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Normal Form Relation Schemes: A New 
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Abstract 
A new characterization of relational database schemes in normal forms 

is given. This characterization is based on the properties of the semilattice 
of closed sets of attributes. For the problems testing third and Boyce -Codd 
normal forma, which are known to be ^/ / ' -complete for relation schemes, this 
new characterization helps establish polynomial algorithms if the input is a 
relation (matrix) rather than a relation scheme. The problem of approxima-
tion of an arbitrary family of functional dependencies by one in a normal form 
is also addressed. 

1 Introduction 
The relational datamodel defined by E.F. Codd remains one of the most powerful 
database models. In this model a relation is just a matrix in which rows correspond 
to records and columns to attributes. Theoretical and practical aspects of this 
model have been studied over the past 20 years. Database design has always been 
and still is among the most important aspects attracting the attention of almost all 
database theorists. For relational databases, the design theory is based on the well-
developed theory of dependencies and constraints. Functional dependencies, being 
the simplest and easiest to understand, underwent a deep investigation. Enormous 
number of papers on functional dependencies have been written, (10,11,18,22,23,24] 
being just examples of surveys referring to hundreds of other papers and books. 
Surprisingly enough, many issues in dependency theory, lying on the very surface, 
have not been paid attention to for many years. One of them is the lattice-theoretic 
approach to the study of functional dependecies. It was observed very early that 
families of functional dependencies correspond to closure operators and to semilat-
tices, but very little has been done in order to bring the methods and tools of lattice 
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theory to the database theory. The situation started changing a few years ago, and 
in a number of papers functional dependencies were investigated from the lattice 
theoretic point of view [4,6,7,25]. For example, an easily described relationship 
between relations and irreducible elements of the semilattice of closed sets made it 
possible to design a polynomial algorithm for a problem that is well-known to be 
^//'-complete if the input is a relation scheme rather than a relation, see [8,9]. 

Functional dependencies are closely related to normalization of relations or re-
lations schemes. Being in a normal form, or normalized, means that a family of 
functional dependencies satisfies certain properties. The basic idea behind nor-
malization is that a relational database must be unambigously reconstructed from 
some of its projections which are normalized. Databases in normal forms are easy 
to work with, and normal forms are well motivated from the practical point of view, 
see [5,22,24]. 

However, to the best of the authors' knowledge, no attempts have been made to 
apply lattice theoretic techniques, used for functional dependencies, to normaliza-
tion. We think that doing so would benefit both normalization theory by looking 
at normalization from a new point of view, and lattice theoretic approach to the 
study of functional dependencies by extending it to normalization. 

The main goal of this paper is to give a lattice theoretic characterization of 
relation schemes in normal forms, i.e. to describe normal form relation schemes 
by the semilattices of closed sets they generate. Doing only this would be of little 
interest. We prefer to view the characterization theorems as important tools in 
demonstrating advantages of the lattice theoretic approach. In this paper we are 
going to elaborate on two points: 

• the lattice characterization of normal forms will enable us to prove that two 
problems related to normalization, which are known to be ^ - complete for 
relation schemes, are solved in polynomial time for relations (i.e. databases 
themselves); 

• it will turn out that arbitrary families of functional dependencies can be 
approximated by normalized ones, and these approximations are effectively 
computable for relations; for relation schemes, however, it may take exponen-
tial time to find approximations. 

Let us give a brief sketch of the rest of the paper. The next section contains 
all necessary definitions and facts. Most of them are standard, but some are not. 
We define all the concepts because we feel that a paper in an area where different 
people use slightly different terminology and completely different notation, must 
be self-contained. 

Section 3,4 and 5 deal with the second, third and Boyce-Codd normal forms, 
respectively. (First normal form basically says that a database is just a relation. 
Therefore, functional dependency families can be characterized in one word - arbi-
trary). For each normal form we consider four problems: 

• a lattice-theoretic characterization; 

• closure properties in the lattice of families of functional dependencies; 

• algorithms testing relations and relation schemes for this normal form and 
their complexity; 

• approximation of arbitrary relation schemes by those in normal forms. 
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Characterisation theorems will be stated in the following form: a relation 
scheme is in normal form iff the semilattice of sets closed under the closure op-
eration induced by the given scheme satisfies certain properties. 

It is known that closure operations on an arbitrary set form a lattice [4,7]. We 
will show the properties of the subsets of this lattice corresponding to normal form 
schemes. 

Before giving the results on complexity, recall that the prime attribute problem is 
to decide whether a given attribute is prime, i.e. belongs to a minimal key. It is not 
a complete description of the prime attribute problem for we did not indicate what 
the input is - a relation scheme or a relation. In the first case the problem is known 
to be .VP-complete [12,17]. However, it was shown in [8] that the problem becomes 
polynomial for relations. It was done by using the representation of irreducible 
elements of the semilattice of closed sets which can be obtained from a relation in 
polynomial time. 

Two important problems related to normalization - 3NFTEST and BCNFTEST 
- are known to be .VP-complete [1,14]. They test whether a given relation scheme or 
its subscheme is in third or Boyce-Codd normal form. Using the techniques similar 
to those in [8] and our lattice characterization or normal forms, we shall prove that 
these problems can be solved in polynomial time if the input is a relation. 

By approximation we mean finding a relation scheme that approximates a given 
one. "Approximates" should be explained here. First, the approximation must 
be taken from the class in which it is sought (otherwise the name would not be 
justified!). Second, it must be greater than the given scheme in some sense. Here we 
use the ordering on the families of functional dependencies (or closures) introduced 
and studied in [4,7] to define "greater". Finally, it is desired that approximation be 
unique. Uniqueness, as it will be shown, depends on closure properties of the given 
normal form, and can be guaranteed for third and Boyce-Codd normal forms. 

If we want to find an approximation, we would like to know the complexity of 
an algorithm. It will turn out that the situation here resembles the one in the case 
of testing normal forms: for relations there exist polynomial algorithms, while for 
relation schemes the problems are superpolynomial1, provided that P MP. 

2 Basic definitions and results 
In this section, that we shall try to make as concise as possible, all definitions and 
facts to be used in the sequel will be given. Theorems in this section will have 
negative numbers so that our first result is theorem 1. 

Let U = { A i , . . . , A n } be a set of attributes. With each attribute AI asso-
ciate a domain of its values dom(Ai). A relation over U is a subset of Carte-
sian product of all dom(At')'s. Relations will be usually denoted by R, possi-
bly with indices. Alternatively, we can think of a relation R as being a set 
of maps h : U U, dom(A,), /i(A,-) 6 dom(Ai) rather than a set of tuples. 
This does not change the nature of relations, but often makes the notation eas-
ier. R = {/&!,..., hm} means that J? is a relation consisiting of m tuples/maps 
hi,...,hm. 

A functional dependency (FD for short) is an expression X —* Y, where X, Y C 
U. If A e U, we shall write X -* A instead of X {A} . A FD X Y holds in 
a relation R = {hi,..., hm} if for any h{, h} € R the following holds: VA G Y : 
hi(A) = hs(A) whenever VA e X : hi (A) = /iy(A). A family of FDs FR = {X 
Y :X->Y holds in R} is called a full family of FDs. 

'That io, there are no polynomial algorithms that solve these problems. 
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Let P(U) be the powerset of U. We can think of —• as being a binary relation 
on P(U), thus representing a family of functional dependencies as a binary relation 
(i.e. a set of pairs (X, Y)) as well. A subset F of P(U) x P(U) is called an f-family 
if the following (Armstrong's Axioms) hold: 

Fl ) [X,X)eF; 
F2) (X, Y) e F, (Y, Z) G F imply [X, Z) e F\ 
F3 (X, Y)(=F,XC X', Y' C Y imply IX', Y') e F\ 
F4) (X, y ) e F, (Z, V) e F imply (XUZ,YUV)€F. 

For any binary relation F C P(U),F+ stands for the minimal binary relation 
containing F and satisfying (F1)-(F4). The existence of F+ is ensured by the fact 
that /-families are closed under intersection. FR is an /-family for any relation R, 
i.e. F+ = FR. 

A map L : P{U) —* PIU) is called a closure if it is expanding, monotone and 
idempotent, i.e. X C L(X),X C Y implies L{X) C L{Y) and L[L(X)) = L(X). 
For a binary relation F on P(U) define LF(X) = {A 6 U : ( X { A } ) £ F+. LF thus 
defined is known to be a closure. If F — FR, we write LR instead of LFr . 

A family of subsets S C P(U) is called a (meet)-semilattice if it is closed under 
intersection, i.e. X, Y 6 S implies X n Y 6 S. Given a closure L, define SL = 
{X CU : L(X) = X} and FL = { (X , Y) : Y C ¿ ( X ) } . The elements of SL are 
called closed sets. Given a semilattice S containing U, define a map L$ on P(U) 
by LS(X) = C\{Y :Y€S,XCY}. 

Theorem -3 a) F C P(U) x P(U) is an f-family iff there is a relation R such that 
Fr = F. 

b) The maps F —+ Lp and L —* FL defined above are mutually inverse and set 
up a 1-1 correspondence between closures and f-families on U. 

c) The maps L SL and S —* Ls defined above are mutually inverse and 
set up a 1-1 correspondence between closures on U and semilattices of subsets ofU, 
containing {U}. • 

This theorem shows that we do not have to redefine concepts, once introduced 
for families of FDs or relations or closures or semilattices, if we need their interpre-
tations for other objects - they can be easily obtained from the 1-1 correspondences 
of theorem -3. 

In the sequel, by relation scheme we shall mean a pair (ll,F). All concepts 
defined for a relation scheme are automatically defined for any relation R by taking 
the relation scheme (U ,FR ) . 

Given a relation scheme ( U , F ) , a set K C U is called a key if K —+ U € F+ 

(equivalently, LF(K) — U). A key is called minimal (sometimes candidate) if 
it contains no key as a proper subset. All minimal keys form an antichain (i.e. 
Ki % K.2 for any two distinct minimal keys Ki , K^) and vice versa: any antichain 
in P(ll) can be represented as a family of minimal keys of a relation scheme or a 
relation over U. 

Given a relation or a relation scheme, an attribute A is called prime if it be-
longs to a minimal key, and nonprime otherwise. The sets of prime and nonprime 
attributes will be denoted by UP and UN (or UP(F), UP(L), UP(R) etc. if R or F or 
L is not clear from the context). 

Given a relation scheme (U, F) , it is said to be in 

• Second Normal Form (or 2NF for short) if for any minimal key K and a 
nonprime attribute A, K' —* A € F+ for no K' C K\ 
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• Third Normal Form (or 3NF for short) if for any nonprime attribute A and 
X not containing A, X is a key whenever X —• A e F+; 

• Boyce-Codd Normal Form (or BCNF for short) if X is a key whenever X —+ 
A € F+ for A <£ X. 

All the definitions given above are fairly standard. Now we introduce some 
terminology that appeared relatively recently in [4,7,8,9]. 

An antikey is a maximal non-key. In other words, let K = {Klp..., Kr} be a 
family of minimal keys of a relation or a relation scheme. Then X is an antikey if 
Ki C X for no t and X is maximal such. The set of antikeys will be denoted by 
K-1. 

Given a semilattice S, M(5) stands for the set of (meet)-irreducible elements, 
i.e. such X E S that X = Y DZ,Y,Z & S implies either Y = X or Z = X. Every 
element of a finite semilattice is an intersection of irreducibles. Maximal elements 
of S — {Zi} are called coatoms. The set of coatoms is denoted by CA(S) . 

T h e o r e m - 2 [8,9] \J< = U - f ] < ~ 1 - • 

T h e o r e m - 1 [8,9] Given a closure L, the set of antikeys it generates is CA(SL). 
• 

Given a relation R = {HI,...,HM}, let EI} = {A S U : HI(A) = fcy(A)}, and 
ER = {EÍJ : 1 < t < j < m} |J{Zi}. ER is called the equality set of R. It turns out 
that ER contains all information about dependencies in R, i.e. LR can be obtained 
from ER by LR(X) = f W : Y £ ER,X C Y ) . CA{SR) contains exactly the 
maximal sets from ER — { u } [8,9]. 

Let Clu be the set of all closures on U. Without loss of generality we shall also 
denote it by Cln if \U\ = n. Define > on Cln by letting Lx > L2 iff £ i P 0 £ L2{X) 
for all X (in other words, L\ • = ¿2)-

T h e o r e m 0 [7] Cln is a lattice in which infimum (a) and supremum (v) are defined 
as follows: L = L1AL2iffSL = SLl f) SL„ L = ¿1 Vl2 iff SL = SLl U^, Ui-X'n 
Y : X&SLl,Y eSLi}. • 

In fact, A and V can be expressed directly, but for our purposes this semilattice 
definition suffices. 

A subset of Cln closed w.r.t. A (V or both A and V) is called a meet-
subsemilattice (join-subsemilattice and sublattice) respectively. 

Given X C U, let Cln(X) = {L e Cln : UP(L) = X J L K ^ 1 } , where L1 is the 
top element of C7„, i.e. i / 1 (Y) = Y for any Y. 

The last definition to be given in this section is that of interval: if X C Y CU, 
then [A", Y\ is the family of Z C U such that X C Z C Y. 

2.1 Second Normal Form 
In this section we give a semilattice characterization of the second normal form 
(2NF). The set 2NFn C Cln of the closures generated by relation schemes in 2NF 
will be shown to be neither meet- nor join- subsemilattice of Cln. An approximation 
of a closure defined as the one generated by a 2NF relation scheme and having the 
same set of prime attributes will be shown to exist. 
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Let L be a closure. A closed set, which can be obtained as the closure of a 
proper subset of a minimal key, will be called prime. In other words, a closed set 
X is prime if X = L(Y) where Y C K and K is a minimal key. 

Theorem 1 Let R be a relation over U. Then R is in SNF iff \X n UP, X] C SR 
for any prime X C U. 

P r o o f . Suppose [ X n UP,Xj C SR for all prime X C U. Assume R is not in 2NF, 
i.e. for some A 6 UN, a minimal key K and K' C K one has K' A 6 FR 
and A & K'. Let X = LR(K'). Clearly, X is prime. X ^ II and A <= X. Since 
X is closed, X — A —* A 6 FR, and X — A SR (if X — A 6 SR, X — A is a 
closed set containing K' which is a subset of X) . On the other hand, A UP, and 
X n Z / p C X - A C X , i.e. X - A € [X n UP, X] C SR, a contradiction. Thus, R is 
in 2NF. 

Conversely, let R be in 2NF. Take a prime X where X = L(Y),Y C K, K a 
minimal key. Let A € UNR\X. Then A & Y. If X - A AE FR, then Y -* A e FR, 
which contradicts our assumption that R is in 2NF. Hence X — A —• A ^ FR, and 
since X is closed, so is X — A. Since SR is a semilattice, [X — UN, X ] = \XC\UP, X ] C 
SR. The theorem is proved. 

Define 2 N F n C Cln to be the subset of Cln consisting of all closures induced 
by relation schemes in 2NF. This set does not have any particular structure as 
a subset of Cl„, i.e. it is neither meet- nor join- subsemilattice, as the follow-
ing examples show. Let U = { A I , . . . , AN} , and consider three semilattices: 
S = {0,A1,A2,A3,lA1,A2,A4},{A1,A3,A6},Z/>, S1 = S\J{{AltA2,A4,A6}, 
{ A i , A 3 , A6, A 7 } , Aio} , S2 = <Su{ {Ai , A2 , A4 , A 8 } , {Ax, A3, A6, A0), A n } . Then 
both Lsi and Ls, are in 2NFn, but Ls = Lsx A £5. is not. A counterexample 
in the case of V is even simpler. Let U = { A I , . . . , A4}, and again, consider three 
semilattices: = [p. { ¿ 2 , A3}1 { ^ 1 ^ 4 } , U}, S2 = [0, {A2, A3 , A 4 } ] 
and S = Si ( J 5 2 . T h e n both LSl and Ls, are in 2 N F i t but Ls - LSl V Ls,, is 
not. 

The approximation problem was studied for so-called choice functions [16] (i.e. 
functions on sets satisfying G(X) C X ) , and it was shown that being closed un-
der intersection/union is necessary and sufficient for the existence of a unique up-
per/lower approximation. This result can be easily generalized for the functions 
that, being ordered, form a distributive lattice (notice that choice functions ordered 
by C form a Boolean lattice). Unfortunately, the lattice Cln is not close to dis-
tributive (its properties are studied in [7] and [15]), and a counterexample can be 
found that shows nonexistence of the unique approximation for the 2NF. 

However, we can try to approximate an arbitrary scheme by that in 2NF with 
the same set of prime attributes. In other words, we say that a closure V is a 
SNF-approximation of a closure L if V > L and V 6 Cln(Up(L)) n2NFn. (Notice 
that we speak of a 2NF-approximation). 

Let us give a procedure that finds a 2NF-approximation of a given closure 
L 6 Cln. 

1. For all prime X in SL add [XC\UP(L),X\ to SL• Denote the extended S by 

2. Extend § to a semilattice. Denote this semilattice by S'. (In other words, S' 
is the minimal semilattice containing 5. 

3. Let 2 N F ( L ) = Ls>. 

Propos i t ion 1 Given a closure L, 2NF(L) is a 2NF-approximation of L. 
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Proo f . Since S C S',2NF{L) > L in Ci„ . Moreover, since no new coatom 
appeared in 5 ' , by theorems -2 and -1 UP{L) = UP{2NF{L)), i.e. 2NF(L) G 
Cln(UP(L)). To prove that 2 N F ( L ) G 2NF N , consider an arbitrary prime X in S'. 
Since the families of antikeys of S and S' coincide and the antikeys unambiguously 
determine the keys, the keys of L and 2 N F ( L ) are the same. Let X = 2 N F [ L ) ( Y ) , 
where Y C K and K is a minimal key. Then X ' = L(Y) is prime in S. Moreover, 
X C X' since L < 2 N F ( L ) . Since X G S', X is the intersection of all sets in S' 
that include X, X' among them. Let X = X' n X x n . . . n XK. Assume A G Z/„ n X . 
Thenm A G UNNX', and X'-A G S' as a set lying in [X'F\UP, X'] , which was added 
to S to get S, and therefore lies in S'. Thus X - A = (X ' - A) n X x n . . . n X * G S', 
which proves [X— UN,X] = [X F\UP,X\ C S'. Now, according to theorem 1, 
2NF{L) e 2NFn. • 

2.2 Third Normal Form 
In this section a lattice-theoretic characterization of the third normal form is given. 
Based on this characterization, the polynomiality of the 3NFTEST problem is 
proved for relations.2 The approximation problem is solved in the case of 3NF for 
relations and relations schemes. 

Theorem 2 Let R be a relation over U. Then R is in SNF iff [X D Up, X ] C SR 

for any X G SR - {U}. 

Proo f . Let R be in 3NF and X G SR,X ± U. Suppose A G UN. As in the 2NF 
case, it is enough to show that X — A G SR. Assume X — A is not closed; since X 
is, LR[X - A) = X . Therefore X - A A G FR, and X U G FR for R is in 
3NF. Closedness of X now implies X = U, a contradiciton. 

To prove the other direction, suppose [X n TLP, X] C SR for any X G SR — {U}', 
We must show that R is in 3NF. Let X A G FR, A G LLNTA <£ X. Let us 

A&X. closed. But Y - A G [Y NUP, Y] C SR 

and is therefore closed. This contradiction proves LR(Y) = U and finishes the proof 
of the theorem. • 

We denote the subset of Cln generated by 3NF relation schemes by 3 N F n . 
Similarly to the 2NF case, this subset is not closed under the operations of Cln. 
One only has to observe that the closures L s i , Ls, constructed in the previous 
section (for both V— and A— cases) belong to 3NFn while Ls does not since it is 
not in 2NFn c 3NFn . 

It is well-known that recognizing 3NF is .VP-complete in the case of relation 
schemes [14]. The situation is much better in the case of relations, where the 
problem has polynomial time complexity, as the following theorem shows. 

Theorem S There is an algorithm that, given a relation R over U, decides whether 
R is in 3NF in a polynomial time in the number of rows and columns of R. 

Proo f . Let us present an algorithm which, when given R as its input, produces a 
boolean variable x as the output: 

1. Find the set UP = UP(R). 

2. Find the equality set ER. 

2 The problem is known to be ^ - c o m p l e t e for relation schemes [14]. 

prove Suppose LR{X) = Y / U. Since 
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3. x := 1. 

4. For all X £ ER and A G UN = U - UP such that A & X and X ? U do the 
following: find the closure LR{X — A); if it equals X — A, go to the next pair 
(X, A), otherwise x := 0 and go to step 5. 

5. Stop. 

We claim that this algorithm works in polynomial time and that the output 
x = 1 iff R is in 3NF. Letus prove the first claim. Finding Up can be done in 
polynomial time as shown in [8]. Constructing ER is evidently polynomial in the 
size of R, and so is its own size. Finally, closure of any set can be found in O(|ER |) 
time, see [9]. Thus, the algorithm works in polynomial time. 

Now, assume x produced by the algorithm is 0. Then for some X € ER C SR 
and A & UN we have X — A SR. Then R is not in 3NF by theorem 3. Let x 
be 1. Let X 6 SR,X ^ U. Since M(SR) C ER [9], X = XI n . . . n XK, where 
X\,..., XK are the elements of ER which are supersets of X. Let A G XF\UN- Since 
i = l , XI - Ae SR for each t. Hence X - A = (X x - A) n . . . n (XK - A) € SR 
and [X D UP, XI C SR. Thus, R is in 3NF by theorem 3. • 

Although 3JVFn is not closed under the operations of Cln, we nevertheless are 
able to find the 3NF approximation which is defined as follows: 

Definition Let L G Cln. Then V S Cl„ is called the 3NF-approximation of L if 
the following holds: 

1. V > L] 

2. V e Cln(Up(L)) D ZNFn (i.e.Up(L) = UP(L') and V is in 3NF)-, 

3. L' is the minimal such, i.e. if L" 6 Cln{Up(L)) D 3 N F n and L" > L, then 
L" > L'. 

Given a closure L, construct a closure denoted by 3 N F ( L ) using the following 
procedure: 

1. Add all intervals [ X n W p , X ] for X & Si to Si,. Denote Si thus extended by 
s. 

2. Extend S to the semilattice, i.e. let S' be the minimal semilattice containing 
S. 

3. 3NF{L) = Ls 

Proposi t ion 2 Given a closure L, 3NF(L) is its SNF-approximation. 

Proo f . Since Si C S',3NF(L) > L. According to the procedure given above, no 
new coatom may appear in S' and since S' is an extension of Si, CA(Si) = C A ( 5 ' ) . 
Therefore UP(L) = UP(3NF{L)) by theorems -2 and -1. 

To prove 3 N F ( L ) e 3 N F n , consider XeS',X^U, and a nonprime A e X . X 
can be represented as X = X i f l . . . f~l Xk, where X,- G [Xj1 n UP, X? ] and X ? 6 Si. 
Therefore, X< - A € [X? n Up, X? ] C S' and X - A = (Xi - A) n . . . (X fc - A) G S'. 
thus 3NF(L) 6 3NFn by theorem 3. 

If L" is as in 3 of the definition of the 3NF-approximation, Si C Si» and by 
theorem 3 [X D Up, X] C SL a for any X G Si, X ti U. Since Sin is a semilattice, 
this shows Sii C Sia and L" > 3 N F ( L ) . The proposition is proved. • 
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Having described the 3NF-approximation, we have a natural question: how hard 
is it to find the approximation. Notice that the question asked is ambiguous - we 
did no.t specify what is given as an input: a relation or a relation scheme. That is, 
we have two different problems: 

(3NF-APPROXIMATION FOR SCHEMES): Given a relation scheme {U,F), 
find a scheme (U,F') which is a SNF-approximation of (U,F) (to put it another 
way. LF< = 3NF(LF)). 

(3NF-APPROXIMATION FOR RELATIONS): Given a relation R, find a re-
lation R' which is R's SNF-approximation (i.e. LR> = 3NF(LR)). 

The complexity result for these problems is very similar to the one for 3NFTEST 
- the problem is polynomial for relations and superpolynomial for schemes. 
Theorem 4 The problem SNF-APPROXIMATION FOR RELATION can be 
solved in a polynomial time. The problem SNF-APPROXIMATION FOR 
SCHEMES is superpolynomial provided that P ^ MP. 

Proo f . Let R be a relation. Let E'„ = ER[}{X - A : X S ER,A € U„{R)}. 
Since constructing both ER and Un[R) takes polynomial time in the size of R 
[8,9], E'R can be found in polynomial time too. FYom theorem 3 we conclude that 
M{SL) C E'R c SL, where L = 3NF(LR), and a relation R! satisfying LR< = L 
can be found by using the polynomial algorithms from [19]. This relation R' is a 
sought 3NF-approximation of R. 

To prove the second part, show how we can use 3NF- APPROXIMATION FOR 
SCHEMES to solve 3NFTEST. Given a scheme (U,F), let (U,F') be its SNF-
approximation. Notice that (U,F) is in 3NF iff F+ = (F') + . Since checking the 
equality F * = for two arbitrary families of FDs takes polynomial time [18], 
knowing F' gives rise to a polynomial algorithm that tests 3NF. Since 3NFTEST is 
.VP-complete, P ^ MP implies that approximation can not be found in a polynomial 
time. Note that an exponential time complexity algorithm was provided before 
proposition 2. The theorem is proved. • 

2.3 Boyce-Codd Normal Form 
In this section we discuss our main topics - characterization, testing, approximation 
- for BCNF. The characterization is the simplest one and corresponds to a well-
known mathematical object: the order ideals. BCNFn turns out to be a sublattice 
of Cln, moreover, a distributive one. This ensures the existence of approximation, 
which, as in the 3NF case, can be found in polynomial time for relations and 
superpolynomial time for schemes. 

Theorem 5 Let R be a relation over U. Then R is in BCNF iff [0,X] C SR for 
anyXeSRlX^U. 

Proo f . Let R be in BCNF. Suppose X - A & SR for X 6 SR - {U}, A € X. Then 
X - A -+ A 6 FR, implying X — U € FR. Thus X - A € SR and [0, X ] C SR. 
Conversely, if the condition of the theorem holds, suppose X —* A g FR, A ^ X . If 
X — U & FR, then I f i f X ) JIU and X € \<»,LR(X)\ C SR, i.e. X is closed. This 
contradiction shows LR{XJ = U, i.e. R is in BCNF. • 

Some similar results for BCNF were established earlier, e.g. in [20]. The fol-
lowing corollary gives some alternative characterizations, all of them immediately 
derivable from theorem 5. 
Corol lary 1 Given a relation scheme (U, F), the following are equivalent: 
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1. (U,F) it in BCNF; 

S. [0, X ] C SF for every X E SF - {U}; 

3. SF — where Xi,...,Xt are the antikeys; 

4- P(U) -SF = (U,r=i[#.>2/]) ~ {U}, w>"rc Ki,...,Kr are the minimal keys.3 

Let BCNFn stand for the subset of Cln generated y schemes in BCNF. Clearly, 
BCNFn C 3NFn C 2NF n . 

Proposit ion 3 BCNFn w a distributive sublattice of Cln. 

Proo f . Let LuL2 E BCNFn. Since Sx,, f l S i , evidently satisfies the condition 
of theorem 5, t i A L2 G BCNFn. To prove Li V Lj 6 BCNFn, represent SLl 

and SLt as U - i f f , U W and U!=i[0> ^ J U M respectively, see corollary 1. 
Let Zi,...,Zp~bt the maximal sets among X\ XT,Yi,... ,Yt. Then U 
SL, U { X n Y : X E SLi,Y E SL,} = U?=1[0,Z {\\J{U} = SLl U SLj. Thus 
Lj V L2 6 BCNFn. The sublattice BCNFn is distributive because the join and 
meet operations correspond to union and intersection of semilattices. • 

BCNFTEST is known to be ^ -complete for relation schemes. BCNFTEST 
here is the problem that tests whether a subscheme of a relation scheme (U,F) 
generated by a proper subset X C U is in BCNF. (Notice that checking whether 
the scheme itself is in BCNF takes polynomial time: one has to construct the 
canonical minimal cover [25] and check if it consists only of key dependencies). As 
in the 3NF case, the analogue of BCNFTEST problem for relations can be solved 
in polynomial time. 

Proposit ion 4 Given a relation R over U, BCNFTEST can be solved in polyno-
mial time in the size of R. 

Proo f . Let R be a relation and X C U. Let Rx denote the projection of R onto 
X . Denote the set of maximal elements of ERx — { X } by Ex- Then, according to 
theorem 5, Rx is in BCNF iff for all Y € Ex and all A e Y : Y - A is closed, i.e. 
LRX (Y — A) = Y — A. Since constructing Ex takes polynomial time and closure 
can be computed in polynomial time too, the whole algorithm has polynomial time 
complexity. • 

Similarly to th 3NF case, there exists unique approximation of a given closure by 
the one in BCNF. More precisely, we define the BCNF-approximation of a given clo-
sure L as the minimal closure V such that V > L and L' E Cln(Up(L)) n BCNF„. 
Let BCNF(L) be the closure whose semilattice of closed sets is U!=i[fli Xi] U{^}> 
where X i , . . . , X< are the antikeys of L. It follows immediately from corollary 1 
and the definition of approximation: 

Proposit ion 6 Given a closure L, BCNF(L) is its BCNF-approximation. • 

BCNF-approximation has clear interpretation in terms of FDs. If L = LF for 
a relation scheme (U, F), let F' = {Ki -* U,...,KT -* U), where Ki,...,Kr are 
the keys of (U,F). Then LF. = BCNF(L). 

We finish this section by proving the complexity result for the approximation 
problem. As in the 3NF case, we have two problems: 

s This result was proved by J. Biskup [3]. 
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(BCNF-APPROXIMATION FOR SCHEMES): Given a relation scheme (U, F), 
find its BCNF-approximation, i.e. a relation scheme (U,F') such that LF< = 
BCNF{LF). 

(BCNF-APPROXIMATION FOR RELATIONS): Given a relation R, construct 
a relation R' which is R's BCNF-approximation, i.e. LR< = BCNF(LR). 

T h e o r e m 6 The problem BCNF-APPROXIMATION FOR RELATIONS can be 
solved in a polynomial time. The problem BCNF-APPROXIMATION FOR 
SCHEMES has exponential complexity. 

Proo f . Let R be a relation and Xi,..., X% its antikeys. Let S = (J*=1[0, 
Then LS € BCNFN by corollary 1 and LS = BCNF(LR) because the family of 
antikeys unambiguously determines the family of keys. Let MR = { X — A : A 6 
U,i = 1 , . . . ,t}. Then M(S) C. MR C S, and applying the polynomial algorithm of 
[19] we can construct a relation R' with SRI = S. Since finding the antikeys takes 
polynomial time [8,9], R' can be constructed in a polynomial time if R is the input. 
Notice that LR. = LS = BCNF{LR). Thus R' is R's BCNF-approximation. 

As it was mentioned before, an exponential complexity algorithm for BCNF-
APPROXIMATION FOR SCHEMES exists: one has to find all minimal keys. On 
the other hand, it is clear that the size of the approximation F' is about the size 
of its canonical minimal cover [25] which consists of FDs Ki —* U,...,Kr —+ U, 
where Ki Kr are the minimal keys of (U,F) and it can be exponential: Yu 
and Johnson [26] have given an example of a scheme consisting of k functional 
dependencies on A:3 attributes with k\ minimal keys. For a detailed discussion of 
schemes reaching this extremal number of minimal keys, see [2]. • 

Note that the polynomial algorithm for approximation problem for relations, 
described in the proof of theorem 6, was used in [13] to construct an algo-
rithm that, given a relation, finds its minimal keys. This problem has exponene-
tial time complexity, but it can be decomposed into two subproblems: BCNF-
APPROXIMATION, which has polynomial time complexity, and dependency in-
ference problem [21] for which good practical algorithms exist. 

References 
[1] C. Beeri, P.A. Bernstein, Computational problems related to the design of 

normal form relation schemes, ACM TODS 4 (1979), 30-59. 

[2] A. B£k£ssy, J. Demetrovics, Contribution to the theory of data base relations, 
Discrete Matheematics 27 (1979), 1-10. 

[3] J. Biskup, private letter. 

[4] G. Burosch, J. Demetrovics, G.O.H. Katona, The poset of closures as a model 
of changing databases, Order 4 (1987), 127-142. 

[5] E.F. Codd, Further normalization of the data base relational model, in: Data 
Base Systems, Prentice Hall (1972), 33-64. 

[6] A. Day, A lattice interpretation of database dependencies, Preprint, Lakehead 
University, 1989. 



152 J. Demetrovics, G. Hencsey, L.O. Libkin, I.B. Muchnik 

[7] J. Demetrovics, L. Libkin, I. Muchnik, Functional dependencies and the semi-
lattice of closed classes, in: Proc. of the £nd Symp. on Math. Fund, of Database 
Syst., (J. Demetrovics, B. Thalheim eds.) Springer LNCS 364 (1989), 136-147. 

[8] J. Demetrovics, V.D. Thi, Keys, antikeys and prime attributes, Annates Univ. 
Sci. Budapest, Sect. Comp., 8 (1987), 35-52. 

[9] J. Demetrovics, V.D. Thi, Relations and minimal keys, Acta Cybernetica 3 
(1988), 279-285. 

[10] R. Fagin, Horn clauses and database dependencies, Journal of ACM 29 (1982), 
678-698. 

[11] R. Fagin, M. Vardi, The theory of data dependencies - a survey, in: Mathe-
matics of Information Processing (M. Anshel, W. Gewirtz eds.), Amer. Math. 
Soc. 34 (1986), 19-71. 

[12] M. Gary, D. Johnson, Computers and Intractability: A Guide to NP-
completness (W.H. Freeman and Co., San FYancisco, 1979). 

[13] G. Gottlob, L. Libkin, Investigations on Armstrong relations, dependency in-
ference, and excluded functional dependencies, Acta Cybernetica 9 (1990), 385-
402. 

[14] J.H. Jou, P.C. Fischer, The complexity of recognizing 3NF relation schemes, 
Inform. Process. Letters 14 (1982), 187-190. 

[15] L. Libkin, I. Muchnik, The lattice of subsemilattices of a semilattice, Algebra 
Universalis, to appear. 

[16] B.M. Litvakov, Approximation of choice functions, Automation and Remote 
Control 45 (1984), 1221-1229. 

[17] C.L. Lucchesi, S.L. Osborn, Candidate keys for relations, JCSS 17 (1978), 
210-279. 

[18] D. Maier, The Theory of Relational Databases (Computer Science Press, 
Rockville, MD, 1983). 

[19] H. Manilla, K.-J. Raiha. Design by example: an application of Armstrong 
relations, JCSS 33 (1986), 126-141. 

[20] H. Manilla, K.-J. R aiha, Practical algorithms for finding prime attributes 
and testing normal forms, in: Proc. of the Symp. on Principles of Database 
Systems (1989), 128-133. 

[21] H. Manilla, K.-J. Dependency inference, in: Proc. of the Conf. on Very Large 
Databases (1987), 155-158. 

[22] J. Paredaens, P. De Bra, M. Gyssens and D. Van Gucht, The Structure of the 
Relational Datamodel (Springer-Verlag, Berlin, 1989). 

[23] B. Thalheim, Dependencies in Relational Databases (Stuttgart-Leipzig, 1991). 

[24] J.D. Ullman, Principles of Database Systems (Pittman, 2nd ed., 1982). 

[25] M. Wild, Implicational bases for finite closure systems, Preprint 1210, Univer-
sity of Darmstadt, 1989. 



Normal Form Relation Schemes: A New Characterisation 153 

[26] C.T. Yu, D.T. Johnson, On the complexity of finding the set of candidate 
keys for a given set of functional dependencies, Information Pocessing Lett. 5 
(1976), 100-101. 

Received April 5, 1991. 
Revised version received November 5, 1991. 


