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On strict codes 

Nguyen Huong Lam and Do Long Van * 

Abstract 
This paper continues an earlier paper of the authors. The maximality, the 

decomposability etc. for infinitary strict codes are considered. Every infini-
tary strict code is shown to be included in an infinitary strict-maximal one. 
The so-called Theorem of Defect for infinitary strict codes is proved. Some 
conditions for an infinitary strict code to be written by an indecomposable 
ones are stated. 

1 Preliminaries 
The concept of strict codes has been first mentioned in [3]. The classical definition 
of a code says that the (finite) identity relations are the only (finite) relations 
satisfied by the code. For a strict code the demand is stronger: any relation, finite 
or infinite, which is satisfied by the code is an identity one. So, strict codes form 
a subclass of codes. In [7] a particular case of strict codes, namely, that of finitary 
strict codes was considered. In our paper [6] we studied infinitary strict codes; we 
proposed some procedures to verify whether a given language is a strict code. Also, 
we characterized strict codes by oo-submonoids generated by them. In the present 
article, which is a sequel to [6], we mostly adapt some well-known notions and 
properties of codes for strict one such as maximality, decomposability, Theorem of 
Defect, etc. 

In what follows we mostly use standard terminology and notation (see, e.g. [5], 
[l]). Let A be an alphabet, finite or countable, A* the free monoid generated by 
A whose elements are called finite words. We denote AN the set of infinite words 
over A and A°° = A* U AN whose elements we call simply words. We make A°° a 
monoid equipping it with the product defined as: 

For any words a, ft of A°°, 

f a if a € AN,pe A°° 
a P \ a 0 if a eA*,PeA°° 

where a/9 means the catenation of a and P (see [6]). Clearly, the empty word, 
denoted by e, is the unit of A°°. 

We call a subset X of A°° (respectively, of A*) an infinitary language (respec-
tively, finitary language). For a finite subset X, CardX denotes its cardinality; 
also, to simplify the notation we often identify a singleton set with its element. For 
a word x € A*, |x| denotes the length of x and we say by convention that |e| = 0 
and |a;| = w if x € AN. 
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For any infinitary language X we denote: 
X&n = X n A*, Xial = X n AN 

XY = {a/9 : a G X,p G Y), Y C A°° 

(the product extended to languages). 
X2 = XX 
Xn+1=XXn, n = 1,2, . . . 
x- = \Jn>0xn 

(the smallest submonoid of A°° containing X). 
X+ = X*-e 
XW = {XIX2 . . . : x , G X&A,I = 1 , 2 , . . . } 

(the set of all infinite products of elements in -Xfin). 
X°° = X* U Xu 

X+oo =x°° -e. 

For every n > 1 we introduce the set of n-tuples defined as: 
• (̂n) = {(xl> *2i • • • I xn) • xly • • • I xn-l G X&n, Xn e X} 

and the set X(u) of u-tuples defined as: 
x (u ) = { (z i . za , - - - ) :xi e x & a , i = 1 ,2 , . . . } 

and we put 
X(*) = Un>l X{n) 
x{oo) = X(,)Ui(„| 

We say that a word x of A°° admits a *-factorization (resp. an w-factorization) 
(xi,x2,...) over X provided x = xix2... with ( i i , x 2 , . . . ) G (resp. 
(x\,x2,...) S X(u)) ; we say that X admits an oo-factorization over X if it ad-
mits either a «-factorization or an u-factorization over X. A given subset X is said 
to be an infinitary code (resp. an infinitary strict code) if every word of A°° admits 
at most one «-factorization (resp. one oo- factorization) [6]. 

Finally, for any two subsets X, Y of A°°, we define: 
XY-1 = {a e A°° : 3p e Y : (a/9 e X) A ((|a| = w) = > /9 = e)}. 
Y-^X = {a e : 3/9 G Y : (/9a e X) A ((|/9| = w) = > a = e)}. 

2 Maximality 
In this section we consider maximality properties of strict codes and oo-submonoids 
generated by them. First, we show that each strict code is included in a strict-
maximal one. A strict code X is called strict-maximal if it is not contained properly 
in any other strict code. X is called relatively strict-maximal if for every finite word 
to G A*, X U w is no more a strict code. 

Theorem 2.1 Every strict code is contained tn a strict-maximal one over A. 

Proof : First, we prove that every strict code is included in a relatively strict-
maximal one. To do this we enumerate all finite nonempty words in some order • 

A+ = { « » 1 , 1 0 2 , . . . } 

and define an increasing sequence of strict codes XQ C XI C X2 C . . . as follows: 
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Put Xo = X and suppose for some n > 0, Xn has been defined. Let t(n) be the 
smallest integer such that Xn U to,(„) is a strict code (if no such t(n) exists, we put 
X n + i = Xn). Put X n + i = Xn U u„, where un is any word in {Xn U w i (n) }*w?(ny 
Since X„Utu,(„) is a strict code, so is Xn+i- Thus Xn+\ is defined and by induction 
our sequence is built. 

Consider the set Y = U n >i Since Y = X U (un : n > 0} and all u„'s are 
infinite words it follows that every oo-factorization over Y is also one over Xn for 
some n. This means that Y is a strict code because each Xn is a strict code. Also, 
it is easy to see that Y is relatively strict-maximal by construction of the sequence 
Xn. Thus every strict code is contained in a relatively strict-maximal one. 

Next, we prove that the class of relatively strict-maximal codes is inductive, i.e. 
every chain (by inclusion) has an upper bound. Indeed, let 

Xa C Xp C X^ C ... 

be a chain in this class, indexed by a set I . Since each member of this chain is 
relatively strict-maximal, we have 

-Xafin = Xpftn = Xa6n = ••• 

Putting 

Z= ( J x 7 

we have — X 7 g n for every 7 6 J that means Z is relatively strict-maximal 
and thus Z is an upper bound of the chain. So, by Zorn's Lemma, every relatively 
strict-maximal code is included in a maximal one, but it is easy to see that every 
maximal element of this class is a strict-maximal code. Theorem is proved. 

It has been known that there exists an algorithm to decide whether a given 
finitary language is a maximal code (in the class of finitary codes) Jl]. Below we 
state a similar result for finitary strict codes. Recall that a finitary language X is 
said to be complete if for any to of A* : A*wA* D X* ^ 0. A word to of A* is called 
overlapping if w = ux = yu for some u, x, y £ A+. It is easy to see that for every 
to of A* (Card A > 2) there exist x and y of A* such that xwy is not overlapping. 
Consider now in the class of finitary strict codes a maximal one by inclusion. We 
call such a code finitary-strict-maximal, or, following just defined terminology, X 
is finitary relatively strict-maximal code. We have then: 

Propos i t i on 2.2 Every finitary-strict-maximal code X is complete. 

Proof : Let w e A* — X. As noted xwy = to' is not overlapping for some x, y in 
A*. If to' e X*, nothing is to be proved. Suppose to' £ X*, then X U to' is not a 
strict code, it has to exist an infinite equality 

®i*2.. . = yiy2 ... 

over X U to' with x\ ^ yi. Let x* = to', A: > 1 and m and n be respectively the 
largest and the smallest integers such that xk = to' is a subword of ymym+i ...yn-
Since to' is not overlapping, there is no to' among y m , . . . , y n meaning that they are 
all in X. Consequently, to' is a subword of ymym+i ...yn € X* and so is to. This 
completes the proof. 

As a consequence of Proposition 2.2., we have 
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T h e o r e m 2.3 There existí an algorithm to decide whether a given finitary finite 
subset X is a finitary-strict-maximal code. 

Proof : First, by Theorem 2.6. of [6l, we can verify whether X is a strict code. 
Second, if A" is finitary-strict-maximal code it must be complete. But it has been 
known that a finite (strict) code is complete if and only if it is maximal as a code 
(and therefore finitary-strict-maximal as a strict code). Thus it suffices to test the 
maximality of X as a code and this could be done, for example, by means of a 
Bernoulli distribution. Because X is finite the test is always effective. Theorem is 
proved. 

We now return to the general framework of infinitary words and languages. We 
state some properties of strict-maximal codes analogous to the case of ordinary 
ones, but let us first define some notions. 

A language X C A°° is said to be dense if for every a of A°°, A°° a A°° H X ^ 0, 
or, which amounts to the same, for every w of AN : A* wD Xmi ^ 0; X is said to 
be complete (resp. weakly complete) if X* (resp. X°° ) is dense. 

T h e o r e m 2.4 Every strict-maximal code is weakly complete. 

Proof . : If the alphabet A is a singleton A = {a} then a language X is a strict code 
if and only if X = { a n } for some positive interger n or X = { a " } . So every strict 
code is strict-maximal and weakly complete in this case. 

Suppose now CardA > 2 and X is a strict-maximal code. We prove that 
A* a n Xinf 0 for every a in AN. If a G X¡nf, we are done, otherwise X U a is 
not a strict code, so that we have an equality: 

i i i 2 - . . = yiV2... (1) 
with two possibilities: 

(i) ( n , x 2 , . . . ) G ( X U a ) ( „ j and (ya,y2,...) S ( X U a ) ( m | for m,n > 1., 
(ii) {xi,x2,...) G X ( u ) and (j/i,y2,• • •) G ( X U a ) ( m ) . 
If (ii) holds, we are done. Now suppose that we have (i). If xn ^ a, we are 

through again, otherwise, from (1) and from the fact that a must occur among y?s, 
we have ym = a. Hence a = pu for some primitive word p G A*. We choose a letter 
6 different from the last letter of p. Consider the word bpu — 6a, which we can 
suppose not to belong to X (in the contrary, we are done), therefore the set XUbp" 
is not a strict code. But now with bpu playing the role of a, we have the equality 
(1) for X U bpu. The case (i) with x„ = bpu = ba = ym is already impossible, 
otherwise bpu = qu for some another primitive word q. Certainly q = btf, q1 G A*, 
hence pu = (q'b)u. Since q'b is also primitive, we get p= q'b which contradicts the 
fact that the last letter of p is not b. So we have now either (i) with xn jt ba, ym = 6a 
(or xn = 6a, ym 6a) or (ii). Consequently, A'baUX ^ 0 and the theorem follows. 

It is well-known that every recognizable complete finitary code is a maximal one, 
but we cannot state such an analog for strict codes as shown in the next example. 

E x a m p l e 2.5 Consider the language X = {a2 ,6^4"} over the binary alphabet A = 
{a, 6}. It is easy to see.that X is a recognizable weakly complete strict code (even 
more so, complete one), but not a strict-maximal code, since XLlab A" is still a 
strict code. 

Given two languages X, Y of A°°, X is said to be written by Y, in notatión 
X -< y, if X C Y°° and no proper subset Z of Y has this properties i.e. VZ C 
Y, X % Z°°. It is easy to verify that in the class of strict codes -< is a partial order. 
A strict code X is said to be indecomposable over A if for any strict code Y, X -< Y 
implies Y = X or Y C A. 
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Example 2.® (i) Consider the strict code X — {a2, b, (fca)"} over the alphabet 
A = {a, 6}; X is not indecomposable because X -< {a2 ,6, (a6)w}. 

(ii) Consider now the strict code X = {63a, b2, a, abab"}. We show that X is 
indecomposable. Indeed, if X is written by a strict code Y % A then lfin equals 
either {63a, 63 , a } or {6a, 62, a } , and abab" = yiy2 for some yi e ygn , y2 e l a n (the 
case ababu € Yg^ is impossible). IfY&n = {63o,62,o} then yt must be e, otherwise 
t/2 = bab", which is impossible because we would have then 6 3o(6 2 ) " = b2y2 • Hence 
ababu = yij/2 = J/2 £ Y meaning that Y = X. 

If now Ygn = (6a, b2, a}, then j/i = e,yi = a or yi = aba, correspondingly y2 = 
ababu, t/2 = bab", or y2 = bu. In all cases, it is easy to see that Y is not a code, 
which is a contradiction. 

We recall some notations introduced in [6]. A subset M of is called oo-
submonoid if M°° = M and it is called freeable if M - 1 M D MM_1 = M. Every 
subset X of an oo-submonoid M such that X°° = M is c ailed a generator set of 
M. It was proved in [6] that every oo-submonoid possesses a smallest generator 
set in the sense that it is contained in every generator set of M and freeable oo-
submonoids are always generated by strict codes which are the smallest generator 
sets of them. An oo-submonoid of A°° is said to be freeable-maximal provided it is 
not contained in any freeable oo-submonoid other than itself and A°°. 

We state now a result relating indecomposability off a strict code and freeable-
maximality of the oo-submonoid generated by it. 

T h e o r e m 2.f An oo-submonoid M is freeable-maximal if and only if it is generated 
by an indecomposable strict-maximal code. 

Proof . : Let M be freeable-maximal and X its smallest generator set which is a 
strict code. If X is not strict-maximal, then there exists a word x of A°° — X 
such that X U x is a strict code. Hence M = X°° C (X U x)°° which implies 
(X U = Since X U x is a strict code, we have l U i = A, therefore x 
belongs to A. On the other hand X U x°° is also a strict code and we have 

M c ( I U / ) M C A°° 

i.e. M is not freeable-maximal: a contradiction. That X is not indecomposable also 
leads to a contradiction. Indeed, ii X < Y znd X ji Y,Y % A then M C Y°° C 
which is a contradiction. 

To prove the converse, we suppose that X is an indecomposable strict-maximal 
code and M' is a freeable oo-submonoid such that M C M' C A°°. This yields 
X C X°° = M C M' = X'°° with X' being a strict code generating M'. Thus 
X ~< X" for some subset X" C X'. We show that X" is also a strict-maximal code. 
If it is not so, then X" U x is a strict code for some x in A°° — X". Since X is 
strict-maximal, X U x(x X, because x & (Jf")°° D X) is not a strict code, we 
have then two different oo- factorizations [x\, x2,...) and (yi, y2,...) over XUx of 
some word of A°°. Since every a;,-, y,- that differ from x are in X C X"°° they admit 
then oo-factorizations over X". Now, we replace every entry x,- ^ x and y,- ^ x in 
(*i> x2> • • •) and (yi, y 2 , . . . ) with their oo-factorizations over X" and as a result we 
obtain two oo-factorizations .over X" U x of the same word. Since X" U x is a strict, 
code, they must be identical, from which it follows that either x E X" or X is not 
a strict code. This contradiction shows that X" must be strict-maximal, therefore 
X" = X' and by indecomposability of X we have either X' = X or X' C A. Hence 
X' = X or X' = A, in other words, M' = M or M ' = A°°. The proof is completed. 
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Example 2.8 Consider the subset M = {w € A°° : |u;| >p},p is a prime number. 
It is clear that M is a freeable oo-submonoid generated by the uniform (strict) code 
Ap which is strict-maximal and indecomposable. Therefore M is freeable-maximal 
by Theorem S.7. 

3 Decomposition 
In this section we study the relation -<, namely, we are concerned with the question, 
does there exist for an arbitrary infinitary strict code X an indecomposable one by 
which X is written? Such a problem is not to be posed for finitary codes simply 
because the Zorn's Lemma guarantees this for them. In general, we do not know 
the answer to this question, but below we state some conditions under which a 
strict code can be written by an indecomposable one. 

T h e o r e m 3.1 If X is a strict code with X&u a finite finitary maximal code then 
X can be written by an indecomposable strict code. 

Proof.: First, we observe that for each strict code Y such that X <Y, we have 
•Xfin Q Yfin and it is not difficult to see that if X&n is finite maximal code so is 
Yfi„ and X&n -< Yfin (see (5], for example). Next, we denote S fX) = {Y C A°° : Y 
is a strict code : X -< Y). Also, we denote ||Y|| = 2 „ g y a i l M, 8 0 'hat f ° r e a c ^ 
Y e S(X) we have ||Y|| < oo. Let N be the smallest value of \\Y\\ as Y runs 
through SIX) : N = min{||Y|| : Y e S (X) } . We can see that if Y[ -< Y2 with 
YX,Y2 in S(X) then ||Fi|| > jy2||. Let Y be a strict code of S(X) with ||Y|| = N. 
We show tnat Y is written by an indecomposable strict code and since -< is an 
order relation, so does X. 

Consider 5(K). Certainly 5(Y) C S(X). We use Zorn's Lemma to show that 
S(y) contains a maximal element which, therefore, is an indecomposable strict 
code and by which X can be written. For each Z E S(Y) C 5 (X) , we have 
X <Y <Z and ||Z|| < |JY||. As noted above Y&a -< Z f i ? , and thus both ZBn, YBa 
are maximal codes and smce ||F|| is of minimum value, it follows that ||Z|| = ||y|| 
and ZBn = Yen. 

Consider first an arbitrary countable chain in S(Y) : Y\ <Y2 < We have 
yifin = ^2fin = • • • For each s > 1 and x 6 y,infi x does not belong to y,'!^lfin, since 
ya +i f i n = Y„fin and Y, is a strict code. PVom Y, -< Y,+ 1 it follows 

where ig*n+1' € y„*+lfin, G Y.+iinf- By the same argument, we have 

_(«+!) _ _(»+2)_(«+2) 
Iinf — Zfin Xillf » 

where i g ^ 2 ' € ^»+2fim ̂ nf^2' e y»+2inf> and 8 0 on. Clearly, there exist only 
finitely many i such that Zg"n+1' ^ e, otherwise x £ YgD. Thus there must be an 
integer n(z, a) such that for a.e. m > n(x, s) 

Therefore i (s) G Yminf for a.e. m > n(x, s). 
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Now, consider the set P of A°° with P&a = iiam-Pinf = {z(s) : x 6 Y,inf, s = 
1,2 , . . . } . We verify that 
(i) P is a strict code. In fact, if we have a relation, for example 

(®i , . . . , xm, a) € P( m + i ) , (y i , . . . ,yn, )9) € P(„+i), then there exist s,t > l,x € 
Y.infi y G Itinf such that a = x(a), f) = y(i). Let I = max{n(x, a), n(y, i ) } , then the 
words xi,... xm, a, /3, yn all are in Yj and thus the above relation must be 
an identity. The other cases are treated similarly. 
(ii) For all t : Yi •< P. As shown above, each i £ Yj is written in the form 
X = x'x(t), where x' e Y{Sn = Yfi*n, so x g P^Pm- Thus Yi C P°° (moreover, 
V- r P*\ Pur+lior for ovpn; n R_< there is a positive integer a such that 

If n(x, a) > », since -< Yn(I j4) it follows a = x(s) € Y"o(*,«) is present in the 
expression of some element of Yi as a product of elements of Y"n(x,i) • Hence Y< -< P. 

Thus we have proved that there exists an upper bound for any countable chain. 
Let now 

be an uncountable chain (with cardinality at most continuum). We obviously can 
derive from this chain a countable subchain 

such that for each YL from the uncoutable chain there exists Yn from the countable 
subchain satisfying Y1 -< Y„. For the latter one there exists a maximal element Y 
and it is easy to see that Y is also a maximal element for the uncountable chain. 
Now, in virtue of Zorn's Lemma Y is followed by a maximal element, i.e. Y is 
written by an indecomposable strict code. Proof is completed 

In the next proposition we try to weaken the heavy demand of maximality 
of Xfin, but in compensation to this, the finiteness of X is required. We call 
X an alphabetical code if X is a subset of the alphabet A, otherwise we call it 
nonalphabetical one. 

T h e o r e m 3.2 Each finite finitary nonalphabetical 3trict code is written by an in-
decomposable nonalphabetical strict code. 

Proof . : We note that for any finite finitary strict codes X,Y : X < Y implies 
l|X|l > ||Y" | as mentioned in the proof of the preceding theorem. The equality 
holds if and only if every word of Y occurs just once in the «-factorization of just 
one word of X , or equivalently, there exists a partition Y = Yi U . . . U Yn(n > 1) 
such that for any t : 1 < t < n there exists a word x (thus uniquely) such that x is 
a product of the words in Yi (in some order). Hence if ||X|| = j|Y||, we have n = 
Card X < Card Y and in addition to this, if Card X = Card Y then each Yi is a 
singleton, which means X = Y. 

We turn now to the proof. Let X be a finite finitary strict code. If X is 
indecomposable, we are done. Otherwise, we assume the contrary that X cannot 
be written by any indecomposable nonalphabetical strict code and as a consequence 

x i . . . xma = y i . . . ynP 

a = x(s) = x t t ' " » = x</>eY i iDi. 

Ya<Yp<... 
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of this, we have an infinite chain of finite finitary codes: X = XQ X X j -< X2 -<..., 
where X,- ft Xj+i and X,- is nonalphabetical for all t = 1 ,2 , . . . Certainly, we 
have: ||X0[| > |LXI|| > ||X2|| > . . . . Since ||X0|| < oo it follows that for some 
integer N : || = ||Xjv+i|| = . . . . On the other hand, as we noted above: Card 
XN < Card Xff+i < But for every * > 1 : ||Xj\r+iH — Card Xjy+j min{|x| : 
x £ Xf f+ i } > Card Xtf+i. Hence,' there most be an integer M such that Card 
XM+N — Card XM+N+I, therefore XM+M = X^+M+I which is a contradiction 
with the assumpion that Xt- ^ X j + 1 for all t. The proof is completed. 

As a consequence of the preceding theorem, we shall have a decomposition 
theorem for finite finitary strict codes, but we recall some notations first. For more 
details one can consult [5] or [1]. Let X,Y be finitary codes over A and X -< Y. 
Consider an alphabet B of the same cardinality as Y and a bijection / : B —• Y. 
Because Y is a code, we can extend / to an isomorphism of B* and Y*, which we 
denote by the same f,f:B* —• Y*. Let Z = { / _ 1 ( x ) : x € X C K*} and it is 
not difficult to see that Z is a code over B and it is a strict code if X and Y are 
strict codes. In this case we write X = Y Z. Conversely, if Y C A*,Z C B* 
are codes (resp. strict codes) then the expression X = Y <2>B Z stands for the 
following: there exists an isomorphism / : B* —Y* such that X = f{Z) C Y*. 
In this way X becomes a code (resp. strict code) and we have X -< Y if and only if 
B is the least alphabet such that Z C B*. It is noteworthy that 0 is associative. 
Now we state our theorem. 

T h e o r e m S.3 Every finite finitary strict code X of A* admits a finite decompos-
tion: 

X = X 1 ® X 2 ( g ) . . . ( g ) X „ , 
B C D 

where Xi,X2i. • - Xn are indecomposable strict codes over the corresponding al-
phabets A, B,..., D. 

Proof . : The proof is proceeded by induction on ||X||. If J1X|| = 1 then X is a letter, 
so it is indecomposable by definition. Suppose now that for every strict code X with 
J|X|| < k the assertion is valid. Let ||X|| — k. If X is indecomposable, we are done; 
if not, by the preceding theorem, X is written by a nonalphabetical indecomposable 
strict code Y over A* : X -< Y. Thus, using the notations mentioned above, we have 

X = Y(g)Z. 
B 

Certainly, |/ _ l (x)| < |x| for each x 6 X, therefore \\Z\\ < ||X|| = k and the equality 
holds if and only if |/ - 1 (x)| = |x| for every x, i.e. when each word of Y is a letter 
meaning that Y C A which is a contradiction. Thus we must have ||£|| < |JX|| = k. 
By induction hypothesis Y admits a finite decomposition and so does X . Theorem 
is proved. 

4 Theorem of Defect 
In this concluding section we establish for strict codes a result, which is an analog 
of Theorem of Defect in the theory of finitary codes [2]. Note that Theorem of 
Defect was also proved for infinitary codes [4]. 



On strict codes 33 

T h e o r e m 4 .1 For any language X of A°°, if X is not a strict code then X is 
written by a strict code of cardinality at most Card X — 1. 

Proof . : If Card X = oo nothing is to be done because X is always written by A 
or a subset of A and Card A — 1 < oo. So we can assume Card X < oo and the 
proof is done by induction on Card X. 

If Card X = 1 then A* is a singleton strict code. Now suppose that for every 
X of cardinality not exceeding n the assertion is true. Let now X be a language 
of cardinality n + 1 and X not be a strict code. We have then two different oo-
factorizations (ui, u 2 , . . . ) and («i, «2, . . . ) over X with ui ^ t»i of a word a G A°°. 
Further, we can suppose that |«i| > |ui|. Hence vi = ui/3 for some f} 6 A+co. 
Consider two cases: 

(i) If «i e then we have t>i = uju2 . . . , therefore /3 = U2U3 Consider 
the language X\ = X — «j.. If Uj occurs among U2, U3,..., say, uj = U* with k the 
smallest possible, k > 1; then we have 

hence ui = ( u i . . . tifc_i)w € 
If «1 it,- for » = 2 ,3 , . . . then «1 is obviuosly in So we have X C Xj° and 

Card X\ < Card X. If X± is not a strict code, then Dy the induction hypothesis, 
Xi is written by a strict code of cardinality < CardXi < CardJf. 

(ii) If ui e A*, then 0 eA+ and we put Xi = X - t>i U /3. Clearly, X C Xf° 
and ||Xi|| < ||X||. There are two possibilities 

(ii. 1) Replacing all the occurrences of ui by ui/? in the equation: 

U1U2... = V i « 2 . . . , (2) 

it becomes an identity. This means that f} = £ X — t>i and therefore CardXi < 
CardX — 1 = n. The assertion follows by induction hypothesis applied to X\. 

(ii.2) If (2) does not become an identity after the replacement (ii.l), then we 
repeat the argument with X\ until ii) or (ii.l) occurs. The process cannot go into 
infinity avoiding (i) or (ii.l) since ||A,-||,t = 1 ,2 , . . . decreases strictly each time the 
argument is repeated. Thus we should obtain a finite sequence X — XQ, XI,... X, 
with XI C Card XI+1 < Card X{ for t = 1 ,2 , . . . , s - 1 and X, C C, where 
C is some finite strict code with Card C < Card X,. So X C C°° and Card C < 
Card X — 1. The proof is complete. 

Coro l lary 4.2 Every two-element language is a strict code if and only if it is a 
code. 

Proof . : If X = {A, FT) is not a code then X is not a strict code. Conversely, if X is 
not a strict code then by Theorem 4.1 X C {7}00 for some 7 € A°°. Since A ^ 
must belong to A*. Hence X is not a code. 
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