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- Boolean-type retractable automata with traps

A. Nagy®

Abstract

As in other branches of the algebra, it is a natural idea to find connections
between automata and their congruence lattices. For example, describe all
automata whose congruence lattices are Boolean algebras. Although this
problem will not be solved in this paper, we give a necessary condition for
automata to be automata whose congruence lattices are Boolean algebras.

The main object of this paper is to desacribe a special class of automata
with this (necessary) condition. More precisely, we describe all Boolean-type
retractable automata (Definition 4.) with traps.

By an automaton we shall mean a system A = (A4, X, §) consisting of a state
set A, an input set X and a transition function § : AX X — A (A #0,X #0).

Denote X* the free monoid.over X and e the empty word of X. The transition
function § can be extended to A X X* such that

_J a fp=e
6(a,p) —{ 5(6(a,q),z) ifp=gz (g€ X*,z€ X)

for all @ € A,p € X*. As known, an equivalence relation a on the state set
A is called a congruence on the automaton A = (4, X,_&g if (a,b) € a implies
(6(a,z),6(b,z)) € @ for all a,b € A and z € X. The set of all congurences of an
automaton A forms a lattice. . This lattice will be denoted by- L{A). The least
element and the greatest element of L{A) will be dénoted by ¢« and w, respectively.

If p is a congruence on an automaton A = (4, X, 8) and A/p denotes the set of
all p-classes [alp of A,a € A, then A/p = (A/p, X, 6,) i3 an automaton, where §, is
defined by letting 8,([a]p, z) = [6(a, z)]p, for all @ € A and z € X. The automaton
A/p is called the factor automaton A modulo p.

If R = (R, X, 6g) is a subautomaton of an automaton A = (4, X, §) (here 6z
is the restriction of 6 to R),then the subset R of A will be called a right ideal of A
(see [2]). It can be easily verified that, for every right ideal R of A,

’PR={(<_1,_b)EA>§A:a=,b' or a,beR} -

is a congruence on A. This congurence is called the Rees congurence determined by
R. The factor automaton A/ppg is called the Rees factor automaton of A modulo
pr (or modulo R). '

A mapping @ of the state set A of an automaton A = (4, X, ) into the state '
set B of an automaton B = (B, X, f) is called a homomrphism of A into B if
A(a(a,z)) = B(A(a), z) for all a € A and z € X. The congruence on A determined
by the homomorphism ) will be denoted by con A.
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Definition 1 A right ideal R of an automaton A = (A, X, §) will be called a retract
right ideal if there is a homomorphism A of A onto R which leaves the elements of
R fized. X will be called a retract homomorphism of A onto R.

Definition 2 We shall say that an automaton A s a retractable automaton sf
cvery right ideal of A 13 a retract right ideal.

Theorem 8 If A is an automaton such that L{A) is complemented [5], then A is
a retractable automaton.

Proof. Let R be a right ideal of an automaton A = (4, X,§). If £(A) is com-
plemented, then, for the Rees congurence pg, there is an element ng in £L(A) such
that pr Anr = and pr Vnr = w. Then A/ngr = (A/nr, X, 6nr) is isomorphic to
R = (R X,6r). - ,

Let A denote the canonical homomorphism of A onto A/ng, that is ng =
con Ag. Identifying A/nr with R it can be easily verfied that Az is a retract
homomorphism of A onto R.

Definition 4 An automaton A = (A, X, §) will be called a Boolean- type retractable
automaton if, for every right ideal R of A, there is a retract homomorphism Ar of
A onto R such that R C S implies con Ag C con Ag in L(A), for all right ideals
R and S of A. _

Theorem 6 If A is an automaton such that L(A) is ¢ Boolean algebra, then A is
a Boolean-type retractable automaton.

Proof. Let A = (4, X, §) be an automaton such that £(A) is a Boolean algebra.
As a Boolean algebra is a complemented lattice, it follows, by Theorem 3, that
A is a retractable automaton. Let R and S be arbitrary right ideals of A with
R C S. Then pg C ps, that is pp A ps = pr. From this equality it follows that
nrR V' ns = ngr, that is ng C nr which means that con As € con Ar. Thus A is a
Boolean-type retractable automaton.

Following [41.}, an element aq of the state set A is called a trap of the automaton
A = (A, X, ) if 6(ao, z) = aq, for all z € X.

Theorem 6 Every right ideal of a retractable automaton having traps contains a
trap.

Proof. Let R be aright ideal of a retractable automaton A = (4, X, §) with traps.
Let a¢ be an arbitrary trap of A and A a retract homomorphism of A onto R.
Then §(A ‘%),z)l= Ar(6(a0, z)) = AR(ao), for all z € X. So Ag(ac) is a trap of
A. As Ag(ao) € R, the theorem is proved.

Definition 7 An automaton will be called a one-trap-automaton (or an OT--
automaton) if st has ezactly one trap. If A = &4, X, 6) is an OT-automaton with
the trap ag, then it will be denoted by A = (A, X, §; ao) :

Theorem 8 Every Boolean-type retractable automaton with traps has a homomor-
- phic smage which 1s a Boolean-type retractable OT-automaton.
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Proof. Let A = (4, X,6) be a Boolean-type retractable automaton with traps.
Let R; denote the set of all traps of A. Then R, is a right ideal of A. It is evident
that the factor automaton A/pr, = (A/pr,, X, ) is an OT-autoamton. We
show that A/pp, is also a Boolean-type retractable automaton. Let a denote the
canonical homomorphism of A onto A/pg,. Let R be an arbitrary right ideal of
A/pr,. Then Ra~! = {a € A : afa) € R} is a right ideal of A. By Theorem
6, Ra ' N R; # B. So R contains the trap of A/pr,. As A is a Boolean-type
retractable automaton, there is a retract homomorphism Ag,-1 of A onto Ra™1.
We define a mapping Ag of A/pR, onto R as follows

Ar(a(a)) = a(Aga-1(a)),

for all a € A. We show that A is a homomorphism of A/pg, onto R. Let a €
A,z € X be arbitrary elements. Then

spns (AR(G(G)), z) = Am'n (2(Ara-1(a)), 2) = a(é(Apa-1(a), 2))

= &(Ara-1(5(a, z))) = Ar(a(5(a, 2))) = Ar(8,n, ((a), z)).

So Ag is a homomorhism of A/pg, onto R. It is evident that Ar leaves the el-
ements of R fixed. So Ag is a retract homomorphism of A/pr, onto R. Next
we show that R; C R; implies con Ag, € con Mg, in L(A/pg,), for every
right ideals R; and R; of A/pr,. Let R; and R, be right ideals of A/pp,
with Ry € R;. Then Rja~! € Rza™?! and con Ag,a-1 € con Ag,o-1. Let
a,b be arbitrary elements of A with (a(a),a(b)) € con Ag,, that is Ag, (a(a.B =
AR,(a(bl). Then a(AR,a—x a)) = /\R,a-l b)) and so )\R,a—x(a),AR,a—l( (S
Rg or R,a-x(a),AR:a—x(b ¢ Rg and ARza—l(a) = /\Rza—l b). Assumg
AR, a-1(a), AR;a-1(b) € Ry € Ria™! C Rya~'. Then § # [a] con AR, o-1NRy = [b] -
CON AR, o—1 ﬂIa. As [a] con AR, 4-1NR; € [a] con Ag, -1 NR; and [b] con Ag, ,-1N
R, C (b com Ag,a-1 N Ry, We get Ap, a-1(a) € Ky and Ag,4-1(b) € Ry Then
a(Ara-1(a)) = a(Ar,a-1(b)), that is Ag, (a(a)) = Ar, (x(b)). So (a(a ,a(gl)g €
con AR;- Assume AR,G—I a),AR,a—l(b) ¢ Rg,ARza—l a) = ARaa—l

(a,6) € con Ag,o-1 €& con Ag, 4-1, that 18 Ag ,-1(a) = Ag,,-1{b). So
a(dp, a-1 @) = a{Xg, a-1(b)) that is Ag, (a(a)) = A, (’ag ). Thus (c(a), a(b)Le
con Ag,. Consequently con Ag, C con Ag,. So A/pg, is a Boolean-type retractable
OT-automaton.

By Theorem 8, we can concetrate our attention to only Boolean-type retractable
OT-automata.

By (1], if a is a state of an automaton A = (4, X, 6), then the intersection of
all right 1deals of A contalning g is called the principal right ideals of A generated
by a. This right ideal will be denoted by R(a). It can be easily verfied that
R(a) = 6(a, X*) = {6(a,p) : p€ X*}.

The relation R on an automaton A = (4, X, §) defined as follows

R = {(a,b) € A x A: R(a) = R(b)}

is an equivalence relation on A. The R-class of A containing the elements a of A
will be denoted by R,. Let R(a) — R, be denoted by R|a].

Theorem 9 If a i3 an arbitrary element of an OT-automaton A, then R|a| 1s
esther empty (if a is the trap of A) or a right ideal of A (if a 1s not the trap of A).
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Proof. See, for example, [1]. :
Let A = (4, X, 5§) be an automaton. The factor automata R{a)/prjqe will

be called the principal r-factors of A and they will be denoted by R{a}. The
state set and the transition function of R{a} will be denoted by R{a} and 5]3.( a}?

respectively.

Let T be a set with a partially ordering < such that every two-element subset of
T has a lower bound in T and every non-empty subset of T" having an upper bound
in T contains a greates element. Then T is a semilattice under multiplication *.”
by letting a - b(a,b € T') be the (necessarily unique) greatest lower bound of a and
bin T. Following [6], a semilattice which can be constructed as above is called a
tree. It is easy to see that the ideals of a tree T are those non-empty subsets I of
T for which b € I and a < b together imply a € I for all a,b € T. If I is an ideal
of a tree T, then the mapping 7 of T' onto I letting w(;) be the greatest element
in the set (z € I:z < a} is a retract homomprhism of T' onto I (see [6]). So evry
ideal of a tree is a retract ideal [6]. .

Theorem 10 The set Prf(A) of all principal r-factors of a retractable OT-
automaton A = (A, X, §;a¢) 1s a tree with the least element R{aq} under ordering
< defined as follows: R{a} < R{b} if and only isf R(a) C R(}). :

Proof. Let A = (4, X, §;a0) be a retractable OT-automaton. It is evident that
< is a partially ordering on Prf(A). Let {R{a;} : § € J} be a non-empty subset
of Prf(A). Assume that R{a;} < R{a} for some a € A. We shall prove that
there is an element jo in J such that R{e;} < R{a;,} for all j € J. By the
assumption that R{a,;} < R{a} for all € J, we have R(a;) C R(a) for all 5 € J.
As A 1s a retractable automaton, there is a retract homomorphism A of A onto
B = (UR(a,), X,6). So A(a) € {UR(a;) : 7 € J} that is A(a) € R(a,,) for some
Jo € J. Thus R(A(a)) € R(ajz,). It can be easily verified that R(a;) € R(a) implies
R(XMaj)) € R(A(a)) for all j € J. So R(A(a)) = R(s,,) that is R{aj,} is the
greatest element of {R{a;}: j € J}. Let R{a} and R{b} be arbitrary elements
in Prf(A}l. Let K denote the set of all principal r-factors R{c} of A for which
R{c} <R{a} and R cI C R{b}. As ag i3 in every right ideal of A, it follows that
K is not empty. So a} and R{b} have a common lower bound. Consequently

the set of all principal r-factors of A forms a tree under ordering <. It is evident
that R{ao} is the least element of Prf(A).

Definition 11 We shall say that an OT-automaton A = (4, X, §;a0) s trapped sf
6(a,z) =ao foralla € A andz € X.

We note that a trivial automaton (when the state set has only one element) is
trapped.

Definition 12 An OT-automaton A = (A, X, 5; ag) will be called an r-simple OT-
automaton if st 13 not rapped and R = A or R = {ac}, for all right ideals R of
A. ' .

Theorem 18 Every principal r-factor of en OT-automaton is either r-simple or
trapped. ‘

Proof. Let a be an arbitrary element of an OT-automaton A = gﬁ X,6;a0). It
is easy to see that R{a} is an OT-automaton. If @ = ag, then (a} is trivial.
Assume a # ao. If §(b, z) € Ra] for all b € R, and z € X such that 6(b, z) & R[a],
then R{a} is r-simple. _
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Definition 14 An OT-automaton s called an v-semisimple OT-automaton if its
every principal r-factor ss esther trivial or r-simple. :

Next we characterize the r-semisimple OT-automata. Let Xt = X* — {¢},
where e is the empty word. .

Theorem 16 An OT-automaton A = SA, X, 8;a0) 18 r-semssimple if and only if
every right ideal R of A satisfies the followsng: A
z} for every a € R there are elements b € R and p € Xt such that a = 6(b, p).

Proof. Let A = (4, X, 6;a0) be an r-semisimple OT-automaton. Let R be a right
ideal of A. If a € R, then R(a) C R and R{a} is either trivial (if ¢ = ao) or
r-simple. We may assume a # ag. Then R{a} is r-simple. So there is an element
bin R(a) — R[a)], such that §(b, z‘i & R|a] for some z € X. So (R[a])u {6(b,p) : p €
X%} = R(a) which implies a = §(b, p) for some p € X*.

Conversely, assum that an OT-automaton A = (A4, X, §; ao) satifies (i). We
prove that A is r-semisimple. Let ¢ be an arbitrary element of A. We may assume
¢ # ag. Then R{c} is a non-trivial OT-automaton. We must show that R{c} is
not trapped. Let a be an arbitrary element of R(c) with a # ao. Then, applying
condition (i) for R = R(c), there are elements b in R(c) and p in X% such that
a = 6(b,p). So R{c} is not trapped. Consequently A is r—semisimple.

We remark that condition (i) can be exchanged by condition
(it) for every a € R there are elements b € R and z € X such that a = §(b, z).

Definition 18 Let A = (A, X,04) be a subautomaton of an automaton B =
(B, X,68). We shall say that B is a dilation of A if there is a mapping ¢ of B
onto A which leaves the elements of A fized and 6(b,z) = 64(p(b), z) for allb € B
and z € X.

Theorem 17 An automaton is a Boolean-type retractable OT-automaton if and
only if it i3 a dilation of an r-semisimple Boolean-type retractable OT-automaton.

Proof. Assume that B = (B, X,n;a0) is a Boolean-type retractable OT-
automaton. Let A = (B, X) = {n(b,z) : b € B,z € X} and § be the restriction of
n to A. As B is a Boolean-type retractable automaton and A is a right ideal of B,
there is a retract homomorphism ¢ of B onto A. Let B, = {6 € B— A : p(b) =
a},a € A. If b € B,, then A 3 5(b,z) = p(n(b, z)) = 6(p(b), ). This implies that
B is a dilation of A. :

It is evident that A is an r-semisimple OT-automaton (the r-semisimplicity
follows from Theorem 15). »

We show that A is a Boolean-type retractable automaton. Let R be an arbi-
trary right ideal of A. Then R is also a right ideal of B. So there is a retract
homomorhism of B onto R. The restriction of ¢ to A is a retract homomorphism
of A onto R. As B is a Boolean-type retractable automaton, it follows that A is a
Boolean-type retractable one. Thus the first part of the theorem is proved.

~ Conversely, assume that an automaton B = (B, X,n) is a dilation of an r-
semisimple Boolean-type retractable OT-automaton A = (4, X, §; ag). Then there
is a mapping ¢ of B into A which leaves the elements of. A fixed and (b, z) =
6(p(b), %) for allb € B and z € X. '

It can be easily verfied that B is an OT-automaton with the trap a.

We prove that B is a Boolean-type retractable automaton. Let I be a right ideal
of B. Then R = I'N A is not empty and a right ideal of A. As A is a Boolean-type
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retractable automaton, there is a retract homomorphism Ag of A onto R. Let Af
be defined on B as follows

b ifbel
A'(b)={ An(p(t) b1

It is evident that A leaves the elements of I fixed and the restriction of A; to A
equals Ap. We show that A; is a homomorphism of Bonto I. Let b€ Band z € X
be a.rbxtr;ry elen(le(l;ts ))If b € A, then n(/\;(b) z) = n(Ar(b),z) = §(Ar(b),z) =
Ar(6(b,z)) = Ar(6

([f( } ~ A) NI, then n(A[(b),z) = n(b, :? = AIS n(b, z)), because nSb ,2) €
I. Ifb E — A) — I, then (AI(b),z) = n(Ar(e(b)), ::) = §(Ar(w(b)),2) =
ARgr(¢(b).z)) = Ar6(p(b), 2)) = Ar(nlb.z

hus A7 13 a retract homomorphism of ‘onto L.

Assume that I and J are right ideals of B with 7 C J. Let R, = INn A
and R = JN A. Then R; C R; and so con Agr, C con Ag,. We show that
con Ay C con A;. Assume (a,b) € con Ajja,b € ’B. Then /\_,(a) = As(3). If
a,b € J, then, by the definition of A;, we have ¢ = b. In this case (a,0) €
con A;. fa€Jandb ¢ J, then a = Ay )—A;(b)—/\R(qpb) € A. So
e € ANJ = R; from which we get a = Ag,(a). Thus Ag. (a) = ) and so
AR, (a) = Ar,(©(b)) = A1(b). If a € I, then /\R (a) = Asr(a). Ifa I then, using
a —(go) (a), we get lRl(a) Rl(go(a)) = Ar(a). So Affa) = A;f) In the case
agd, the proof is similar.

Ifa,b & J, then Aj(a) = A (b) implies Ag, (so(a)g = AR (¢(b)). Then, by
coxg é\}}, C con Ag,, we get Ar, (p(a)) = Agr,(©(8)). So /\I(a = Ar(b), because
a

Thus con Ay € con Ay has been proved. Consequently B is a Boolean-type
retractable OT-automaton. Thus the theorem is proved.

Let A = (A, X, 6;a0) be an OT-automaton. Consider the set

[ A-{a)} if|4]>1
"°‘{{ao} " i A= (a0}

and define the transition function §9: A° x X — AC as follows

69(a,z) = 6(a,z) if a,6(a, z) € A°
"7 not defined if a & A° or §(a, z) ¢ A°.

(A°, X, 6%) is a partial automaton which will be denoted by A°.

We note that if A is a trivial automaton then A° equals A.

A mapping o of A9 into A will be called a partial homomorphism of a partial
automaton A9 = (A}, X, 6?) into a partial automaton A = (A9, X, 62) if 6, (a, z) €
AY implies 62(40(:1), z) € A9 and 8(p(a), z) = ©(61(a, z)) for alla € A and z € X.

Consider the following construction.

Let T be a tree with a least element v. For every a € T—{v}, let A, =
(Aa, X,84;84) be an r-simple OT-automaton and let A, = ({ao}, X, 6,) be a
trivial automaton.

Assume A, NAg =0 if a # 8.

For all a, f € T with a > p, let fa5 be a partial homomorphism of AJ, into AJ
such that
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(i) paa = idAY (the identical mapping of A%),
(ii) Pﬁ,’y(ﬂoa,ﬁ(a)) = Pan(a), for all ae Ag and o ?— ﬂ 2 Ty (alﬂ)'y € T)' .
For every a € A9 and z € X, let @]a, z] denote the greatest element of the set
{BET:65(pas(a) z) € Ag}-
Assume that
(iii) for every a > £ and b € A} there are elements a € A],
p=121%2...2, € Xt (23,23,...2, € X) and
ag,@1,...,0n €T suchthat a=apg> a; >...2 a, = f and
@ola, z,] = ay,
@1 [bay (‘Pa.a; (a); 1:1), 22] = a2

a"[&a;(pa,a; (a), z1z2.. -zi), -‘L'i+1] = Qi+l

a.n-llsa.._l ((Pa,a,_; (a), Z1Z2... zn—l); zn] = Qn,

b (Pa,a, (), Z122...2,) = b.
Let A= {UAS :a € T}.

Define a transition function § : A X X — X as follows. If a € A2 and z € X,
then let 6(0 z) S_[a z] (Pa ,&a,z] (a')) I)

It can be easily verified that A = (A, X, §;ao) is an automaton which will be
denoted by [Aq, X, 6a;0a,8, T, ao).

Next, we describe the r-semisimple Boolean-type retractable OT-automata.

Theorem 18 An automaton 1s an r-semisimple Boolean-type retractable OT-
automaton if and only if it 1s 1somorphic with an automaton [Aq, X, 84; Pa,p, Ty a0]
constructed as above.

Proof. In the first part of the proof, we show that A = [Aq4, X, 84; Pa,8, T a0 is
an r-semisimple Boolean-type retractable OT-automaton It is evident that A is
OT-automaton.

We show that A is retractable. Let I be a right ideal of A. By the assumption
that A,,a € T — {v} are r-simple and A, is a trivial automaton, it follows that I
is of the form {UA? : a € T'} where T' is a non-empty subset of 7. We show that
I is an ideal of T. Let a # v be an arbitrary element of I'. We show that f < a
implies f €T for all 8 € T. Let § € T and b € A} be arbitrary elements such that

B < a. By (iii), there are elements a in A%,p = z123...2, in X+ and a3, @3,...an
inTwitha>a; >...2 a, =8 such that

§(a,z1) € AY

6(a, z1z2) = 8(6(a,z1),22) € Ag,

6(a,2173...2a) = b= 6(8(...8(5(a,21),22)...),2a) € A},
As a € A% and AY C I, we have 6(a,z12;2...2,) € I. So Aoﬁ NI # @ which
implies AQ C I, that is § € I'. Thus I is an ideal of T.

Let n denote the retract homomorphism of T onto I'. We define a retract’
homomorphism A; of A onto I as follows. For an arbitrary element a in A, let

Ar (a) = Pa.n(a)(a): a6 € Ag- (1)
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By (i) and the fact that = is a retract homomorphism of T onto I', we can see
that A; leaves the elements of I fixed. We prove that ); is a homomorphism. Let

a € A and z € X be arbitrary elements. We may assume a # ag. Let a € A%, # v.
Then

A1(6(a, 7)) = Mr(Bstans)(Paztas) (0), 2)) =
= @&la,z|,n(ala,z]) (6E|a,=] (Soa,a‘[a,z] (a)) I)) =
= Ox(ala,x]) (Soa,fr(E[a,z]) (a)) z) € A?r(E[a.,z]) ) (2)

 using (if) and the fact that zja,z| Pa,a(as] (8), 2) € AGyq s a0d 80 Pafa,z].n(alaz])
maps F&[a, I](Pa,E[a.z] (a)) 2) into A?r(?[a,:])'
On the other hand, using (i),

é(Ar(a),2) = 6(‘Pa.w(a)(a)s z) =

= 5@l ety (0, Pr(@). 7T sty ), (P (2 (8)): 2)

= "(a)lpa,r(a) (a)’zl (pa’;-(-a_)lpa.r(a) (ﬁ)ﬁ‘] (G), Z) € (3)

V]
€ Amlpa.r(a) (a),z] )

To prove that A;(6(a,z)) = §(A1(a), z), we show that (2) and (3) are equal to
each other. .

First consider the case when @fa,z] > m(a). Then o > @a,z] 2 n(a), and
so 7(ala,z]) = n(a). Thus (2) is equal to &x(s)(a,n(a)(a),z) Which is in Ag(a).
This also implies that n(a)[@a,x(a)(a),z] = m(a), because @4 x(a)(a) € A?r(a)
and &p(a)(Pa,n(a)(a), z) is not equal to the trap of Ay(a). Thus (3) is equal to
bn(a)(Pa,n(a)(a), z) which means that (2) and (3) are equal to each other.

Consider the case @a, z] < 7(a). As T is an ideal of T and n(a) € ', we have
ala,z] € T. So n(@[a, z]j = @la,z|. Thus (2) is equal 854 2| (fa,51a,2)(3), Z). As
Pr(a),ala,z} (Soa,tr(a) (a)) = Paqla,z] (a) (see (ii))’ we have

53[0,:] (‘p;t(a).E[a.z] (‘Pa,n(a) (a'))) z) = SE[a,z] (ﬂoa,Ti[a,z] (a); z) € A?—x‘]a'z] .

So 7(a)|@a,x(a)(a), 2] > &a,z].

Let f be an arbitrary element of T with ﬂ(a) > B > @aa,z]. Then
b5 (Pn(a),8(Pa,x(a)(a)),2) = bp(pap(a),z). As > ala,z], we get that
6g(Pa,p(a), z) is the trap of Ag.

We note that this also implies that &;(4)(¥a,x(a)(a),2) is the trap of

. An(a), because &p(q)(Pa,n(a)(a),2) € A?,(a) would imply that &a(@n(a)s
(wa.n(a)(a))’z) = Px(a),8 (sfr(u)(pa,n(a)(a))z) € Ag» contradicting that an au-
tomata 8p(pa,8(a),2) = 64(Pr(a).8(Pa,x(a)(8)), z) is the trap of As. Conse-
quently #(a)|@q,n(a)(a),z] < @la,z]. This and 7(a)(pa,n(a)(a), 2] = @la,z],
proved above, together imply that w(a)[©q,x(a)(a), 2] = @[a,z]. So (3) is equal
t0 85a,z] (Pa,51a,s] (@), ) which equals (2). Consequenlty A; is a homomorphism of
A onto L. ' _
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To show that A is a Boolean-type retractable automaton, we prove that I C
J implies con Ay C con Ar for all right ideals I and J of A where A; and A,
constructed as in (1). Let I C J be right ideals of A. Then I = {UA? : a € I'}}
and J = {UAg : B € Ty}, 1 and T'; are ideals of T. Let #; and s be the
retract homomorphism of T onto I and J, respectively. Let A; and A; denote the
retract homomorphism of A onto A/p; and A/py, respectivel. We must show that
con Ay € con Ay (that is Ay(a) = A;(b) implies Ar(a) = A;(b) for all a,b € A).
Let a and b be arbitrary elements in A witha € A% and b € Aop, for some a,f € T.
If Ay(a) = A;(b), then, by (1), Pa,ms () (a) = {03’,,](5)(17). So wy(a) = ns(B). As
I C J, we get wr(a) = =7(B). As 7;(a) > w1(a) and w;(B8) > =;(B), we have
Pa,nr(a) (a) = Prs(a)mi(a) (Soa,w(a)(a)) = ‘om(ﬁ).m(ﬁ)(“’ﬁ,m(ﬁ)(b)) = 993',,,(5)(5),
that is A[(a) = A]Eb).

Consequently con Ay C con A;. Thus A is a Boolean-type retractable automa-
ton. .
We show that A is r-semisimple. Let I be a right ideal of A. Then I ="{UAY :
a € '} where T is an ideal of T. If I = {ao}, then let A;(a) = ao for all a € A.
It is evident that A; is a homomorphism of A onto 1. Assume I # {ap}. Let a be

an arbitrary element of I. Then a € A9 for some o € I'. We show that there are
‘elements b in I and p in X such that a = §(b,p). We may assume a # ag. Let
b be an arbitrary element in A%. As A, is r-simple, R(}) (in A,) equals A,. So
a = b4(b, p) for some p € X*. If |A%| > 1 then b can be choosen such that b # a. In
this case p € X*+. If A = {a} then, by the r-simplicity of A, there is an element
g in Xt with a = §,(a,g) (in the other case A, must be trapped). Consequently

a = 5(b, p) for some b € I and p € X*. Thus A is an r-semisimple automaton.

To prove the converse, let A = (A4, X, 6,a0) be an r-semsimple Boolean-type
retractable OT-automaton. Then there is a family @ of retract homomorphisms g
of A onto R, R are right ideals of A, such that R; C R; implies con Ag, C con Ag,
for all right ideal Ry, R; of A. It is evident that A = Useq Ro(= Usea R°{a}).

By Theorem 10, the set Prf(A) of all principal r-factors of A is a tree under
ordering < defined as follows: R{a} < R{b} if and only if R(a) C R(b). The least
element of Prfgk) is R{ao}, which is a trivial automaton. As A is r-semisimple,
the automata R{a},a € A are r-simple OT-automata and |[R{a}| = 1 if and onl
if @ = ag. It is evident that R{a} NR{b} = 0 if R{a} # {bk Let R{a},R{b
be arbitrary elements of Prf(A) with R{a} > R{b} (that is R(a) 2 R(3)). Let
PR(a),R(b) denote the restriction of the retract homomorphism pg () € ® to R(a).

We show that @g(a),r(s) maps R, into Ry. Let z be an arbitrary element of R,.
If b = ag, then pr(q),r(s)(2) = ao € Ry. We show that ppr(q),r(s)(z) € R also
holds for all b # ag. Assume, in an indirect way, that ¥R(a), R(,,)(z) ¢ Ry for some
z € Ry, b # ao. As R[b] is a right ideal of A, we get Ry & 8§(vr(a),r(v)(2), 2) =
©R(a),R(b)(6(2, z)) for all z € X. As §(z, X) = R(a), we get

¥r(a),r(v) (R(a)) S R[b]. (4)

As pp(s) maps A onto R(b) and leaves the elements of R(b) fixed, we get that
¥R(a),R(s) maps R(a) onto R(b) and leaves the elements of R(b) fixed. Consequently

PR(a),R(b) (R(a)) = R(b)x

contradicting (4). So Yr(a),r(b)(Ra) € Rs. Thus ppr(a),r(s) determines a par-
tial homomorphism g (.1 R (s of the partial automaton R%{a} into the partial
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automaton R%{b} as follows:

PR(a).R{s) * € B {8} — ©r(a),r(t)(2)-

We show that the family ®* of all partial homomorphisms PR{a}.R {5} (R{a},
R{b} € Prf (A)) satisfies conditions (i}, (ii) and (iii).
It is evident that pR .y R(5) = 1dRo(q) (see (i)).
To show (i), let R{a} > R{b} > R{c} be arbitrary elements of Prf{A). Let ¢
be an arbitrary element of ' R,. As ©R(a)) PR(b): PR(c) € P, We have con pp(q) C
con pr(s) € con Pr(c), that is pr(c)(vr(b)(¢)) = Pr(c)(e). From this equality we
get

©r(5),R(c) (Pr(a),R(5) (¢)) = PR(a},R(c) (€)-

So the elements of ®* satisfy condition (1}12

To prove condition (iii), let R{a} > R{b}. Let f € Ry. As R(a) = {5(a,p) :
p € X*}, there is an element p in X* such that f = §(a,p). If p = z12,...2,,
then there are elements ay,as3,...,4, = b in A such that

Ea, z1) € Rq,

éla, z; 22 E Ra,

S(a,, Z1%2...%,) € Rp.

The proof will be complete if we show that § (a,2) = R s ((pR (). B{a [arc]

(a),z),a € R, where R{a}[a,z] is the greatest element of the set {R{b} €
Prf(A): SR (s} (WR{Q) R la)z) € RO{}}. Let @ € R, and z € X be arbitrary el-
ements. Then there is an element b in A such that R{b} < R§a} and §(a, z E Ry.
If c is an element of A such that R{c} < R{b}, we have («pR(a) R(c) a
8(or).r(c)(PR(a).R(3)(9)): T) = ©r(b),R(05(PR(a),r(1)(a):2) € R, because
PR(b),R(c) Maps Ry into R..

If ¢ is an element of A such that R} c} > R{b}, that is R(cg D> R(b), then
§(a,z) € R and so §(a,z) = Pr(a),R(c)®(,%) = Pr(a),R(c)(8),Z) & Rc. Conse-
quently §(pr(a),r(c)(a); ) & R, for all R{c} > R{b} and §(pr(a),r(9)(a);Z) €
Ry for all R{d} < R{(% Thus R{b} = R{a}[a,)) and so 6(a,z) =
mla-xl ((pR(a},R(a}[ z) for all a € R; and z € X. Then (iii) is satis-

fied and A =[R{a}, X, 5R{a)’5°R(a),R(b}’ Prf(A), ao].
Thus the theorem is proved.

Example 1 Let A = (A, X,§) be an automaton such that

A= {ag,01,02,083,84}, X = {z,y}
and

é l ag dx a2 .03 aq
G 4o ap Gy Qo
Yy|66 a2 a1 a4 ag
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The right ideals of A are Iy = {ao}, I = {ao,al,ag}, I = {00,63,04} and -
I3 = A.
Consider the following mappings:

Ao:A — {ap} suchthat Xo(a)=ap forall a € A4,
AM:A — I, suchthat A (a)=a forall a€l; and
. A1(as) = a1, A1 (aq) = a2,
Ay:A — I, suchthat )Az(a)=a forall a€ I, and
Az(a1) = as, Az{az) = a4,
A3:A — A suchthat )A3(a) =a forall a € A.
It can be easily verfied that J); is a retract homomorphism of A onto L,t =
0,1,2,3, and that A is an r-semisimple Boolean-type retractable OT-automaton

(with the trap a(,).
Consider the following automata

Ao = ({ac}, X,8), A1=({a0,61,02},X,61), Az=({a0,as3,a:},X,8),

where

bo | ao 61 a0 a1 ay 62 | ap a3 a4
z Qo z ao ao ap z ap ao ap
Yy | a Yy [a a1 ag Yy |a a2 as

Ay is a trivial automaton, A; and A, are r-simple OT-automata. Let T = {0, 1,2},

a subset of the set of the non-negative integers with the usual ordering. T is a tree.
Let

pi; be the identical mapping of A?,1 =0,1,2,
‘p1,0 : AY — {ao} such that p; o{a) = ag for alla € A9,
p2.0 : A — {ao} such that g o(a) = ao for alla € AY,

P21 Ag — A(1) such that o, 1 (a3) = a1, p2,1(a4) = az.

It can be verified that ¢; 5,2, € T with § > 7, satisfy conditions (i) (ii) and
(1i1). Moreover

A ;[Ai: Xa 61‘;.¢l',js T: a()]'
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