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Special Families of Matrix Languages and
Decidable Problems

A. Mateescu *

Abstract

We investigate some variants of simple matrix grammars. It is proved
that the equivalence problem, the inclusion problem and other problems are
decidables for this families of grammars. It would be noted that all these
problems are undecidable for the family of simple matrix grammars.

1 Definitions and notations.

For an alphabet ¥ we denote by £* the free monoid generated by X under the
operation of concatenation, and A is the null element. The length of a string a € T*
is denoted by |a|. The set of natural numbers is denoted by N. f n € N,n > 1,
then [n] denotes the set {1,2,...n}. f n € Nyn > 1, and p : [n] — N isa
function, then o is a n-function and |p| = T2 ,0(s). If 6 = (p, ), where  and ¢
are n-functions, then 0] = |p| + |¢| and 8; = p(t) + ¥(i),: = 1,2,...,n.

In order to obtain certain subfamilies of matrix languages we consider a special
case of simple (linear, regular) matrix grammars, see (4] p. 68, definition 1.5.1.

Definition 1.1 Let n,k € N be such that 1 < k < n and let § = (o 9) be a
pair of n-functions. A (n,k,0)-linear matriz grammar (Img) is a matriz grammar
G = (V,L, S, P) of degree n, where V 1s the nonterminal alphabet, T is the terminal
alphabet, S 1s the start symbol (S € V UX) and P is a fintte set of matrices of the
Jollowing form:

i) (S— A142...4,), A€V, i=1,...,n
. 1? SAI — a!Blﬂlv---sAn — aanﬂn);Al'» B; € V,a;,8 € %, Iai' =
P(')). ﬂt’ =¢('): 1=1,...,n .
ii) (A — a1,...,4n — an), i €Vi=1,...,n,04 € %, 0< |ag] <
{0land a; =X fors # k,s=1,...,n.
A (n, k, 6)-linear matrix grammar is called (n, k, )-regular matriz grammar (rmg)
if (i) =0,i=1,...,n.
We define the direct derivation relation ? and the derivation relation =;> as

usually, see [3].
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The language generated is:
L(G)={uwjwe E‘,S——é>w}
Definition 1.2 The family of (n, k, 0)-linear matriz languages 1s:
LMp ko = {L|3G,(n,k,0) — lmg and L(G) = L}
and the family of (n,k,p)-regular matriz languages 1s:

RMpk,o = {L|3G,(n,k,p) —rmg and L(G)= L}

Remark 1.3 Let k be such that 1< k < n, let 6 = (p, ) be a pair of n-functions
and let ¥ be an alphabet. We consider the following two alphabets:

—{lalla€ =" and|a| = |f]} and ;= {|B]l6 € £ and |6] < |6]}.
For every w € L* there exists and are unique two numbers p,r € N such that
|w|=pl0|+r and 0<r<|d

It is easy to remark that there exists a unique decomposition of w:

W= ww.. . We—1UkfUkWet1. .. Wy
such that for any t = 1...,nt # klw| = p0,,|uk = pop( ﬂ slve] =
py(k), and |B] = r. Let wk be the word uxvx. Then, there are the words
(’),y(’) € %5 = 1,...,p such that |z(")| = (1), Iy‘(’)| ¥(3) and w; =

(1) (2) fp) (p) y(z)y(l) foralli=1,...,n. Let z( be the word zmy‘(’)
1 J =1,. p
Usmg the above notations we shall define the function

nk e .
fo .E —’2122

ok (w) = 2V 2V z(l)](zm 23 23] PR ).

Note that for any 0,n and k, 7, kisa bijective function. Let us consider an
example.
Example 1.4 We choose n = 3,k = = (p, where o, : [3] = N,p(1) =
,p(2) = 4,p(3) = 1 1/:( = 2,¢( = 1,¢(3) = 3 and let w be the word
@182...a30. Note that |9 | | = 12,|w| = 30 and ¢ erefore p=2andr =6. It re-
sults that:

= wjuzfuawy, where :
w; =a;...a6,u3 = G7. au,ﬂ = a15...020, V2 = G21822, W2 = G23...0a30-
Observe that.
z{ ) (2) (1)

= @185a¢,2; = = G2G3G4,23 ° = G7...810822,

(2) _ (1) _ (2) _
25 " =0611...-814G21,23 ° = G23G280G20430,23 = 024325326327.
From these remarks st follows that:

* (w) = [01 Ggd¢ary ... 410022023028429030"020304011 “es 014621024025026621]

[als oo azo].
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2 Special properties and closure properties

The next two propositions prove the importance of the functions 75 *,

Proposition 2.1 If G is a (n, k,8)-linear matriz grammar, then there is a regular
grammar G' such that: <

L(G") = 3" (L(G))-

Proof. Let G = (V, L, S, P) be a (n, k,§) —lmg and we define the regular Chomsky
grammar, G' = (Vy,Vr, S, P'), see also the notations of remark 1.3

Vn =V*U{S}, Vr=5,U%,
and the set of rules is:

P'= {§ — (A1, An)|(§ — Ay...A4,) € P}U
U {(Al,...,An) — [a1ﬁ1 ...anﬁ,,](Bl,...,Bn)]
(Al —r a1 BBy, An — anB,.ﬂ,,) € P} U
U {(A1,...,An) — [ak]|(A1 — a1,..., Ay — a,;) € P where
a; = A, forany i =1,.:.,n with ¢ # k}.

We can prove by induction on the length of the derivations, that:

A]_Ag eee An =;>u13101u23202 .o .unB,,v,.
if and only if:

(A1, A42,... 4,) %?T;'k (v1v1u2v3 ... unv,)(By, By, ..., By).

From the above equivalence and from the definition of r;’k it follows easily our
proposition.
Now, we turn to the converse of proposition 2.1.

Proposition 2.2 Let k be such that 1 < k < n and let 6 = (p, ) be a pair of
n-functions. If the language L,L C L1X,, 1s a regular language, then there i3 a
(n, k, 0)-linear matriz grammar, G, such that:

ok '
L(G) = ng"" (L),
where q;"k is the snverse function of T;'k (see also the remark 1.8).

Proof. Let G’ = (Vn,Z; UX3, S8, P') be a regular grammar such that L(G') =
L. Without loossing of generality, we can assume that the nonterminal rules of
P';A — aB, has the property that a € I; and also we can assume that-the
terminal rules of P/, A — a, has the property that o € X,.
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This assumption follows from the condition L C LiX;. We define the (n, k, 6)-
linear matrix grammar G,G = (V,E, S, P) where: V = Vy U {S}, with S a new
symbol and the rules:

P = {(§—8&"...5)}U{(A— a1Bfy,...,A — a,BB,)|

|A — [@1B1...anBn]|B € P, |ai| = p(3), |B:| = ¥(3),s = 1,...,n}U
U {(A—a;,....,A—a,)JA— P, fELa =],
+=1,...,n,¢ # kand a = f}

It follows easily that L(G) = nj"*(L).

Remark 2.8 The propositions 2.1 and 2.2 are also true if G is a (n, k, p) regular
matriz grammar.

Theorem 2.4 For every n,k € N, with 1 < k £ n and for every pair of n-
functions, 8 = (p, ), the family LM k0 is closed under union, intersection and
complement.

Proof. The closure under union is obvious. Therefore, it is enough to prove the
closure under complement. If L € LM, x,6, L C £*, then the language 7 'k(L) is

regular (Proposition 2.1). It follows that the language L; = E}E; — rj"*(L) is also
a regular language and L; C XiZ,. From the proposition 2.2 we deduce that the

language ny*(L,) is in LMy ,0. But, 7;°F is a bijective function and nj'* is the
inverse function of /"%, It is easily to observe that nj**(L;) = Z* — L = CL and
therefore CL € LMp k0. :
Corollary 2.5 For every n,k € N, with 1 < k < n and for every n-function o,
the family RMp k0 13 closed under union, intersection and complement.
3 Decidable problems
For a general discussion on decidable and undecidable problems in theory of matrix
languages see the monography [3].

In the sequel we establish some decidable properties of the families LM, x,0 and
RMn’k'p- '

Theorem 8.1 For every family LM, i o, the following problems are decidable:
(1) Equivalence (Ly = L,7)

(2) Inclusson (Ly C L3?)

(8) Empty intersection (Ly N Ly = ﬁ")

(4) Finite intersection (is Ly N Lg ;zﬁm'te set?)
(5) Empty complement (CL = 97) .

(6) Finite complement (is CL a finite set?)
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Proof.

(1) If Ly,L; € LMp k0, then the languages L} = ;""(L.-),i = 1,2 are regular
languages (see proposition 2.1.). But 75 ** is a bijective function and therefore
L, = L, if and only if L] = L),. The last equality is decidable.

2} analogously.

3 -£4). If Ly,Lz € LMp k9, then Ly N Ly € LMp ko (see theorem 2.4). But,
for the tamily of simple matrx languages the emptiness problem and the finiteness
problem are decidable problems (see [3]). _

(5)-(6) ¥ L € LMp k0, then CL € LM, k6 (see theorem 2.4) and the proof
follows like in the (3)-(4) cases.

Corollary 8.2 All problems from theorem $.1 are decidable for every famaily

nk,p -

Remark 8.8 All problems from the theorem 8.1 are undecidable for whole family
of simple linear (vegular) matriz languages (see [$]).

In what it follows we establish the relation between the families
LMuko, RMn i, and the Chomsky families of languages.

Obviously every family LMn ko is a proper subfamily of LM, the family of
all simple matrix languages. It 1s well-known that LM is a proper subfamily of
L, the family of dependent context languages (see [3], [4]). Therefore, for every
n,k,€ N,1 <k < n and for every pair f of n-functions is true that LM, ks g L.

Consequently, it follo\_ws that RMn %0 g L, for every n,k,€ N,1 < k <n and

every n-function, .

Theorem 8.4 (1) the regular family of languages, L3, 1s a proper subfamily of
every family RMp k.o (L3 © RMnk,0).
(41) Ls is a proper subfamily of every family LM x0.(Ls g LMn k)

Proof. Let L be a regular language, L € L£;3. There is a finite deterministic
automaton, A = (Q, X, 6, q1, F) such that L(A) = L.
- We shall describe only the main constructions. '
( (;) We define a (n, k, p)-regular matrix grammar, G = (V, L, S, P), such that
L(G)=L.
Let S be a new symbol and consider V = Q x Q U{S}. The set of rules, P, is:

(1) (§ — $91s‘I1)(Q2:Q2) ee(Gnrqn), @ € Q, t =1,...,n, where g; is the initial
state of A.

(2) ((plx 7'1) - al(plntl)s(p2’72) — 02( 2)t2)r"‘1 (puiru) —_— an(Pnstn)), for
every a; € L° such that o] = p(ti,b'(r,-,a.-) = t;, and p;,r;,t; € Q for
t1=1,...,n. ‘

(3) ((qh ¢12) — A) (Qm ¢I3) s AJ ceey (Qk; q;;) _’ ﬂ’ (qk+1) qk+2) I
A,...,(gn,p) — A), for every f € L* such that || < |o|,6(qk, 8) = qk+1,P €
Fandg€Q,i=1,...,n,q. €Q.

One can prove that L(G) = L. :

(iiz Analogously, we define a (n, k, §)-linear matrix grammar, G(V, £, S, P), such
that L(G) = L.
Let V be the set Q% U {S}, where S is a new symbol. The rules in P are:
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(1’) (S — (ql, 215314 3_1)(92, g2, 82, 32) X (Qn, Qn; Sn; sn)), for every ¢;,8; € Q,1 =
1,...,n (g1 is the initial state of A)

(2") ((gi,psy86,m3) — aifgi b, 8,%)6:),1 < 3
sach that |os| = w(d), |B:| = v{), 6 (ps, o)
Qs Pis 8y Ti ti, s €EQ,a=1,...,n.

< n for every a5, f; € T°
= tiis(ﬂ':ﬁi) = Uy, for every

(3) ((q1,p1,P1,71) — A (r1,pa,p2;ra) — Ao (re—1,Prstha ) —
ye o ,(r,,_l,p,.,pmr,,) = ,\,)), for every § € L° such that Bl <
Ialxs(Pkyﬂ)=tk;rnEFand @iy Pis Ts EQ,$=1,-..,n,tk€Q- ¢

It is not difficult to verify that L(G) = L.

Corollary 8.5 For every family LMnk,6(RMn,k,p) the equivalence problem be-
tween an arbitrary language from the family and an arbitrary regular language 1s
decidable.

Proof. The proof uses theorem 3.4 theorem 3.1 (1) and corollary 3.2 (1).

Remark 3.6 The above problem is also undecidable for the family of all linear
(regular) simple matriz languages (see [3], [4]).

For every n > 2, the family of context free languages, L2, is incomparable
with any family LM, k.0 or RMp k. This follows from the fact that the language
L = {a™b™|n > 1}* is a context free language but L is neither a simple regular
matrix language nor a simple linear matrix language (see [3]). '

1

4 Further questions

For every families LM,, x s or RM, x , one can prove specifically pumping lemmas
or other properties.

An interesting open problem arises from the following fact:

In the case n = 1 the family LM, 0 is the same with the family £; ,, see [1]
and [2]. It is known, [5] and [6], that if £;; and L, ;» are different families, then
Li; N Loy = Ls.

From this remark in [5] andJG] it was found an important decidable problem.

For n > 1 this problem: ”if the families LM, ko and LM, i o, are different
families, then LMps k.0 N LMp x,0,= L3” is an open problem. Analogously, this
problem is open for the families R M,, x .-
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