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On the interaction between closure operations 
and choice functions with applications to 

relational databases* 
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Ilya Muchnik* 

Abstract 
A correspondence between closure operations and special choice functions 

on a finite set is established. This correspondence is applied to study func-
tional dependencies in relational databases. 

1 Introduction 
Having been introduced in connection with some topological problems, closure op-
erations were applied in various branches of mathematics. In the last years they 
were successfully applied to study so-called functional dependencies (FDs for short) 
in relational databases. Now we recall some definitions and facts; they can be found 
in [DK],[DLM1]. 

Let U = { o i , . . . , a „ } be a finite set of attributes (e.g. name, age etc.) and W(a,) 
the domain of Then a subset R C W(aj) x . . . X W(a n ) is called a relation over 
U. 

A functional dependency (FD) is an expression of form X —^ Y, X, Y C U. 
We say that FD X —• Y holds for a relation R if for every two elements of R 
with identical projections onto X, the projections of t hese elements onto Y also 
coincide. According to [Ar], the family 7 of all FD's that hold for R satisfies the 
properties (Fl)-F4): 

(Fl) (X —• X) e 7-, 
(F2) (X-—*Y)e7 and (Y —• V) 6 7 imply (X —• V) 6 7\ 
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(F3) (X —• Y) e 7 and X C V, W C Y imply (V —• W) € 7} 
(F4) (X — - Y) G 7 and (V — W) 6 7 imply (XW —>YuW)e7. 

Conversely, given a family of FD's satisfying (Fl)-(F4) (so-called full family), 
there is a relation R over U generating exactly this family of FD's, see [Ar] and 
also [BDFS] for a constructive proof. 

We shall write a,- instead of {a , } throughout the paper. Let R be a relation 
over U, X C U and put LR(X) = {o 6 U\X —• a holds for i l } . Then LR satisfies 

( C I ) XCLR{X)-, 
(C2) X c y ^ i j i f X j C i ^ ) ; 
(C3) Lr(Lr[X)) = Lr(X), 

i.e. LR is a closure operation. Note that the properties (Cl)-(C3) may be concisely 
expressed as X C LR(Y) iff LR(X) C LR[Y). Given a closure L (sometimes we 
shall omit the word "operation"), there is a relation R over U with L = LR, see 
[Del], 

A set X C U is called closed (w.r.t. a closure L) if L(X) = X. Let Z(L) stand 
for the family of all closed sets w.r.t. L. Then 

(SI) UEZ(L), 
(S2) X, Y € Z[L) implies X n Y € Z(L), 

i.e. Z{L) is a semilattice. Given a semilattice Z C 2 y define L(X) = n {y|X C Y, 
Y G Z}. Then L is a closure with Z(L) = Z. Therefore, we can think of semilattices 
providing an equivalent description of closures and full families of FD's. 

A closure is an extensive operation (X C L(X)). The operations satisfying the 
reverse inclusion (called choice functions) were also widely studied in connection 
with the theory of rational behaviour of individuals and groups, see [AM],[Ai],[Mo]. 
We give some necessary definitions. 

A mapping C : 2U —• 2U satisfying C(X) C X for every X C U, is called a 
choice function. U is interpreted as a set of alternatives, X as a set of alternatives 
given to the decision-maker to choose the best and C (X ) a s a choice of the best 
alternatives among X. 

There were introduced some conditions (or properties) to characterize the ratio-
nal behaviour of a decision-maker. The most important conditions are the following 
(see [AM],[Ai],[Mo]): 
Heredity (H_ for short): 

V X,Y CU:XCY=> C(Y) n X C C{X)-, 

Concordance (C_ for short): 

V X, Y C U : C(X) n C{Y) C C{X\JY)-, 

Out casting (O for short): 
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VX,YCU: C(X) CYCX=> C{X) = C (Y) ; 

Monotonicity [M for short): 

V X,Y CU : X CY => C(X) C C(Y). 

Let P be a binary relation on U, i.e. P C U X U. Let CP{X) = { o e X\(fib e 
X:(b,a)eP)}. 

One of the central results of the theory of choice functions states that a choice 
function can be represented as Cp for some P iff it satisfies H_ and C_. 

Given a closure operation L, we can define choice functions C(X) = L{U — X)f1 
X and C(X) — U — L(U — X). In Section 2 we characterize the choice functions 
of the second type as satisfying M_ and 0. In the other sections we use this cor-
respondence to transfer the properties of choice functions to closures and to apply 
them to the study of FD's. In Section 3 we use the logical representation of choice 
functions (see [VR],[Lil]) to construct a similar representation and characterization 
of closure operations. 

In Section 4 new properties of closure operations are obtained and studied by 
new properties being added to M_ and O. 

Finally, in the Section 5, we use choice functions to construct a structural rep-
resentation for so-called functional independencies (cf. [Ja]) in the same way as 
closures were used to represent FD's. 

2 The main correspondence 
Let L be a closure operation. Define two choice functions associated with L as 
follows: 

CL{X) = L(U -X)KX, 

CL(X) = U-L(U-X),XCU. 

Note that both CL and CL uniquely determine the closure L, in fact, L(X) = 
I U C L ( U - X ) and L(X) = U-CL(U-X). For every X C U the sets CL(X) and 
CL{X) form a partition of X, i.e. CL[X) n CL{X) = 0 and CL{X) U CL(X) = X. 

Theorem 1 The mapping L —• CL establishes a one-to-one correspondence be-
tween the closure operations and the choice functions satisfying O and M. 

P r o o f . Let L be a closure operation. We prove that CL satisfies M_ and O. 
Let x € CL(X) and X CY. Then x g L{U - X) and since U-Y CU-X, we 

have x£L(U- 7 ) , i.e. x e CL(Y). Hence, CL satisfies M. 
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Let XCU. Then L(L(U - X) ) = L(U - X). Using L(U - X) = U - CL(X), 
we obtain that U- CL(U - (U - CL (X)) = U-CL{X), i.e. CL(CL[X)) = CL{X). 
Now let CL{X) CY CX] Since CL satisfies M, CL(CL(X)) C CL(Y)) C CL{X) 
and CL(X) = CL(Y). Therefore, CL satisfies O. 

Let C be a choice function satisfying O and M. Consider L(X) = U — C(U — X). 
We prove that L is a closure. Clearly, X C L(X). If X C Y and z € L(X), then 
i £ C{U-X) and z £ C(U-Y), i.e. z G L(Y). Since C satisfies O, C[C(U-X)) = 
C(U - X). Applying C{U - X) = U - L(X) we obtain L(L(X)) = L(X). Hence, 
L is a closure and CL = C. 

To finish the proof, note that the mapping L —• CL is injective, because for 
two distinct closures Xj and L2 with Li(X) / one has CLl(U — X ) / 
CL' (U — X). The theorem is proved. 

• 
Let K be a property of choice functions. We say that a choice function C 

satisfies if its complement C satisfies K. (The complementary function C of C 
is defined as follows: C{X) = X- C(X) for X C U.) 

Corollary 1 The mapping L —• CL establishes one-to-one correspondence be-
tween the closure operations and the choice functions satisfying H_ and O. 

Proof . It follows from the facts that Ci and CL are complementary choice func-
tions and that H_ = M_, M = H, see [Ai]. 

• 

3 On logical representation of closure operations 
and choice functions 

The family of all choice functions on U equipped with the operations U,n and 
is a Boolean algebra. Logical representation of the choice functions was introduced 
in [VR] to show that this Boolean algebra is isomorphic to one consisti ng of tuples 
of n Boolean functions, each depending on at most n — 1 variables. 

Let U = { o ! , . . . , a„} , X C U. Define 

F(X) = (Pi (X), . . . , f)i-i(X), Pi+i(X),..., f)n{X)) and 
0*(X) = (A, (*),... ,/M*)) 

where {av t , . . . , Oik } = U — Z and ii < . . . < ik-
Definition [VR]. A family (ff • • fn) °f Boolean functions, each depending 

on n — 1 variables, is called a first logical form of a choice function C if for every 
a,- eU and X C U: 
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a,- e C{X) iff a,- e X and / f ( / 9 ' (X ) ) = 1. 

Definition [Lil]. A family (fjf, •.., / y ) o/ Boolean functions indexed by 
subsets of U, is called a second logical form of a choice function C if for every 
Z,XCU: 

Z = C{X) iff Z C X and f§(PZ{X)) = 1. 

Note that depends on n — \Z\ variables. 
Each logical form uniquely determines a choice function. By [VR], every tuple 

of Boolean functions, each depending on n — 1 variables, is a first logical form of 
some choice function, moreover, C —• ( f i , . • •, f„) is a n isomorphism of Boolean 
algebras. 

A family (/0 fu), fz depends on n — \Z\ variables, is a second logical form 
of some choice function iff for each Z C U the set {fz(flz (X)) : Z C X} contains 
a unique one. 

Let L be an operation satisfying (Cl), i.e. X C L(X) for all X C U. We can 
introduce two logical forms as before. 

Definition. A family (ft} • • •, f„) °f Boolean functions, each depending on at 
most n — 1 variables, is called a first logical form of L if for every ai 6 U and 
XCU: 

ai e L{X) iff a,- 6 X or ftL{?(X)) = 1. 

Let Z = { a t l , . . . ,a<t},t'i < . . . <« f c , and 0Z(X) = (A, PQ, • • •, ft* (*))• 

Definition. A family (ffc,... ffc) of Boolean functions indexed by subsets ofU, 
fz depends on \Z\ variables, is called second logical form of L if for every Z, X C U: 

Z = L(X) iff X C Z and fz{Pz{X)) = 1. 

We use these logical forms to characterize the closure operations among all the 
operations satisfying (Cl). 

Theorem 2 Let L satisfy (Cl). Then L is a closure operation iff all the functions 
f^,i = 1 , . . . , n; /J1, Z C U, are monotonic. 

Proof . Since at e_L{X) iff a, € X or a,- G CL{U - X), we have ftL{^{X)) = 
f?L {P'(U ~ X))> i e- ft = i / / 7 ' ) * . w h e r e /* stands for the dual function. Analo-
gously, we obtain that = [fy-zY (note that /J" and fylz depend on the same 
variables). Since / ,C t = f f L theorem 1 and the following facts imply the theorem: 
(1) CL satisfies M iff all the functions fPL , * " = ! , . . . , n, a re monotonic (cf. [VR]); 
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QL 
(2) CL satisfies O iff all the functions f z , Z C U, are monotonic (cf. [Lil]). The 
theorem is proved. 

• 
Remark. A set of attributes X C U is called a candidate key (w.r.t. a relation 

R) if LR(X) = U and for every Y C X : LR(Y) ± U. The problem of finding the 
candidate keys (or a candidate key) is one of the most important problems in the 
theory of relational databases, see e.g. [BDFS],[De2j. According to the previous 
theorem, the candidate keys are exactly the lower units of monotonic function f y R . 
Hence, we can apply a recognition algorithm for monotonic Boolean functions to 
construct an algorithm of finding the candidate keys. (Note that if we are given 
a set of FD's, we can calculate a value fy R in polynomial time in the size of the 
set of FDs. However, the problem of finding all the candidate keys is NP-hard, see 
[BDFS]). 

Some other aspects of the applications of recognition of monotonic Boolean 
functions to the study of choice functions satisfying M_ and O (and, hence, closure 
operations) can be found in [Li2]. 

4 On the properties of closures induced by the 
properties of choice functions 

In this section we consider the closures for which choice functions Cx and CL defined 
in Section 2 satisfy some additional properties. Note that in the theory of choice 
functions such properties are ussually studied in some fixed combinations. These 
combinations explain the use of C^ and CL. E.g., the property C (Concordance) 
ia usually studied together with H_ (see [Ai], [AM],[Mo],[Lil]). Thus, studying this 
property we consider C/, (moreover, the property C implies monotonicity and there 
is no reason to consider CL). 

Property C. As it was mentioned, we consider the functions Cj,. 
Let £ be a closure and a corresponding full family of FD's. Recall that an 

FD X —> Z is called nontrivial [De2],[DLMl] if J f n Z = 0. Let P6 stand for the 
(Post) class consisting of conjunctions and constants, cf. [Po]. 

Proposition 1 Let L be a closure operation on U. The following are equivalent: 
1) CL satisfies the property Cj 
£) L(X) n L{Y) - ( J f u F ) C L(X n Y) for all X, Y C U; 
8) If X —• Z and Y —* Z are nontrivial FD's from TL, then ATl Y —• 

Z e TL; 
4] (X — a) 6 7L iffU ~ {a,6> —• a for all b <£ X, where a £ X; 
5) For alli= l , . . . , n : / / - € P6. 

Proof . 1 —• 2. Let CL satisfy C. Then for aU X, Y C U : CL(U - X) n 
CL[U ~ Y) C CL(U - X n Y). Using CL{Z) = L(U - Z)R\Z we obtain L{X) n 
L[Y) - (X U Y) C L(X n Y) - (X fl Y). Hence, 2 hold s. 
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2 —• 3. Let X —• Z and Y —> Z be nontrivial FD's from TL- Then so are 
X — • a and Y —• o for all o G Z. Since o G L(X) n L(Y) - (X U Y), we have 
that o e L(X n Y), i.e. X f\Y —• a G JL- Then by (F4) XC\Y —> Z e TL. 

3 —• 1. Let 3) hold and a G CL(X) n CL(Y), X, Y C U. Then U-X —• a 6 
?L and U - Y —• a e / t and both FD's are nontrivial. Hence, U - (XuY) —• 
a € ?L and o e L(U - (X U F)) . Since a G (X U K), we have a G CL(X U Y). 
Therefore, CL satisfies C. 

1 <—• 4. Let a & X. Then X —• a € fL iff o G CL[U-X), and U-{a,b} —• 
a G 7L iff a € Ci ( {a ,6 } ) . Hence, 4) is equivalent to: a e CL(Z) iff a e C7i,({o,6}) 
for all 6 e Z. According to [AM],[Mo] the last property holds iff CL, satisfies C. 

1 <—• 5. Since CL satisfies H_, it satisfies C iff all the functions f?Li = 1 n 
can be represented as /* , where / G P6, see [VR],[Lil]. Since f ^ = , we have 
that CL satisfies C iff ftL 6 Pe for all t. The proposition is proved. 

• 
Property of submission. This property was introduced in [Lil] as a dual 

form of C. We say that a choice function satisfies the submission property (S for 
short) if 

VX.YCU: C(X n Y) C C(X) U C(Y). 

Recall that a closure is called topological if L(X U Y) = L(X) U L(Y) for all 
X, Y C U. 

Let Sg stand for the class of Boolean functions consisting of disjunctions and 
constants, cf. [Po]. 

Proposit ion 2 Let L be a closure operation. Then the following are equivalent: 
1) CL satisfies Sj 
S) L is a topological closure; 
3) X —>a€iLiffb —• aeJL for some b G X; 
4) For alli = l,...,n: ft € S6. 

Proo f . 1 — > 2 . Let CL satisfy S. Then for a l l X , F C U : L(X U Y) = 
XUYUCl{U-XuY) = XUYUCL{(U -X)n(U -Y)) c (XUCl(U -X))U 
(Y UCL(U- y ) ) = L(X) U L{Y). Since (C2 ) holds, L(X) U L(Y) C L{X U y ) , 
i.e. L is topological. 

2 —• 1. Let L be topological. Then for all X,Y C U : CL(Xf\Y) = L{U-Xn 
Y)nXr\Y = L((U-X)u(U -Y))r\XnY C [L(U - X)uL{U-Y))nXnY C 
(L(U -X)nX)U (L(U -Y)n Y)) = CL(X) U CL[Y) , i.e. CL satisfies S. 

2 <—• 3. It was proved in [DLM2]. 
1 <—• 4. According to [Lil], CL satisfies 5 iff for all t = 1 , . . . , n : {f?L)* G S6, 

i.e. iff ft G SQ. The proposition is proved. 
• 

The topological closures are known to have simple matrix representations. Con-
sider two binary relations PL and TL on U as follows: 
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(dtjOy) S PL iff every closed subset X (w.r.t. L) either contains ay or does 
not contain a,. 

(ai,a,)eTL i f f f l j - 6 % ) . 
For a closure L, PL is a reflexive relation. Given a reflexive relation P suppose 

that L(X) is the intersection of all Y 2 X such that for all (aj,ay) € P either 
a,- 0 y or ay S Y. Then L thus constructed is a topological closure with PL — P, 
see [DLM2]. 

For a topological closure L, TL is a transitive binary relation. Conversely, given 
a transitive binary relation T, define L(X) = X u { o 6 U\3b e X : (6, o) € T). Then 
L is a topological closure with TL = T. Moreover, TL is t he minimal transitive 
binary relation containing PL, see [DLM2] 

It is known that the choice functions satisfying H_ and 5 can be represented by 
binary relation as follows [Lil]: 

CP{X) = {a e X|36 £ X : (b,a) & P 3c & X : [c,a) € P}. 

Hence, P thus constructed can be considered as a representation of a topological 
closure with CL = Cp. 

Propos i t ion 3 CL = CTl holds for any topological closure L. 

Proo f . Let a e X. Since TL is reflexive, a g CTl (X) iff for some c £ X : 
(c, a) S TL, i.e. iff a 6 L(c). Since L is topological, the last is equivalent to 
a 6 L{U — X) n X, i.e. o 6 CL(X). 

a 
Property of multi-valued concordance. This property also has been introduced 

in [Lil] in order to be studied together with the property O. 
A subset of U x 2U was called in [AM] a hyper-relation. We will call a hyper-

relation correct [Lil] if for every X C U there is a unique Y C. X such that for all 
a €E X — Y the pairs (a, Y) belong to the hype r-relation. 

Propos i t ion 4 Let L be a closure operation. Then the following are equivalent: 

1. CL satisfies the property of multivalued concordance, i.e. if Z = CL(X) = 
CL(Y) then Z = CL(X U Y ) ; 

2. For all X, Y C U : L(X) = L(Y) implies L(X) = L[X n Y); 

S. For allZCU : /f e P6; 

4. For all X C U : CL{X) = Y, where (a, Y) € D for all a € X - Y and D is a 
correct hyper-relation. 

P r o o f . The equivalence of 1 and 2 is evident. The equivalences 1 <—• 3 and 
1 <—• 4 follow from [Lil]. 

• 
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5 Structural representation of functional inde-
pendencies 

Let R be a relation over U. We say that a functional independency (FID for short) 
X —• Y holds for R if there are two elements of R with coinciding projections 
onto X and distinct projections onto Y (i.e. FD X —• Y does not hold), see [Ja]. 
A review of properties of FID's can be found in [Ja], In this section we construct 
the representations of FID's via operations on a power set and semilattices. 

Let R be a relation and 7IR the family of all FID's that hold for R. A family 
71 of FID's is called full if for some relation R one has 71 = 7 IR. 

Given a full family 71, define for X C U CRI(X) = {a G X\(U - X) — • a G 
71}. Conversely, given a choice function C, define a family of FID's 7 Ic as follows: 

X —• Y G Tic iff Y C C(U - X). 

Let C be a choice function. Define £{C) = {X C U\C{X) = X } . For a 
join-semilattice (£ C 2U, 0 G £, X, Y 6 L => X U Y G L) define Cc as follows: 

Cc(X) = u(Y\YCX,Ye£). 

Theorem 3 a) The mappings 71 • CJI and C • 7Ic establish mutually in-
verse one-to-one correspondences between full families of FID's and choice functions 
satisfying M. aid O. 

bj The mappings C —• L(C) and £ —• C£ establish mutually inverse one-
to-one correspondences between choice functions satisfying M_ and O and join-
semilattices. 

Proo f , a) Let 71 = 7IR be a full family of FID's. Then o G Cri(X) iff 
a 0 LR{U - X), i.e. CFI(X) = U - LR{U - X) and C satisfies O and M by 
theorem 1. 

Let C satisfy O and M. Then C = CL for some closure L, and X — • Y G 71c 
iff Y n L(X) = 0, i.e. ( X — • Y) $ 7L. Hence 7Ic is a full family. Moreover, 
a G CfIc (X) iff {U - X ) —• o G 7IC iff o G C{X). Part a is proved. 

b) Let L be a closure. Then L(CL) = { X C U\CL(X) = X} = {X C U\L(U -
X) = U - X) = { X C U\U - X G Z(L)}. Hence, part b follows from theorem 
1 and the well-known correspondence bet ween (meet)-semilattices and closure 
operations, see [DK],[DLMl]. The theorem is proved. 

• 
The last question to be considered is as follows: when is a full family of FID's 

also a full family of FD's? In other words, when is a closure operation L(X) = 
X U {a £ X\X — » a G 7IR }? 

Proposi t ion 5 Let R be a relation over U. Then the following are equivalent: 

1. L[X) = X U {a £ X\X — • a G 7IR} is a closure operation; 
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2. There is Z Ç U such that LR[X) = XUZ for all X C U. 

Proof . Let L(X) = X U {a g X\X —• a 6 7IR) be a closure. Then CL 

satisfies H_ (see theorem l) and since CL satisfies M we have that for some V C 
U : CL(X) = X n V for all X Ç U, see [AM]. Therefore, for Z = U - V one has 
Lr(X) = XUZ. 

Conversely, if LR is as in 2, then L(X) = X U {o £ X\X -•—• a € TIR} = 
X U (o £ X\X —• a £ TR} is obviously a closure operation. The proposition is 
proved. 

• 
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