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On Unambiguous Number Systems with a 
Prime Power Base 

Juha Honkala* 

Abstract 
We study unambiguous number systems with a prime power base. Given 

a prime p and a p-recognizable set A, it is decidable whether or not A is 
representable by an unambiguous number system. Given an arbitrary integer 
n and n-recognisable set A, the unambiguous representation of A is unique if 
it exists, provided that A is not a finite union of arithmetic progressions. 
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1 Introduction 
We study representation of integers in arbitrary number systems. Here " arbitrary" 
means that the digits may be larger than the base and that completeness is not 
required, i.e., every integer need not have a representation in the system. Also the 
number of the digits is arbitrary. These number systems were defined and studied 
by Maurer, Salomaa and Wood in [14]. The work was continued by Culik II and 
Salomaa in [5] and Honkala in [8]. These references discuss the connections to the 
theory of L systems and cryptography. Further results on number systems have 
been obtained in [9]-[ll]. For closely related work see [1,7,13]. 

The study of number systems is closely connected with the study of sets of inte-
gers recognizable by finite automata. By definition, a set A of nonnegative integers 
is ¿-recognizable if and only if there exists a finite automaton which recognizes the 
representations of the integers of A written at base k. Here fc > 2 is a positive 
integer. Now, if A is represented by a number system N, the representations of the 
integers of A can be recognized by an automaton with a single state if the digit 
set ( 0 , 1 , . . . , k — 1} is replaced by the digit set of N. Thus, representability by a 
number system implies simplicity of recognition when the choice of the base and 
the digits is optimal. 

In this paper we study unambiguous number systems with a prime power base. 
By definition, a number system is unambiguous if no integer has more than one 
representation in the system. The assumption concerning the base makes it possible 
to apply the theory of finite fields. 

Suppose p is a prime. By Christol, [2], a set A of nonnegative integers is p-
recognizable if and only if there exists a nonzero polynomial P(z, t) over the finite 
field Fp such that P(z,aA) = 0. Here aA is the series £\ g y l o f Fp\\z]}- Using 
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this result we show that it is decidable whether or not a given p-recognizable set 
is represented by an unambiguous number system. Consequently, given a number 
system N with a prime power base, it is decidable whether or not there exists an 
unambiguous number system equivalent to N, i.e., representing the same set of 
integers as N. 

Consider an n-recognizable set A. Here n is an arbitrary integer, not neces-
sarily a prime. It is well known that A is also nfc-recognizable for each positive 
integer k. We show that, on the contrary, the set A has at most one unambiguous 
base, provided that A is not a finite union of arithmetic progressions. More specif-
ically, if A is not a finite union of arithmetic progressions, there exists at most one 
unambiguous number system representing exactly the integers of A. 

2 Definitions 
By a number system we mean a (v + l)-tuple N = (n, m i , . . . , m„) of positive 
integers such that v > 1, n > 2 and 1 < mi < m? < . . . < m„. The number n is 
referred to as the base and the numbers m, as the digits of the number system N. 
A nonempty word 

Wik-i •••miimio, 1 < *) < v (1) 

over the alphabet { m i , . . . , m„} is said to represent the integer 

miknk + mik_lnk~1 + . . . + mj,n + m,0. (2) 

The word (1) is said to be a representation of the integer (2). The set of all repre-
sented integers is denoted by S(N). By definition, a number system is unambiguous 
if no integer has more than one representation. 

A set A of positive integers is called representable by a number system, shortly 
RNS, if there exists a number system N such that A = S(N). 

Suppose k > 2 and denote k = {0 ,1 , . . . ,k — 1}. Define the mapping vk from 
k* to N by 

m 
uk{a0ai... am ) = a.*"""' K G k). 

»=0 

The mapping vk is extended in the natural way to concern languages L C k*. 
Hence vk[L) = {vk(x)\x G L}. By definition, a set A of nonnegative integers is 
k-recognizable if there exists a rational language L C k* such that A = vk(L). For 
the basic properties of ^-recognisable sets see [6] and [15]. 

The following result is essentially due to Culik II and Salomaa, [5]. For a proof, 
see [9]. 

Lemma 2.1 If N = (n, mi , . . . , m„) is a number system, the set S(N) is n-
recognizable. 

If p is a prime, we denote by Wp the field of integers modulo p. The polynomial 
ring over Fp in z is denoted by 7Fp[zj. The quotient field of Fp\z\ is denoted by 
IFp(z). The ring of formal power series over IFP in z is denoted by jFp[[z]]. An 
element a belonging to an extension field of IFp(z) is algebraic over IFp(z) if there 
exists a nonzero polynomial P(t) G IFp(z)\t\ such that P(a) = 0 . If a is algebraic 
over FP(z) there exists a polynomial R(t) € Fp(z)\t\ of minimal degree such that 
R(a) = 0 and the leading coefficient of R(t) is 1. This polynomial R(t) is called the 
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minimal polynomial of a. Notice that R(t) is necessarily irreducible. By definition, 
the degree of a equals the degree of the minimal polynomial of a. The basic facts 
about minimal polynomials and algebraic extensions of fields which will be needed 
in the sequel can be found in [12]. 

Suppose A is a set of nonnegative integers. Then the series aA over Wp is defined 
by 

C A - Y . * ' 
i£A 

The following theorem is due to Christol, [2], and Christol et al., [3]. 

Theorem 2.2 Suppose that p is a prime and A is a set of nonnegative integers. 
The set A is p-recognizable. if and only if the series 

<jA = Ylzi 
i€A 

of lFp[[z]] is algebraic over the field Fp(z). If A is p-recognizable there exists a 
nonzero polynomial P in Fp[z, t] such that 

P(z,aA(z))= 0 

and the degree of P in t is at most p' — 1. Here s is the number of states in the 
minimal deterministic automaton recognizing the set 

{ a 0 o i . . .o/,[/i > 0, a,- e p ,o 0 + aYp + . . . + ahph e A}. 

The bound given above for the degree of P can be deduced from [3, pages 
407-408]. 

In the sequel we need a characterization of the sets A such that aA has degree 
one over lFp(z). By definition, a set A of nonnegative integers is recognizable if A 
is a finite union of arithmetic progressions. 

Lemma 2.3 A nonempty set A C IN is recognizable if and only if there exists a 
nonzero polynomial P in Fp\z, t) of degree one in t such that P(Z,CTA{Z)) = 0. 

Proof . If A is recognizable, the existence of P is clear. On the contrary, suppose 
that 

R(z) + Q{Z)OA = 0, 

where R(z), Q[z) € Without loss of generality we suppose that Q(0) ^ 0. 
Therefore aA is an IFp-rational power series. Because Fp is finite, the set A = 
{ i | aA contains the term z ' } is recognizable (see [16], Theorem II 5.2). 

• 

3 The Main Results 
Suppose p is a prime. In this section we repeatedly use the following fact. If 
r = X^r.z' belongs to 2F"p[[z]] and q > 1, then 
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Lemma S.l Suppose that N = (n, mi , . . . ,m,, ) is an unambiguous number system. 
Suppose furthermore that n = pq, where p is a prime and q > 1. Define a(z) = 
£¿=1 z f n ' • Then os[N) € JFp[[z]] satisfies the equation 

at" -1 + a = 0 

m Fp\\z)). 

Proof . Clearly 

v 
S(N) = [J (m,- + nS{N)) U { m 1 ( . . . , m.}. 

» = i 

Because N is unambiguous, 

(mi, + nS(N)) n (mi, + nS(N)) = 0 

if M ^ *2 aid 1 < M, »2 < v. Therefore 

= a(z) + j T ( * m i E 
.=l jes(N) 

= «w + «w E *ny 
yes(Ar) 

= a( , ) + « ( , ) ( E 
yes(^) 

= a(z) + a(z)<7%{n). 

Lemma 3.2 Suppose that R(t) £ Fp(z)\t\ has degree k > 2 in t. Suppose further-
more that #(t) divides 

P[t) = atp' - t + a 

where a €E Fp\z\, the degree mi of the lowest term of a is at least one and q > 1. 
Then 

g < l ° g p ( m i * ( A ; - l ) + l) . 

Proo f . Because the derivative of P(t) equals —1, the roots of P(t) are simple. 
At least two of the roots of P{t), say 71 and 73, are also roots of ii(t). Denote 
P = ll -12- Now 

aP' - ft = P{n) - = 0. (3) 
Because ft is the difference of two roots of a polynomial of degree k, the degree 
of the minimal polynomial of /? is at most kCk — 1). Suppose that the minimal 
polynomial of /? multiplied by an element of Fp\z\ equals 

S(t) = a m t m + . . . + M + ao( 
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where a< €E S?p\z\ for 0 < « < m, and am ^ 0. Now 

W = a ^ i ^ ' r + . - . + a i y + a g ' 
= a^V1)"/*™+ ••• + «! V 1 )^«? ' -

Here the last equation follows by (3). Therefore, fi is a root of the polynomial 

5X (t) = « £ [a'1 )mtm + ... + o f (a~1 )t + a f . 

Because the degrees of S and Si are equal to the degree of the minimal polynomial 
of /3, we have 

„p*— 1 „m„P*— 1 / j \ 
" m = a a 0 ( 4 ) 

Denote the degrees of the lowest terms of am and Oo by » and j , respectively. Then 

( t - y ) ( P « - i ) <mik[k-i). 

Because the degree of the lowest term of a is positive, » > j , and the claim follows. • 
Theorem S.S Suppose p is a prime. Given a p-recognizable set A, it is decidable 
whether or not there exists an unambiguous number system N such that A — S{N). 

Proof . By Theorem 10 of [10], it is decidable whether or not A is recognizable. 
Suppose first it is not. 

Consider the series a a S iPp[[«]]. By Theorem 2.2, is algebraic over JFp(z) 
and the degree of the minimal polynomial R[t) of a A is a t most p* — 1. Here s is an 
effectively obtainable positive integer. By Lemma 2.3, the degree of R(t) is at least 
2. Suppose now that A = S(N) where N = ( n , m i , . . . , m«) is an unambiguous 
number system. By Lemma 2.1 and Cobham's theorem, [4], there exists a positive 
integer q such that n = pq. Denote 

a(z) = zmi + ... + zm' 

and 
P(t) = at"' - t + a. 

By Lemma 3.1, we have P(<TA) = 0. Therefore, because R(t) is the minimal 
polynomial of <XA, the polynomial R(t) divides P[t). By Lemma 3.2, 

q < logp(mi (p* - l)(p* - 2) + 1) < 2a + logp mx . 

Here mi is necessarily the least positive element of A. Therefore, to decide whether 
or not A is representable by an unambiguous number system, it suffices to decide 
whether or not A = Ŝ"(TV) for an unambiguous number system N with a base 
p', t < 2s + logp mx. This can be done by Theorem 6.3 of [5]. 

Suppose then that A is recognizable. The decidability in this case will be shown 
in the next section of this paper. 

• 
Corollary 3.4 Given a number system N with a prime power base, it is decidable 
whether or not there exists an unambiguous number system Ni such that SIN) = 
Si*). 
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The decidability status of the problems considered in Theorem 3.3 and Corollary 3.4 
is open in the general case. In the last result of this section, however, no primality 
assumptions are needed. 

Theorem 3.5 Suppose A is a k-recognizable set for some k > 2. Furthermore, 
suppose that A is not recognizable. Then there is at most one unambiguous number 
system N such that A = S(N). 

Proof . Suppose that Ni = ( n i . m i , . . . , ^ ) and N2 = (ri2, m', , . . . ,m(,) are dis-
tinct unambiguous number systems such that A = S(N1) = 5(yVr2)- Because A is 
not recognisable there exist positive integers n > 2, t and j such that ni = n* and 
«2 = n } . Denote 

a(z) = zmi + ... + zm* 

and 
b(z) = zm' + ... + zm'. 

Now 
aA(z)=a[z) + a(z)aA{zni) (5) 

and 
<rA(z)=b(z)+b(z)aA(zn'). (6) 

Here aA belongs to JFp\\z\\. The choice of the prime p is free. Replace in (5) z by 
zn' and in (6) z by zn'. Hence 

aA(zni) = a(zn') + a(znS)aA(zn'*') (7) 

and 
vA(zni) = b(z»') + b(zn<)aA(zni+J). (8) 

Now (5)-(8) imply that 

aA(z)[b(z)a(zni) - a(z)6(z"')] = a(z)b(z)\a(zni) - (9) 

Because necessarily mi = m[, the lowest terms of a{z) and b(z) have the same 
degree. Therefore, if n} ^ n*, the right-hand side of (9) is nonzero. K n3 = n', 
necessarily a(z) jt b(z), and again the right-hand side of (9) is nonzero. By Lemma 
2.3 this implies that A is recognizable. This contradiction proves the claim. 

• 
Theorem 3.5 does not hold true for recognizable sets (see e.g. Example 4.4 

below). 

4 Representation of Recognizable Sets 
In this section we give a proof of Theorem 3.3 in the case of a recognizable set. 

Suppose A C ffl is recognizable. Given k 6 ]N, it is decidable whether or not 
A C kJN. Denote by d the greatest common factor of the elements of A. Because d 
necessarily divides the least nonzero element of A, d can be found out effectively. If 
A = S(N) where N = (n, m i , . . . , mt) is a number system, d divides all the digits 
of N. Therefore 

d~lA = {x\dx e A} = S(N') 
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where N' = (n, d - 1 m i d - 1 mt) . Clearly, N is unambiguous if and only if N' 
is unambiguous. Hence we suppose without loss of generality in the rest of this 
section that d — 1. Define now the w-word w(A) = 010203... by 

/0 ifi&A 
a i = \ 1 if»' e A. 

Because A is recognizable, there exist words i i , » £ { 0 , s u c h that w(A) = uvu. 
(Here vu = vvv...). The words u and v can be obtainea effectively. In the sequel 
we always assume that v is a primitive word, i.e., that there does not exist a word 

and an integer k > 2 such that v = vf. If i, j > 1, we denote 

i] ~ o.o.+ i • • • ai+]-l-

The length of a word to is denoted by |tu|. 

Lemma 4.1 Suppose A is a recognizable set with w(A) = uvw. If N = 
(n, mi,..., mA is an unambiguous number system representing A with n > |u|+ |v|, 
then the length of v divides n. 

Proof . Suppose that A = S(N) where N = ( n 1 m i l . . . l m ( ) is an unambiguous 
number system and n > |u| + ]v|. Suppose m is a digit of N. Denote 

u>i = w(A)[mn + |u| + 1,\v\\ 

and 
w2 = w(A)[|u|+ l,|w|]. 

Clearly, if rm e {|ul + 1 |u| + |v|}, then mn + m,- € (mn + |u| + 1 , . . . ,mn + 
|u|+|t>[}. On the otner hand, any integer in the set {|uj + 1 , . . . , |u|+ |v|} belonging 
to A is a digit of N. Therefore the word uii is obtainea from by replacing some 
O's by l's. However, the number of l's in tui is equal to the number of l's in w?. 
Therefore u>i = 103. Because a primitive word equals no nontrivial conjugate of 
itself, 

mn + |u| + 1 = |u| + 1( mod |u|). 

Hence |v| divides mn. Because this holds for any digit m and the greatest common 
factor of the digits is 1, |v| divides n. 

• 
If A C W, we denote A° = A U {0}. If a set B is a disjoint union of the sets 

Bi,...,B,, we denote B = Bx U B 3 U . . . U B , . 
Lemma 4 .2 Suppose that A is a recognizable set of positive integers with w(A) = 
uvu. Then there is an unambiguous number system N = (n, m i , . . . , m«) represent-
ing A with rt > |u|-f |v| if and only if there exist a positive integer k and nonnegative 
integers xi, x2,..., ijt such that 

zi + A ° U . . . U i f c + A0 = IN (10) 

and, furthermore, for each x E A there are infinitely many elements of A congruent 
to x modulo the length of v. 
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P r o o f . Suppose first that A = S(N), where N = (n, mj , . . . .ггц) is an unambigu-
ous number system such that n > |u[+ |u|. By Lemma 4.1, |i>] divides n. Therefore 
there exists an integer t with 1 < t < n such that 

{x\x = t( mod n)} П A = i -I- nlN. 
Suppose that ¡ / i , . . . , j /k are the digits of N that are congruent to t modulo n. 
Because N is unambiguous, we have 

t/i + nA° U . . . U yk + nA° = »' + nJV. 
Hence 

-(У1 - i) + A0 U. . .U - ( у * - г) + А0 = IN. п п 
It is clear that if x G A there are infinitely many elements of A congruent to x 
modulo the length of v. 

Conversely, suppose that there exist x\,...,xk such that (10) holds. Fix n > 
|u| + |t)| such that |u| divides n. The digits are chosen as follows. Consider an 
integer » with 1 < » < n. If 

{x\x = t'( mod n)} П A = t + nlN, 
then 

1 + п5С1 + п А 0 и . . . й г + пхк + пА° = t + nlN (11) 
and we take the integers г + n x i , . . . , % + nxk as digits. If 

{x\x = i( mod n)} П A = i + n + nlN, 
then 

t + n + nxx + nA° U . . . U t + n + nxk + nA° = i + n+ niv (12) 
and we take » + n + n i j , . . . , » + n + nxk as digits. Let N be the number system 
that has base n and has all the digits chosen above. An inductive argument shows 
that A = S{N). The unambiguity of N follows because we have disjoint unions in 
(11) and (12). 

• 
Notice that there exists at most one sequence x \ , X k of nonnegative integers 

such that (10) holds. The existence of the sequence is easy to decide. 
Suppose A is a recognizable set with w(A) = uvw. Theorem 6.3 of [5] implies 

that all unambiguous number systems N = (n, m i , . . . , mt) representing A with 
n < |u| + can be constructed effectively. Lemmas 4.1 and 4.2 give all unam-
biguous representations with base greater than or equal to |u| + |f|. (This follows 
because no set has two distinct unambiguous representations with the same base.) 
In particular, given a recognizable set A, it is decidable whether or not there is an 
unambiguous number system N such that A = S(N). This concludes the proof of 
Theorem 3.3. 
Example 4.3 Denote N = (2,1,4). By [5, Example 2.3], S(N) = {x\x £ 
2( mod 3), x > l ) . Clearly N is unambiguous. This example snows that sometimes 
a recognizable set has unambiguous bases smaller than the period. By Lemma 4.2, 
S(N) does not have other unambiguous representations. 
Example 4.4 Denote A = {z|x = 0, l(mod4), x > 1). Then 

А0 и 2 + A0 = IN. 
Therefore, by the proof of Lemma 4.2, the set A has unambiguous base 4m if m > 1. 
Hence A has infinitely many unambiguous bases. This shows that Theorem 3.5 does 
not hold true for recognizable sets. 
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