
(z1,22,...) over X provided z = =z122... with (z1,23,...) € X(.) (resp.
(z1,%2,...) € X(u)); We say that X admits an co-factorization over X if it ad-
mits either a *-factorization or an w-factorization over X. A given subset X is said
to be an tnfinitary code (resp. an infinitary strict code) if every word of A% admits
at most one *-factorization (resp. one oco- factorization) [6].

Finally, for any two subsets X, Y of A®, we define:

XY '={a€A®:3B€Y : (af € X)A((la]| =w) => B =¢)}.

Y1 X={a€A®:3B€Y : (fae X)A((|f] = w) => a = ¢€)}.

2 Maximality

In this section we consider maximality properties of strict codes and oo-submonoids
generated by them. First, we show that each strict code is included in a strict-
maximal one. A strict code X is called strici-mazsmal if it is not contained properly
in any other strict code. X is called relatively strict-mazimal if for every finite word
w € A*, X U w is no more a strict code.

Theorem 2.1 Every strict code 1s contained in a strict-mazimal one over A.

Proof: First, we prove that every strict code is included in a relatively strict-
maximal one. To do this we enumerate all finite nonempty words in some order-

A+ = {wl, UJQ,...}

and define an increasing sequence of strict codes Xy C X; C X; C ... as follows:
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Put Xy, = X and suppose for some n > 0, X, has been defined. Let i(n) be the
smallest integer such that X, Uw;(n) is a strict code (if no such i(n) exists, we put
Xn+1 = X,). Put X, 41 = X, Uu,, where u, is any word in {X, U w,-(,,)}‘w:-"(n).
Since X, Uw;(y,) is a strict code, so is Xj,4;. Thus X, , is defined and by induction
our sequence is built.

Consider the set Y = |J,,5; Xn. Since Y = X U {up, : n > 0} and all u,’s are
infinite words it follows that every co-factorization over Y is also one over X, for
some n. This means that Y is a strict code because each X, is a strict code. Also,
it is easy to see that Y is relatively strict-maximal by construction of the sequence
X,. Thus every strict code is contained in a relatively strict-maximal one.

Next, we prove that the class of relatively strict-maximal codes is inductive, i.e.
every chain (by inclusion) has an upper bound. Indeed, let '

X, CXsC X, C...

be a chain in this class, indexed by a set I. Since each member of this chain is
relatively strict-maximal, we have

Xofin = Xﬁﬁn = Xaﬁn = ees

Putting
Z= U X,
v€I
we have Zg, = X, gn for every 4 € I that means Z is relatively strict-maximal

and thus Z is an upper bound of the chain. So, by Zorn's Lemma, every relatively
strict-maximal code is included in a maximal one, but it is easy to see that every
maximal element of this class is a strict-maximal code. Theorem is proved.

It has been known that there exists an algorithm to decide whether a given
finitary language is a maximal code (in the class of finitary codes) [1] Below we
state a similar result for finitary strict codes. Recall that a finitary language X is
said to be complete if for any w of A* : A*wA* N X* # 0. A word w of A* is called
overlapping if w = uz = yu for some u,z,y € A™. It is easy to see that for every
-w of A* (Card A > 2) there exist z and y of A* such that zwy is not overlapping.
Consider now in the class of finitary strict codes a maximal one by inclusion. We
call such a code finstary-strict-mazimal, or, following just defined terminology, X
is finitary relatively strict-maximal code. We have then:

Proposition 2.2 Every finttary-strict-mazsmal code X 1s complete.

Proof: Let w € A* — X. As noted zwy = w' is not overlapping for some z,y in
A*. If w' € X*, nothing is to be proved. Suppose w’ ¢ X*, then X Uw' is not a
strict code, it has to exist an infinite equality

1122...=_y1y2...

over X Uw' with z; # y1. Let zx = w’,k > 1 and m and n be respectively the
largest and the smallest integers such that zx = w’ is a subword of ynYm+1--- Yn-
Since w' is not overlapping, there is no w' among y,,,- .., Y, meaning that they are
all in X. Consequently, w' is a subword of Y Ym+1---Yn € X* and so is w. This
completes the proof. :

As a consequence of Proposition 2.2., we have



28 _ Nguyen Huong Lam, Do Long Van

Theorem 2.8 There ezists an algorsthm to decide whether a given finstary finste
subset X 13 a finstary-strict-mazimal code.

Proof: First, by Theorem 2.6. of {6], we can verify whether X is a strict code.
Second, if X is finitary-strict-maximal code it must be complete. But it has been
known that a finite (strict) code is complete if and only if it is maximal as a code
(and therefore finitary-strict-maximal as a strict code). Thus it suffices to test the
maximality of X as a code and this could be done, for example, by means of a
Bernoulli distribution. Because X is finite the test is always effective. Theorem is
proved. :

We now return to the general framework of infinitary words and languages. We
state some properties of strict-maximal codes analogous to the case of ordinary
ones, but let us first define some notions.

A language X C A is said to be dense if for every a of A%, A®aA°NX # 6,
or, which amounts to the same, for every w of AY : A*w N Xjns # 0; X is said to
be complete (resp. weakly complete) if X* (resp. X*) is dense.

Theorem 2.4 Every strict-mazimal code i3 weakly complete.

Proof.: If the alphabet A is a singleton A = {a} then a language X is a strict code
if and only if X = {a"} for some positive interger n or X = {a“}. So every strict
code is strict-maximal and weakly complete in this case.

Suppose now CardA > 2 and X is a strict-maximal code. We prove that
A*an Xine # 0 for every a in AV, If a € Xy, we are done, otherwise X U « is
not a strict code, so that we have an equality: -

Z1Z2... = YN1Y2... (1)
with two possibilities: '

(i) (z1,22,...) € (XU ) () and (y1,¥2,--) € (X UQ)(m) form,n>1.,

(ii) (21, %2,...) € X(u) and (y1,¥2,-..) € (X U a)(m)-

If (ii) holds, we are done. Now suppose that we have (i). If z, # o, we are
through again, otherwise, from (1) and from the fact that a must occur among y's,
we have y,, = a. Hence a = p“ for some primitive word p € A*. We choose a letter
b different from the last letter of p. Consider the word bp¥ = ba, which we can
suppose not to belong to X (in the contrary, we are done), therefore the set X Ubp¥
is not a strict code. But now with bp“ playing the role of , we have the equality
(1) for X U bp¥. The case (i) with z, = bp¥ = ba = y, is already impossible,
otherwise bp“ = ¢“ for some another primitive word g. Certainly ¢ = b¢’, ¢’ € A+,
hence p* = (¢'b)“. Since ¢'b is also primitive, we get p = ¢’'b which contradicts the
fact that the last letter of p is not b. So we have now either (i) with z,, # ba, y,, = ba
(or z, = ba, ym # ba) or (ii). Consequently, A*baUX # § and the theorem follows.

It is well-known that every recognizable complete finitary code is a maximal one,
but we cannot state such an analog for strict codes as shown in the next example.

Example 2.5 Consider the language X = {a? bA“} over the binary alphabet A =
{a,b}. It is easy to see that X 13 a recognizable weakly complete strict code (even
more so, complete one), but not a strict-mazimal code, since X UabA¥ is still a
strict code. '

Given two languages X,Y of 4, X is said to be written by Y, in notation
X < Y,if X C Y™ and no proper subset Z of Y has this properties i.e. VZ .C
Y, X € Z*. It is easy to verify that in the class of strict codes < is a partial order. '
A strict code X is said to be sndecomposable over A if for any strict code Y, X <Y
impliesY =X or Y C A.
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Example 2.8 (i) Consider the strict code X = {a?,b, (ba)“} over the alphabet
A= {0,b}; X is not indecomposable because X < {a2,d, (ab)“}.

(%) Conssder now the strict code X = {b%a,b2,a,abab”}. We show that X is
sndecomposable. Indeed, if X is written by o strict code Y € A then Yg, equals
either {b%a, b2, a} or {ba,b%,a}, and abab” = y,y, for some y; € Y5, y2 € Vg, (the
case abab” € Yg is impossible). If Yan = {b%a,b%,a} then y1 must be ¢, otherwise
y2 = bab¥, which is impossible because we would have then b3a(b?)¥ = b2y;. Hence
abab” = y1y2 = y2 €Y meansng that Y = X.

If now Y5, = {ba,d?,a}, then y; = €,y; = @ or y; = aba, correspondingly y; =
abab®”,ya = bab¥, or y3 = b¥. In all cases, it is easy to see that ¥ is not a code,
which is a contradiction.

We recall some notations introduced in [6]. A subset M of A® is called oo-
submonoid if M = M and it is called freeable if MM N MM~! = M. Every
subset X of an co-submonoid M such that X = M is ¢ alled a generator set of
M. It was proved in [6] that every oo-submonoid possesses a smallest generator
set in the sense that it 13 contained in every generator set of M and freeable co-
submonoids are always generated by strict codes which are the smallest generator
sets of them. An co-submonoid of A is said to be freeable-mazimal provided it is
not contained in any freeable co-submonoid other than itself and A®.

We state now a result relating indecomposability off a strict code and freeable-
maximality of the co-submonoid generated by it.

Theorem 2.7 An co-submonoid M s freeable-mazimal if and only if it 53 generated
by an tndecomposable strict-mazimal code.

Proof.: Let M be freeable-maximal and X its smallest generator set which is a
strict code. If X is not strict-maximal, then there exists a word z of A — X
such that X U z is a strict code. Hence M = X* C (X U z)* which implies
(Xuz)® = A®. Since X Uz is a strict code, we have X Uz = A, therefore z
belongs to A. On the other hand X U z® is also a strict code and we have

M C (XUz¥)® C 4%

i.e. M is not freeable-maximal: a contradiction. That X is not indecomposable also
leads to a contradiction. Indeed, f X <Y and X #Y,Y € Athen M C Y™ C 4A®
which is a contradiction.

To prove the converse, we suppose that X is an indecomposable strict-maximal
code and M’ is a freeable co-submonoid such that M C M’ C A%®. This yields
XCX®°=MCM = X' with X' being a strict code generating AM’. Thus
X < X" for some subset X" C X'. We show that X" is also a strict-maximal code.
If it is not so, then X" U z is a strict code for some z in A® — X". Since X is
strict-maximal, X U z(z & X, because z & (X"”)*® D X) is not a strict code, we
have then two different co- factorisations (z1,22,...) and (y1,y2,...) over XUz of
some word of A%, Since every z;,y; that differ from z are in X C X" they admit
then oo-factorizations over X"'. Now, we replace every entry z; # z and y; # z in
(z1,Z2,...) and (y1,¥a,...) with their co-factorizations over X" and as a result we
obtain two co-factorizations.over X" U z of the same word. Since X" Uz is a strict
code, they must be identical, from which it follows that either z € X" or X is not
a strict code. This contradiction shows that X" must be strict-maximal, therefore
X" = X’ and by indecomposability of X we have either X’ = X or X’ C A. Hence
X'=X or X' = A, in other words, M’ = M or M’ = A*®. The proof is completed.
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Example 2.8 Consider the subset M = {w € A : |w| > p},p s @ prime number.
It is clear that M 1s a freeable co-submonoid generated by the uniform {atn’ct} code
AP which 15 strict-mazimal and indecomposable. Therefore M s freeable-mazimal
by Theorem 2.7. '

3 Decomposition

In this section we study the relation <, namely, we are concerned with the question,
does there exist for an arbitrary infinitary strict code X an indecomposable one by
which X is written? Such a problem is not to be posed for finitary codes simply
because the Zorn’s Lemma guarantees this for them. In general, we do not know
the answer to this question, but below we state some conditions under which a
strict code can be written by an indecomposable one.

Theorem 8.1 If X §s a sirict code with Xg,, @ finite finitary mazimal code then
X can be written by an indecomposable strict code. -

Proof.: First, we observe that for each strict code Y such that X < Y, we have
Xsn € Yg, and it is not difficult to see that if X5, is finite maximal code so is
Ysn and Xgn < Yan (see [5], for example). Next, we denote S(X)={Y C A®:Y
is a strict code : X < Y}. Also, we denote [|[Y]| = 3° .., |y], so that for each

Y e S(JQ we have [|[Y]| < co. Let N be the smallest value ofl}ﬂ"/" as Y runs
through (}}f) : N ='mm{||Y}|J : Y € S(g()} We can see that if Y] < Y, with
Y1,Y; in S(X) then [|Y1] > u) 2||- Let Y be a strict code of S(X) with |Y|| = N.
We show that Y is written by an indecomposable strict code and since < is an
order relation, so does X.

Consider S(Y). Certainly S(Y) C S(X). We use Zorn’s Lemma to show that
S(Y) contains a maximal element which, therefore, is an indecomposable strict
code and by which X can be written. For each Z € S(Y) € S(X), we have

X<Y<Zand|Z|] < UY|| As noted above Y5, < Zg,, and thus both Zg,, Ya,
are maximal codes and since ||Y|| is of minimum value, it follows that | Z|| = ||Y||
and Zg, = Yga.

Consider first an arbitrary countable chain in S(Y):Y; < Y3 <.... We have
Y16n = Y260 = ... For each s > 1 and z € Y, n1, = does not belong to Y%, ;¢,, since

Y,+16in = Yain and Y, is a strict code. From Y, < Y,; it follows

_ (a1} _(s+1)
) T=ZThn Ting s
where ::g':l)’ o160 zl(;:' Ve Y,41inf- By the same argument, we have

Tt ) = Tpn Ty s

where z‘(i':z) € Y, 260 zf;f ) ¢ K+§m, and so on. Clearly, there exist only

finitely many ¢ such that zg'n“) # ¢, otherwise z € Yg,. Thus there must be an-
integer n(z, s) such that for a.e. m > n(z, s)

zi(n";) = zi(:;"'l) = z(s).

Therefore z(3) € Ynint for a.e. m > n(z,s). -
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Now, consider the set P of A% with Pgn = Yigin, Pt = {2(3) : 2 € Yyint, s =
1,2,...}. We verify that
(i) P is a strict code. In fact, if we have a relation, for example

xl...zma=y1---ynﬂ

(z1,---1Zm; @) € Pimy1), (¥1,-++2Yny B) € P(n+1), then there exist s,t > 1,z €
Yiint, ¥ € Yiins such that @ = z(s), f = y(t). Let | = max{n(z, s),n(y,t)}, then the
words Zy,...Zm, @, B, Y15+, Yn all are in Y; and thus the above relation must be
an identity. The other cases are treated similarly.

(ii) For all ¥ : Y; < P. As shown above, each z € Y; is written in the form
z = z'z(s), where 2’ € Y5, = Y{,, s0 2 € P§ Pqr. Thus ¥; C P> (moreover,
Y; C P*). Further, for every a € Py, there is a positive integer s such that
z€Y,5, and a = z(s). If n(z, s) <1 then

a=z(s) = z.f::f("’)) = zg)f € Yiint.

If n(z,s) > 1, since Y; < Y,(;,) it follows a = z(s) € Y,(;,,) is present in the
expression of some element of ¥; as a product of elements of Y,,(; ,). Hence ¥; < P.

Thus we have proved that there exists an upper bound for any countable chain.
Let now

Ya<Yp-<...

be an uncountable chain (with cardinality at most continuum). We obviously can
derive from this chain a countable subchain

Y1 <Y, =<...

such that for each Y, from the uncoutable chain there exists Y,, from the countable
subchain satisfying 1’7 < Y,.. For the latter one there exists a maximal element Y
and it is easy to see that Y is also a maximal element for the uncountable chain.
Now, in virtue of Zorn’s Lemma Y is followed by a maximal element, i.e. Y is
written by an indecomposable strict code. Proof is completed

In the next proposition we try to weaken the heavy demand of maximality
of Xgn, but in compensation to this, the finiteness of X is required. We call
X an alphabetical code if X is a subset of the alphabet A, otherwise we call it
nonalphabetical one.

Theorem 8.2 Each finite finitary nonalphabetical strict code 13 written by an in-
decomposable nonalphabetical strict code.

Proof.: We note that for any finite finitary strict codes X,Y : X < Y implies
qu > ||YJ| as mentioned in the proof of the preceding theorem. The equality
olds if and only if every word of Y occurs just once in the *-factorization of just
one word of X, or equivalently, there exists a partition Y = Y; U...UY,(n > 1)
such that for any 1 : 1 < ¢ < n there exists a word z (thus uniquelyr such that z is
a product of the words in Y; (in some order). Hence if || X|| =)J|Y |, we have n =
Card X < Card Y and in addition to this, if Card X = Card Y then each Y; is a
singleton, which means X =Y.
We turn now to the proof. Let X be a finite finitary strict code. If X is
indecomposable, we are done. Otherwise, we assume the contrary that X cannot
be written by any indecomposable nonalphabetical strict code and as a consequence
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of this, we have an infinite chain of finite finitary codes: X =Xp < X; < X3 < ...,
where X; Xi+1 and X; is nonalphabetical for all £ = 1,2,... Certainly, we
have: "Xoﬁé?. | X1]l 2 || Xal| = .... Since || Xo|| < oo it follows that for some
integer N : | Xn| = "XN.HJ = .... On the other hand, as we noted above: Card
Xy < Card Xy41 < .... But for every s 2 1: || Xy41l] = Card Xy 4; min{|z| :
z € Xn+i} 2 Card Xn4;. Hence, there must be an integer M such that Card

M+N = Card Xps4N+1, therefore Xy ae = Xn4a41 which is a contradiction
with the assumpion that X; # X, for all 1. The proof is completed.

As a consequence of the preceding theorem, we shall have a decomposition
theorem for finite finitary strict codes, but we recall some notations first. For more
details one can consult {5] or [1]. Let X,Y be finitary codes over A and X < Y.
Consider an alphabet B of the same cardinality as Y and a bijection f: B — Y.
Because Y is a code, we can extend f to an isomorphism of B* and Y*, which we
- denote by the same f,f : B* — Y*. Let Z={f"}(z) :z€ X C Y*} and it is
not difficult to see that Z is a code over B and it is a strict code if X and Y are
strict codes. In this case we write X = Y®B Z. Conversely, f Y C A*,Z C B*
are codes (resp. strict codes) then the expression X = Y @y Z stands for the
following: there exists an isomorphism f : B* —& Y * such that X = f (ZJ cY*
In this way X becomes a code (resp. strict code) and we have X < Y if and only if
B is the least alphabet such that Z C B*. It is noteworthy that @) is associative.
Now we state our theorem. .

Theorem 8.8 Every finite finitary strict code X of A* admits a finite decompos-

tion:
X=XQXQ.. QX
B c D

where Xy, Xa,... X,, are indecomposable strict codes over the corresponding al-
phabets A,B,...,D. ’

- Proof.: The proof is proceeded by induction on || X||. Iftj[X [| = 1 then X is a letter,

8o it is indecomposable by definition. Suppose now that for every strict code X with
[| Xl < k the assertion is valid. Let | X|| = k. If X is indecomposable, we are done;
f not, by the preceding theorem, X 18 written by a nonalphabetical indecomposable
strict code Y over A* : X < Y. Thus, using the notations mentioned above, we have

X= Y-®Z.
B

Certainly, | f~!(z)| < |z} for each z € X, therefore || Z|| < || X|| = k and the equality
holds if and only if |f~1(z)| = |z| for every z, i.e. when each word of Y is a letter
meaning that Y C A which is a contradiction. Thus we must have || Z]| < ul‘X | = k.
By induction hypothesis Y admits a finite decomposition and so does X. Theorem
is proved. : . '

4 Theorem of Defect

In this concluding section we establish for strict codes a result, which is an analog
of Theorem of Defect in the theory of finitary codes [2]. Note that Theorem of
Defect was also proved for infinitary codes [4].
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Theorem 4.1 For any language X of A%, +f X s not a strict code then X 1s
written by a strict code of cardinality at most Card X — 1.

Proof.: If Card X = oo nothing is to be done because X is always written by A
or a subset of 4 and Card A — 1 £ 0. So we can assume Card X < oo and the
proof is done by induction on Card X.
If Card X = 1 then X is a singleton strict code Now suppose that for every
X of cardinality not exceeding n the assertion is true. Let now X be a language
of cardinality n + 1 and X not be a strict code. We have then two different oo-
factorizations (uy,ugz,...) and (v, vs,...) over X with u; # vy of a word o € A®.
Further, we can suppose that |vy| > |u;|. Hence v; = u;8 for some f € A+,
Consider two cases
Sl) If vy € AV, then we have v; = uju3..., therefore 8 = usus.... Consider
the language X, = X — v;. If vy occurs among uz, us, ..., say, vy = ux with k the
smallest possible, k > 1; then we have

U = Ujlz...Ug-1V1

hence v; = (uy...ux—1)* € X{°.

If v; # u; fort = 2,3,. then v, is obvmosly in X3°. So we have X C X{° and
Card X; < Card X. 1f X1 is not a strict code, then t)y the induction hypothesxs,
X, is written by a strict code of cardinality < CardX; < CardX.

(ii) If v; € A*, then § € A* and we put X; = X — v; U 8. Clearly, X C X{°
and || Xy || < ||X]|. There are two possibilities

(i1.1) Replacing all the occurrences of v; by u;8 in the equation:

U2 ... =v1Vz..., (2)

it becomes an identity. This means that § = u; € X — v; and therefore CardX; <
CardX — 1 = n. The assertion follows by induction hypothesis applied to X;.

(1i.2) If (2) does not become an 1dent1ty after the replacement (ii.1), then we
repeat the argument with X; until i) or (ii.1) occurs. The process cannot go into
infinity avoiding (i) or gf ii.1) since || (1| , ¢ =1,2,... decreases strictly each time the
argument is repeated. Thus we shoul obtain a finite sequence X =Xo,X1,... X,
with X; ¢ X%, Card X;4; £ Card X; fort = 1,2,...,s—1and X, C C, where
C is some finite strict code with Card C < Card X,. So X CC™® and Card C <
Card X — 1. The proof is complete.

Corollary 4.2 Every two-element language 1s a strict code if and only if lt 15 a
code.

Proof.: If X = {a, B} is not a code then X is not a strict code. Conversely, if X is
not a strict code then by Theorem 4.1 X C {7} for some v € A®. Since a # 8,7
must belong to A*. Hence X is not a code.
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