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On the interaction between closure operations
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relational databases®
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Abstract
A correspondence between closure operations and special choice functions

on a finite set is established. This correspondence is applied to study func-
tional dependencies in relational databases.

1 Introduction

Having been introduced in connection with some topological problems, closure op-
erations were applied in various branches of mathematics. In the last years they
were successfully applied to study so-called functional dependencies (FDs for short)
in relational databases. Now we recall some definitions and facts; they can be found
in [DK],[DLM1].

Let U = {ay,...,a,} be a finite set of attributes (e.g. name, age etc.) and W (a;)
the domain of a;. Then a subset R C W (a;) X ... X W(a,) is called a relation over
U.

A functional dependency (FD) is an expression of form X — Y, XY C U.
We say that FD X — Y holds for a relation R if for every two elements of R
with identical projections onto X, the projections of t hese elements onto Y also
coincide. According to [Ar], the family # of all FD’s that hold for R satisfies the
properties (F1)-F4):

(F1) (X —X)e 7
(F2) (X—Y)eFand (Y — V)€ Fimply (X —V)e7F;
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(F3) (X —Y)eFand XCV,WCY imply (V — W)€ F;
(F4) (X —Y)eFand (V—W)e 7 imply ( XUV —YUW)€e 7.

Conversely, given a family of FD’s satisfying (F1)-(F4) (so-called full family),
there is a relation R over U generating exactly this family of FD’s, see [Ar] and
also [BDFS] for a constructive proof.

We shall write a; instead of {a;} throughout the paper. Let R be a relation
over U,X C U and put Lg(X) = {a € U|X — a holds for R}. Then Lp satisfies

(C1) X C Le(X);
(C2)  XCY = Lp(X)C Lr(Y);
(C3) Lr(Lr(X)) = Lr(X),

i.e. Lg is a closure operation. Note that the properties (C1)-(C3) may be concisely
expressed as X C Lr(Y) iff Lr(X) € Lr(Y). Given a closure L (sometimes we
shall omit the word ”operation”), there is a relation R over U with L = Lg, see
[De1].

A set X C U is called closed (w.r.t. a closure L) if L(X) = X. Let Z(L) stand
for the family of all closed sets w.r.t. L. Then

(51) Ue z(L),
(S2) X,Y € Z(L) implies XY € Z(L),

i.e. Z(L) is a semilattice. Given a semilattice Z C 2Y define L(X) =n{Y|X C Y,
Y € Z}. Then L is a closure with Z(L) = Z. Therefore, we can think of semilattices
providing an equivalent description of closures and full families of FD’s.

A closure i8 an extensive operation (X C L{X)). The operations satisfying the
reverse inclusion (called chosce functions) were also widely studied in connection
with the theory of rational behaviour of individuals and groups, see [AM],[Ai],[Mo].
We give some necessary definitions.

A mapping C : 2Y — 2V satisfying C(X) C X for every X C U, is called a
choice function. U is interpreted as a set of alternatives, X as a set of alternatives
given to the decision-maker to choose the best and C(X) a s a choice of the best
alternatives among X. .

There were introduced some conditions {or properties) to characterize the ratio-
nal behaviour of a decision-maker. The most important conditions are the following
(see [AM],[Ai],[Mo]):

Heredity (H for short):

VX,Y CU:XCY = C(Y)n X C C(X);
Concordance (C for short): |
VX,YCU:C(X)NnC(Y)C C(XUY);

Out casting (O for short):
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VX,YCU:C(X)CYC X =>C(X) = C(Y);
Monotonicity (M for short):
VX,YCU:XCY = C(X)CCY).

Let P be a binary relation on U, i.e. PC U x U. Let Cp(X) = {a € X|(Ab €
X :(b,a) € P)}.

One of the central results of the theory of choice functions states that a choice
function can be represented as Cp for some P iff it satisfies H and C.

Given a closure operation L, we can define choice functions C(X) = L(U - X)Nn
X and C(X) = U - L(U — X). In Section 2 we characterize the choice functions
of the second type as satisfying M and O. In the other sections we use this cor-
respondence to transfer the properties of choice functions to closures and to apply
them to the study of FD’s. In Section. 3 we use the logical representation of choice
functions (see [VR],[Lil]) to construct a similar representation and characterization
of closure operations.

In Section 4 new properties of closure operations are obtained and studied by
new properties being added to M and O.

Finally, in the Section 5, we use choice functions to construct a structural rep-
resentation for so-called functional sndependencies (cf. [Ja]) in the same way as
closures were used to represent FD’s.

2 The main correspondence

Let L be a closure operation. Define two choice functions associated with L as
follows:

CL(X)=L(U - X)n X,

CHX)=U-LWU-X),XCU.

Note that both Cy, and C* uniquely determine the closure L, in fact, L(X) =
XUCL(U~X)and L(X) = U—C¥Y(U — X). For every X C U the sets Cp(X) and
CL(X) form a partition of X, i.e. CL(X)NCE(X) =0 and CL(X)UCH(X) = X.

Theorem 1 The mapping L — C¥ establishes a one-to-one correspondence be-
tween the closure operations and the choice functions satisfying O and M.

Proof. Let L be a closure operation. We prove that CL satisfies M and O.
Let z€ CX¥(X) and X CY. Then z & L(U — X) and since U - Y C U ~ X, we
have z ¢ L(U - Y), i.e. z € CE(Y). Hence, C¥ satisfies M.
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Let X C U. Then L(L(U — X)) = L(U - X). Using L(U — X) = U — C¥(X),
we obtain that U — CL(U — (U - C* (X)) = U-CE(X), i.e. CL(CL(X)) = CE(X).
Now let CL(X) C Y C X; Since CL satisfies M,CL(CL(X)) C CL(Y)) C C¥(X)
and CL(X) = CL(Y). Therefore, CL satisfies O.

Let C be a choice function satisfying O and M. Consider L(X) = U-C(U - X).
We prove that L is a closure. Clearly, X C L(X). If X C Y and z € L(X), then
z@C(U-X)andz € C(U-Y),i.e. z € L(Y). Since C satisfies O, C(C(U — X)) =
C(U — X). Applying C(U — X) = U — L(X) we obtain L(L(X)) = L(X). Hence,
L is a closure and C¥ = C.

To finish the proof, note that the mapping L — C¥ is injective, because for
two distinct closures L; and L; with L;(X) # L;(X) one has CH (U — X) #
CL3(U — X). The theorem is proved.

a

Let K be a property of choice functions. We say that a choice function C
satisfies K if its complement C satisfies K. (The complementary function C of C
is defined as follows: C(X) =X — C(X) for X CU.)

Corollary 1 The mapping L — Cp establishes one-to-one correspondence be-
tween the closure operations and the chosce functions satssfysing H and O.

Proof. It follows from the facts that C, and C% are complementary choice func-
tions and that H = M, M = H, see [Ai].
O

3 On logical representation of closure operations
and choice functions

The family of all choice functions on U equipped with the operations U,N and ~,
is a Boolean algebra. Logical representation of the choice functions was introduced
in [VR] to show that this Boolean algebra is isomorphic to one consisti ng of tuples
of n Boolean functions, each depending on at most n — 1 variables.

Let U = {a1,...,8,}, X C U. Define

; € X,
a0 ={ g 2eX

B (X) = (Bu(X),- ) Bi1(X), Bit1(X),-- -, Ba(X)) and
BZ(X) = (B (X),...,B:. (X))

where {a;,,...,4;,} =U —-Z and ¢; <... <1

Definition [VR]. A famsly (fC,... fC) of Boolean functions, each depending
on n — 1 variables, 1s called a first logical form of a choice function C if for every
a; €UV and XCU:
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a; € C(X) iff a; € X and f¢ (B'(X)) = 1.

Definition [Lil]. A family (foC,...,fg) of Boolean functions sndezed by
subsets of U, is called a second logical form of a chotce functson C if for every

Z,XCU:
Z =C(X)iff Z C X and f7(87(X)) = L.

Note that f depends on n — |Z] variables.

Each logical form uniquely determines a choice function. By [VR], every tuple
of Boolean functions, each depending on n — 1 variables, is a first logical form of
some choice function, moreover, C — (fC,. . fE) is an isomorphism of Boolean
algebras.

A family (fg,..., fu), fz depends on n — |Z| variables, is a second logical form
of some choice function iff for each Z C U the set {fz(8%(X)): Z C X} contains
a unique one.

Let L be an operation satisfying (C1), i.e. X € L(X) for all X C U. We can
introduce two logical forms as before.

Definition. A family (ff,..., f5) of Boolean functions, each depending on at
most n — 1 variables, 13 called a first logical form of L sf for every a; € U and
XCU:

a; € L(X) iff a; € X or fL(F' (X)) = 1. _
Let Z = {ai;,...,6i, },%1 < ... <1k, and Bz (X} = (B, (X),- .., Bi. (X))-

Definition. 4 family (feL, ... &) of Boolean functions indezed by subsets of U,
fE depends on |Z| variables, is called second logical form of L if for every Z, X C U:

Z=L(X)iff X C Z and f§(Bz(X)) = 1.

We use these logical forms to characterize the closure operations among all the
operations satisfying (C1).

Theorem 2 Let L satisfy (C1). Then L 1s a closure operation sff all the functions
ff’,i =1,...,n; f£,Z C U, are monotonic.

Proof. Since a; € L(X) iff a; € X or a; € C(U — X), we have fF(f'(X)) =
f‘.c" (B'(U - X)), i.e. 7‘1—’ = (f‘-c‘)‘, where f* stands for the dual function. Analo-
gously, we obtain that £ = (- ,)* (note that % and fG" 7 depend on the same
variables). Since f~c L= j’.7 theorem 1 and the following facts imply the theorem;

s

(1) CF satisfies M iff all the functions f‘.cl', +=1,...,n, are monotonic (cf. [VR]);
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L
2) CL satisfies Q iff all the functions _fc ,Z C U, are monotonic (cf. [Lil]). The
1 z
theorem is proved.
8

Remark. A set of attributes X C U is called a candidate key (w.r.t. a relation
R) if Lg(X) = U and for every Y C X : Lr(Y) # U. The problem of finding the
candidate keys (or a candidate key) is one of the most important problems in the
theory of relational databases, see e.g. [BDFS),[De2]. According to the previous
theorem, the candidate keys are exactly the lower units of monotonic function f{] R,
Hence, we can apply a recognition algorithm for monotonic Boolean functions to
construct an algorithm of finding the candidate keys. {Note that if we are given
a set of FD’s, we can calculate a value f{,‘" in polynomial time in the size of the
set of FDs. However, the problem of finding all the candidate keys is NP-hard, see
[BDFS]).

Some other aspects of the applications of recognition of monotonic Boolean
functions to the study of choice functions satisfying M and O (and, hence, closure
operations) can be found in [Li2].

4 On the properties of closures induced by the
properties of choice functions

In this section we consider the closures for which choice functions Cr, and CL defined
in Section 2 satisfy some additional properties. Note that in the theory of choice
functions such properties are ussually studied in some fixed combinations. These
combinations explain the use of Cf, and CL. E.g., the property C (Concordance)
is usually studied together with H (see [Ai}, [AM],[Mo],[Li1]}. Thus, studying this
property we consider C, (moreover, the property C implies monotonicity and there
is no reason to consider CL).

Property C. As it was mentioned, we consider the functions Cp.

Let L be a closure and 71 a corresponding full family of FD’s. Recall that an
FD X — Z is called nontrivial [De2],[DLM1] if X N Z = @. Let Ps stand for the
(Post) class consisting of conjunctions and constants, cf. [Po].

Proposition 1 Let L be a closure operation on U. The followsng are equsvalent:
1) Cy satisfies the property C;
2) LX)NnL(Y)-(XUY)C L(XNY) forall X,Y CU;
3) If X — Z and Y — Z are nontrivial FD’s from 71, then XNY —
Z € f; :
4) (X —a)e 7, sffU~{a,b} — a forallb g X, where a & X;
5) Foralli=1,...,n: ff e Ps.

Proof. 1 — 2. Let Cr satisfy C. Then for all X,)Y C U : CL(U - X) n
CL(U-Y)C CL(U-XnNY). Using CL(Z) = L(U — Z) N Z we obtain L(X) N
LY)-(XUY)C L(XNY) - (XNY). Hence, 2 hold s.
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2 — 3. Let X — Z and Y — Z be nontrivial FD’s from 7.. Then so are
X —aandY — aforalla€ Z. Since a € L(X)NL(Y) - (X UY), we have
that a€ L(XNY),ie. XNY —a€ 7. Then by (F4) XNY — Z € 7.

3— 1. Let 3) holdand a € CL(X)NCL(Y), X,)Y CU. Then U~ X — a €
71, and U~ Y — a € 7, and both FD’s are nontrivial. Hence, U — (X UY) —
a€ Ffoanda€ L(U - (XUY)). Sincea € (XUY), we have a € C(X UY).
Therefore, Cy, satisfies C.

1— 4. Letag X. Then X — a€ 7 ifa € CL(U - X), and U — {a,b} —
a€ 7 iff a € CL({a,b}). Hence, 4) is equivalent to: a € Cr(Z) iff a € CL({a,b})
for all b € Z. According to [AM],[Mo] the last property holds iff C, satisfies C.

1 +—— 5. Since C|, satisfies H, it satisfies C iff all the functions fic‘i =1...,n

can be represented as f , where f € Py, see [VR],[Li1]. Since fF = f°* , we have
that Cy satisfies C iff f& € Pg for all i. The proposition is proved.
' O
Property of submission. This property was introduced in [Lil] as a dual
form of C. We say that a choice function satisfies the submission property (S for
short) if

VX,Y CU:C(XNY)CC(X)uC(Y).

Recall that a closure is called topological if L(X UY) = L(X) U L(Y) for all
X, YCU. :

Let Sg stand for the class of Boolean functions consisting of disjunctions and
constants, cf. [Po].

Proposition 2 Let L be a closure operatson. Then the followsng are equivalent:
1) CL satisfies S;
2) L 1s a topological closure;
3) X-—a€ef iffb—ra€ 7 forsomebe X;
4) Forali=1,...,n:fFeS,.

Proof. 1 — 2. Let Cp satisfy S. Then for all X,)Y C U : L(XUY) =
XUYUCL{U-XUY)=XUYUC(U-X)N(U-Y)) C(XuC,(U-X))u
(YUCL(U-Y)) = L(X)UL(Y). Since (C2 ) holds, L(X) U L(Y) C L(X UY),
i.e. L is topological.

2 — 1. Let L be topological. Then forall X, Y CU : C(XNY)=L(U-Xn
Y)NXnY =L((U-X)u(U-Y))nXnY C (LU -X)ULU-Y))nXNnY C
(LU -X)NnX)U(L(U - Y)NY)) =CL(X)UuCL(Y) , i.e. Cp, satisfies S.

2 «— 3. It was proved in [DLM2].

1 «— 4. According to [Lil], Cf, satisfies S iff for allt =1,...,n: (f‘.C“)‘ € S,
i.e. iff fF € Se. The proposition is proved.

0

The topological closures are known to have simple matrix representations. Con-
sider two binary relations Py and Ty on U as follows:



136 J. Demetrovics, G. Hencsey, L.O. Libkin, I. B. Muchnik

(ai,a;) € P  iff every closed subset X (w.r.t. L) either contains a; or does
not contain a;.

(ai,a;) € Ty iff a;y € L(ay).

For a closure L, Py, is a reflexive relation. Given a reflexive relation P suppose
that L(X) is the intersection of all Y D X such that for all (a;,a;) € P either
a; €Y ora; €Y. Then L thus constructed is a topological closure with P, = P,
see [DLM2).

For a topological closure L, Ty, is a transitive binary relation. Conversely, given
a transitive binary relation T, define L(X) = XU{a € U|3b € X : (b,a) € T}. Then
L is a topological closure with Ty, = T. Moreover, Ty is t he minimal transitive
binary relation containing Py, see [DLM2]

It is known that the choice functions satisfying H and S can be represented by
binary relation as follows [Lil|:

CP(X)={aeX|eX:(ba)eP=>3cg X : (c,a) € P}.

Hence, P thus constructed can be considered as a representation of a topological
closure with Cp = CF.

Proposition 3 Cr = CTt holds for any topological closure L.

Proof. Let a € X. Since T is reflexive, a € CT=(X) iff for some ¢ ¢ X :
(c,a) € T, i.e. iff a € L(c). Since L is topological, the last is equivalent to
saeL(U - X)NX, ie aeCL(X).

0

Property of mults-valued concordance. This property also has been introduced
in [Li1] in order to be studied together with the property O.

A subset of U x 2V was called in [AM] a hyper-relation. We will call a hyper-
relation correct [Lil] if for every X C U there is a unique ¥ C X such that for all
a € X — Y the pairs (a,Y) belong to the hype r-relation.

Proposition 4 Let L be a closure operatson. Then the following are equsvalent:

1. C¥ satisfies the property of multivalued concordance, v.e. if Z = CE(X) =
CL(Y) then Z=CL(XUY);

2. For all X,Y C U : L(X) = L(Y) smplies L(X) = L(XNY);
3. ForallZQU:fé‘EPe;
4. Foral XCU:CYX) =Y, where (¢,Y)€ D foralla€ X ~Y and D is a

correct hyper-relation.

Proof. The equivalence of 1 and 2 is evident. The equivalences 1 —— 3 and
1 «— 4 follow from [Li1].
0
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5 Structural representation of functional inde-
pendencies

Let R be a relation over U. We say that a functional independency (FID for short)
X — Y holds for R if there are two elements of R with coinciding projections
onto X and distinct projections onto Y (i.e. FD X — Y does not hold), see [Ja].
A review of properties of FID’s can be found in [Ja]. In this section we construct
the representations of FID’s via operations on a power set and semilattices.

Let R be a relation and FIg the family of all FID’s that hold for R. A family
F1I of FID’s is called full if for some relation R one has ¥I = FIg.

Given a full family 71, define for X C U C7/(X) = {a € X|(U -~ X) — a €
FI}. Conversely, given a choice function C, define a family of FID’s F I as follows:

X —YeFlifY CC(U - X).

Let C be a choice function. Define L{C) = {X C U|C(X) = X}. For a
join-semilattice £, (£ C2V,8€ L,X,Y € L => X UY € L) define C as follows:

Ce(X)=uU(Y|Y C X,Y € L).

Theorem 8 a) The mappings ¥I — Cs; and C — Tl establish mutually in-
verse one-to-one correspondences between full famslies of FID’s and chosce functions
satisfying M and O.

b) The mappings C — L(C) and L — Cp establish mutually inverse one-
to-one correspondences between choice functions satisfying M and O and join-
semilatisces.

Proof. a) Let ¥I = FIp be a full family of FID’s. Then a € Cy,(X) iff
a & Lr(U — X), ie. C5r(X) = U — Lg(U — X) and C satisfies O and M by
theorem 1.

Let C satisfy O and M. Then C = C¥ for some closure L, and X — Y € Fl¢
ifYNL(X) =8, ie (X —Y) ¢ 7. Hence ¥l is a full family. Moreover,
a € Crr.(X) if (U—-X) — a€ Flg iff a € C(X). Part a is proved.

b) Let L be a closure. Then £(CL) = {X C U|CY¥(X) =X} ={X CU|L(U -
X)=U-X}={X CU|U-X € Z(L)}. Hence, part b follows from theorem
1 and the well-known correspondence bet ween (meet)-semilattices and closure
operations, see [DK],[DLM1]. The theorem is proved.

o

The last question to be considered is as follows: when is a full family of FID’s
also a full family of FD’s? In other words, when is a closure operation L(X ) =

XU{a g€ X|X — a€ FIg})?
Proposition 5 Let R be a relation over U. Then the following are equivalent:

1. L(X)=XuU{a g X|X — a € FIp} 15 a closure opcratsan,
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2. There i3 Z C U such that Lg(X) =XUZ forall X CU.

Proof. Let L(X) = X U{a € X|X — a € 7Ig} be a closure. Then CL
satisfies H (see theorem 1) and since CL satisfies M we have that for some V C
U:CLYX)=XnV for all X C U, see [AM]. Therefore, for Z = U — V one has
Ly (X) =XUZ.

Conversely, if Lg is as in 2, then L(X) = X U{a € X|X — a € Flg} =
XU{a g€ X|X — a & Fr} is obviously a closure operation. The proposition is
proved.

O
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