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Weak dependecnies in the relational datamodel

V.D. Thi* N. K. Anh f

1 Introduction

One of the main concepts in relational database theory is the full family of functional
dependencies, that was first axiomatized by W. W. Armstrong Ll] The full family of
dual, strong and weak dependencies have also been introduced and axiomatized in

[2,3,4]. The logical structures of them have also been investigated inJ5,6,7,8,9,10].
In this paper, we give some results, that are related to weak dependencies.

We give a necessary and sufficient condition for W;{ =Y, and then we construct
an effective combinatorial algorithm to detemine irredundant relation R’ for an

arbitrary given relation R such that R’ C R,W/, = WZ. Connections between
dependencies are investigated also.

2 Definitions and axioms
Definition 2.1 Let Q0 be a finite set of attributes, and R = {h,,...,h,,} be a
relation over 2, A, B C ). Then we say that B weakly depends A in R (denote
A=B)if '
R
(Yhi,h; € R) ((Va€ A) (hi(a) =h;(a)) — (Ib€ B) hi(b) = hy(b)))
B functionally depends A in R (denote A %v B) if
(Vhi,h; € R) ((Ya€ A) (hi(a) = h;(a)) — (Vb€ B) (hi(b) = h;(b)))
B dually depends A in R (denote A—:j»B) if
(Vhi,h; € R) ((3a € 4) (hi(a) = h;(a)) — (3b€ B) hs(b) = h;(b))).
Let W = {(4,B): A,B # 8 and A%B} and X = O\ X for any X c P(f2).

Fgp= {(A,B):A%»B} a.ndDR={A,B);A_;,B}.
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Definition 2.2 Let Q be a finite set, and denote P(f1) sts power set, P+ (Q1) =
P)\{0}. Let Y C P*(Q) x P*(0). Then we say that Y satisfies the wt-
azioms, if for all A,B,C,D € P*(Q)

(wi) (A,B)eY, ACC,BCD—(C,D)eY;

(wf) A,Be P¥Q),(vX € P*(Q)) (ACXCB— (X,X)eY)) —
(4,B) €Y. :

Let Y C P‘sﬂ) X P(Q1). We say that Y satisfies the A-axiom if for all 4 C Q,
there is an E(A) such that

fi) AC E(4), and VB € B(4) — (4, B) € V;

f2) (C, D) € ¥,C C E(4) — D C E(4).
Y satisfies the B-axiom if for all B C fl, there is an E(B) such that

d;) B C E(B), and VA C E(B) — (4, B) € Y;

da) (C, D) € Y,C € E(B) — D ¢ E(B).

Definition 2.8 Let Y C P+(1) x P*(Q). We say thatY s an w' -family over Q1
if Y satisfies the wt -azioms.

Let Y C P(1) x P(0). We say that Y is an f — (d—)family over {1if Y satisfies
the A — (B—)axiom.

Theorem 2.4 [$§]. Let Y C P*(Q1) x P*(Q). If R is a relation over 0, then W7
satisfies the w*-azioms. Conversely, sf Y satisfies the w* -azioms, then there s a
relation R over () such thatY = W;{.

3 The family of weak dependencies.

Definition 8.1 Let Y be an wt-family, and R be a relation over 0. Then we say
that R represents Y sff W,'{ =Y.

Definition 8.2 Let Y be an w*-family, over 1, and X € P*(Ql). We say that
(X, X) 1s an Q-dependency of Y if (X, X) €Y.

Denote by M(Y') the set of all 1-dependencies of Y. We say that X is an f1-left
side of Y if (X,X) € M(Y), and X is an QJ-right side of Y if (X,X) € M(Y).

Denote GF?") the set of all {l-left sides of Y, and GD(Y) the set of all 1-right
sides of Y. It is obvious that GF(Y) and GD(Y) does not contain @, Q2.

Theorem 8.8 Let G C P*(01)\{N}. ‘There exist ezactly one wt-family Y so that
GF(Y) = G, where

Y = {(4,B) € P*(Q) x P*(Q) : (¥X € P*(l)) (ACXCB— X €Q))
Proof. In order to prove the theorem, we need the following lemma.

Lemma 8.4 Let Y be an w*-family over ). Then (A,B) € Y iff (VX €
P*(Q1)) (ACXCB— (X,X)e M(Y)).
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Proof. If (A, B) € P*(1) x P*(N) satisfies
(VX e P* (1)) (ACXCB—(X,X)e M(Y)),
then (A, B) € Y by (w]). Conversely, if (4, B) €Y, then
(VXe Pt(l)) (ACXCB—ACX,BCX — (X, X e€M(Y)by (uw])).
The lemma is proved.

o

We have to show that Y is an wt-family. By the definition of Y, it is obvi-
ous that Y satisfies (w]), where M(Y) = {(X,X) € Y} = {X,X) : X € G},
and GF(Y) = G. We have to prove that Y satisfies (w{). For all A,B,C,D €
P*(0),(A,B)eY,ACC,BC D,(VXePtl)) (CCXCD—ACCC
XCDCB— XeGby (A B)eY)) — (C,D)eY.

Now, we suppose that there is an w*-family Y’ so that GF(Y') = G, then
M(Y') = {{X,X): X € G} = M(Y). Hence Y’ =Y by lemma 3.4. The proof is
complete.

O

Corollary 8.5 Let G C P*(0) \ {1}. There ezist ezactly one w*-family Y s0
that GD(Y) = G, where

Y ={(4,B)ePT(Q)x P*(): (VX e PT(N)) (ACXCB—XeqG)}
Deﬁnition 3.6 [4]. Let R = {hy,...,hy} be a relation over 1. Let
E;;={a€Q:hi(a) =h(a),1<i<j<m}.

We call E; ; the equality set of R. Denote by Eg the family of all equality sets
of R. Practically, it is possible that 8 € ER, and there are some E; ;, which are
equal to each other. According to the definition of relation, we have d & Ep. Let

Mrp = {Ei;#9:if E,  E,; € Mg, then E, ; # E, ;}
= {A1,...,Ax: A; # A fori # jand A; # # fori = 1,k}.

It is obvious that k is the number of elements of Mz, and all ﬂe_menté of My
are not equal to each other. It is obvious that A; & {8,Q} for: =1, k.

Theorem 3.7 Let Y be a wt-family, and R be a relation over 0. Then R repre-
sents Y if and only if GF(Y) = PT (1) \ (Mr U {Q}). ’

Proof. By theorem 3.3, it is easy to see that R represents Y iff GF(W) = GF(Y).
Consequently, we only must prove that GF(W;) = P*(0) \ (Mg U {Q}).

It is obvious that GF (W) does not contain 8 and 1. If X € P+(Q)\(Mpu{0Q1}),
then X ¢ {0,0) and X # E;; for 1 <1 < 7 < m. We have (Vh;,h; € R) ((Va€
{) (h,(a) = h,~(a)) — X C E",,',X # E."j and E.",' #9 by X # ¢ — (Bb €
X) (hi(8) = hy(B).

_ Hence (X,X) € W holds and we obtain P*(0)\ (Mg U {0}) C GF(W}).
Conversely, if X € GF(W3), then X ¢ {6,0Q} and (X, X) e W}.
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X (hi,hj €R) ((3a € X) (hia) # hy(a)), then X # Ei 5 # 0. If (hi,hj €
B) g 2 el L T2 Pe ST LG b O then X # B
GF(Wg) c P*(Q)\ (Mru{0}).

The theorem is proved.

Definition 3.8 [10]. Let R ={hy,...,hm} be a relation over Q). Let
N;;={a€Q:hia) # hj(a),1<s<3<m}.

We call N; ; the non-equality set of R. Denote by N the family of all non-
equality sets of . Practically, it is possible that f € Ng, and there are some N; ;,

which are equal to each other. According to the definition of relation, we have
@ ¢ Ng. Let

Sp = {Ni;:if Nyg,N,¢ €Sg, then N, ; # N, s}
= {By,...,Bx: B; # Bj fori # j}.

It is obvious that k is the number of elements of Sg, and all elements of Sg are
not equal to each other. It is obvious that B; # {0} fors = 1,k.

Corollary 8.9 Let Y be an w+-famil¥, and R be a relation over (1. Then R
represents Y if and only if GD(Y) = P*(Q) \ (Sr U {01}).

The next proposition shows that from given any w*-family Y, we can construct
one simple non-empty relation R such that W7 =Y.

Proposition 8.10 Let Y be an wt-family over Q,GF(Y) be a set of all N-left
sides of Y, and let M = P*(Q)\ (GF(Y) U {Q}).

If |[M} = 0 then R is relation for any one-element. If |[M| > 1 then we assume
that M = {A;,...,Ax}, we set R={hy,ha,..., hox_1,h2x} as follows:

fori=1,...k:Va€ hg_1{(a)=21—-1

has(a) ={ -1 ifa€A;

21 otherwise

Then R represents Y,

Proof. If |M| = 0 then GF(Y) = P*(Q)\{Q}. So (X, X) €Y forall X € P*(1)\
{Q} and we have Y = P*(Q1) x P*(Q) by (w]). Thus W =Y stands for any one-
element relation and R # §. If |M| > 1 then it is obvious that R # @ holds. Clearly,
Er = MU {®}. Hence M = Mp holds and we have GF(Y) = P*(Q)\ (MrU{0}).
By Theorem 3.7 we obtain W7 = Y. The proposition is proved.

a

We say that R is w-irredundant relation if R' ¢ R imply W7 # W7 . We give

an effective algorithm, which determines for a given arbitrary relation }g a relation
R’ such that R’ C R,W#, = Wi and R’ is irredundant.
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Algorithm 8.11 Let R = {h1,...,hm} be a relation over 1.

Step 1. From given relation R we construct Egr = {E;; is an equahty set of
R1<i<j<m}.
Step 2. From Eg we construct MR ={E;; # ﬂ if By q,E,: € Mg, then

# E,+}. Assume that Mp = {A,,..., A}
‘N construct sets of index pairs, as follows Let

L= {("’J) 1 Ei = Al}s- vy Iy = {("J) : Ei,j = Ak}°

Denote by.‘l,- the number of elements of I;, wheres = 1,...,k.

Denote I}(p) and IZ(p) the first and second indicies of p-th pair in I, where
g=1,...,kand 1< p <l,. After that we perform the program JRREDUNDANT.
Then R' = {h; : 1 € C} is an w'*'-irredunda.nt relation such that R’ C R and
Wi =wg.

Proof. It is obvious that R’ C R. Accordmg to the construction of the algorithm,
it can be seen that after we perform the program, I # @ holdsfort=1,...,k. On
the other hand, by theorem 3.7 we have WR, = WR By procedure delete (s, 9),

program deletes all redundant rows of R. Thus, R’ is an w*-irredundant relation.
The proof is complete.

Ep’

O
We have I1[1: 4},..., B[l : k.
Program IRREDUNDANT;
begin
C:=0;
for g:=1to k do
for p:=1tol; do
for s:=1to 2 do
if I} (p) ¢ C then
begin
t:=gq;
while t < k do
begm
ri=1;
while (I} (r) = I3(p) or 2(r) = I}(p)) and r < ; do

ri=r+1
ifr=l.+_1then
begin C := CUIL}(p);t:=k+2
end
elset:=t+1;

end;
ift=k+1then
fort:=q to k do
“forr:=1tol do
begin
if IZ(r) = I!(p) then begin
delete (I} (r), I3(p));
Le=L-1
end;
if I}(r) = I{(p) then begin
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delete (I3(p), 17 (r));
hi=L~1
end;
end;
end;
end;

Remark 8.12 It can be seen that each Step of algorithm 8.11 requires time poly-
nomial in the number of rows and columns of R. Consequently, the time complexity
of Algorithm $.11 is polynomial in |R| and |Q)|, where by |R| and |Q] the number of
elements of R and {1.

It is easy to see that R', which is constructed in Algorithm 3.11 is an w™-
irredundant relation, and has maximal cardinality.

It can be seen that if R is any wt-irredundant relation, and R represents Y,
then 1/2]M] < |R| < 2| M|, where M = P*(Q) \ (GF(Y)u {Q}) #§, and |R| =1

when M = §.

4 Connections between dependencies.

Claim 4.1 [8]. Let R be a relation over Q1 and let A, B C 1. Then we have
A—;—»B iff (Vb € B) (A~2{b});

A=+ B iff (Ya € B) ({a} = B).

We have obtained that Wl'{ uniquely determines Fp and Dp.

Definition 4.2 Let F be an f-family over Q, and (A,B) € F. Then we say
that (A, B) is @ mazimal right side dependency of F if VB’ : B C B',(A,B') €
F — B' = B. Denote by M(F) the set of mazimal right side dependencies of
F. We say that B(B C (1) 1s a mazimal right side of F iff there 1s an A so that
(A, B) € M(F). Denote G(F) the set of mazimal rikt sides of F. A family G of
subset of () 1s closed under intersection iff A, B € G imply ANB &€ G. Denote M+
the set {NM': M' C M}. We say that M generates G iff Mt =G. ‘

Theorem 4.3 [1]. Let F be an f-family over 1. The G(F) 1s closed under in-
tersection. Conversely, if G 13 any family of subset of Q, which is closed under
intersection, then there exists ezactly one f-family F such that G(F) = G, where
F={(ABj:vCeG:ACC— BCC}.

Definition 4.4 Let D be a d-family over 1, and (A, B) € D. Then we say that
(A, B) 1s ¢ mazimal left side dependency of D sfVA' : A C A',(4',B) € D —
A' = A. Denote by M(D) the set of mazimal left sides dependencies of D. We say
that A(A C Q) is a mazimal left side of D iff there is an B so that (4, B) € M(D).
Denote G(D) the set of mazimal left sides of D. A family G of subset of (1 43 called
d-semilattice iff G contains §,0 and A, B € G imply ANB €G.

Theorem 4.5 [2{ Let D be an d-family over 0. Then G(D) s a d-semalattice
over (1. Conversely, if G is any d-semalatiice, then there exists ezactly one d-family
D such that G(D) = G, where D = {(A,B):VCeG:AZ C — BZC}.
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Theorem 4.6 Let Y be an wt-family over Q.. Then D(Y) = {(4,B) : Va €
{d}{a} B) € l(f});s an d-family over O and G’(D) (PH)\ GD(Y)\ {a})* u

Proof. It is easy to see that D(Y) satisfies B-axiom. So D(Y} is an d-family over
0. Clearly, G(D) is an d-semilattice over 1. It is obvious that G(D) contains #, Q1.

Set GD(Y) = P*(0)\ GD(Y), clearly, (GD(Y)\{Q})“" contains {2 (by convention

N@ = ). Now, we assume that X # 6,0 and if X € G’D(Y then (X, X) ¢ Y. Set
X, ={a€e: ({a.},X)eD}—{aeﬂ ({a},X) € Y}. We have X C X, if we
suppose that X # X; and choose an element a from (X1 \ X} then ({a},X) €Y

and a ¢ X. So (X, X)€Y by ( w1 ), this contradicts (X, X) ¢ Y. Hence, X = X}
and X € G(D). We obtain (G’D(l}f()é {{n}‘);* u {8} € G(D).

Conversely, if X € G(D) and },then X ={a€: ({a}, X) e Y}. If
we assume that ¥Z € GD(Y) : X > Z then X = Q by (w). So this contradicts
X # Q. Consequently, there is an Z € GD(Y) such that X cZ.

If there is an Z € GD(Y') such that X = Z, then X € (GD(Y)\ {O})*.

Conversely, we set H = {Z € GD(Y) : X c Y} = {Z,,...,2;}. We have

k
Xc K2} Z;. Let us choose an element a from '51 Z; then ({a},X) € Y by (w3).
=

So, we have ﬂ Z; C X. Thus, X = _51 Z; and we obtain X € (GD(Y) \ {aQ})*
The theorem is proved. -

]

Corollary 4.7 Let Y be an w*-family over (1, GF( Y;/ Q)BGF Y),
0 X. Then F(Y) = {(A,B):Vbe B, (4, (8}) € ¥} U{(#,D):D CC} is
XEGF(Y)

an f-family over Q1 and G(F) = (GF(Y)\ {O})*.

Remark. It is easy to see that F(Y) satisfies A-axiom and we have E(@) = C.
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