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On Unambiguous Number Systems with a
Prime Power Base

Juha Honkala®

Abstract

We study unambiguous number systems with a prime power base. Given
a prime p and a p-recognizable set A, it is decidable whether or not A is
representable by an unambiguous number system. Given an arbitrary integer
n and n-recogniszable set A, the unambiguous representation of A is unique if
it exists, provided that A is not a finite union of arithmetic progressions.
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1 Introduction

We study representation of integers in arbitrary number systems. Here " arbitrary”
means that the digits may be larger than the base and that completeness is not
required, i.e., every integer need not have a representation in the system. Also the
number of the digits is arbitrary. These number systems were defined and studied
by Maurer, Salomaa and Wood in &14]. The work was continued by Culik II and
Salomaa in [5] and Honkala in [8]. These references discuss the connections to the
theory of L systems and cryptography. Further results on number systems have
been obtained in [9)-(11]. For closely related work see [1,7,13].

The study of number systems is closely connected with the study of sets of inte-
gers recognisable by finite automata. By definition, a set A of nonnegative integers
18 k-recognizable if and only if there exists a finite automaton which recognises the
representations of the integers of A written at base k. Here k > 2 is a positive
integer. Now, if A is represented by a number system N, the representations of the
integers of A can be recognized by an automaton with a single state if the digit
set ﬂ?, 1,...,k — 1} is replaced by the digit set of N. Thus, representability by a
number system implies simplicity of recognition when the choice of the base and
the digits is optimal.

In this paper we study unambiguous number systems with a prime power base,
By definition, a number system is unambiguous if no integer has more than one
representation in the system. The assumption concerning the base makes it possible
to apply the theory of finite fields.

Suppose p is a prime. By Christol, (2], a set A of nonnegative integers is p-
recognizable if and only if there exists a nonsero polynomial P(z,t) over the finite
field F, such that P(z,04) = 0. Here o4 is the series )., 2* of IFy[[z]]. Using
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this result we show that it is decidable whether or not a given p-recognizable set
i8 represented by an unambiguous number system. Consequently, given a number
system N with a prime power base, it is decidable whether or not there exists an
unambiguous number system equivalent to N, i.e., representing the same set of
integers as N.

Consider an n-recognizable set A. Here n is an arbitrary integer, not neces-
sarily a prime. It is well known that A is also n*-recognisable for each positive
integer k. We show that, on the contrary, the set A has at most one unambiguous
base, provided that A is not a finite union of arithmetic progressions. More specif-
ically, if A is not a finite union of arithmetic progressions, there exists at most one
unambiguous number system representing exactly the integers of A.

2 Definitions

By a number system we mean a (v + 1)-tuple N = (n,my,...,m,) of positive
integers such that v > 1,n>2and 1 < m; < my < ... < m,. The number n is
referred to as the base and the numbers m; as the digsts of the number system N.
A nonempty word

M, My - My My, IS‘I:_,'SU (1)
over the alphabet {m,...,m,} is said to represent the integer
k k-1
min" +mi,_n" . mpn+mg,. (2)

The word (1) is said to be a representation of the integer (2). The set of all repre-
sented integers is denoted by S(N). By definition, a number system is unambiguous
if no integer has more than one representation.

A set A of positive integers is called representable by a number system, shortly
RNS, if there exists a number system N such that A = S(N).

Suppose k > 2 and denote k = {0,1,...,k — 1}. Define the mapping vx from
k* to IV by :

m
vi{aos;...am) = Ea.-k"‘"' (a; € k).
) =0
The mapping vy is extended in the natural way to concern languages L C k*.
Hence v (L) = {vi(z)|z € L}. By definition, a set A of nonnegative integers is
k-recognizable if there exists a rational language L C k* such that A = vx(L). For
the basic properties of k-recognizable sets see [6] and [15].

’[I‘llle following result is essentially due to Culik II and Salomaa, [5]. For a proof,
see |9].

Lemma 2.1 If N = (n,my,...,m,) s a number system, the set S(N) is n-
recognizable.

If p is a prime, we denote by JF, the field of integers modulo p. The polynomial
ring over ¥, in z is denoted by F,[z]. The quotient field of F,[z| is denoted by
FFy(2z). The ring of formal power series over F, in z is denoted by Fj[[z]]. An
element a belonging to an extension field of Fy,(2) is algebraic over IF,(z) if there
exists a nonzero polynomial P(t) € Fp(z)[t] such that P(a) = 0. If a is algebraic
over F,(z) there exists a polynomial R(t) € Fp(z)[t] of minimal degree such that
R{a) = 0 and the leading coefficient of R(t) is 1. This polynomial R(t) is called the
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minsmal polynomial of a. Notice that R(t) is necessarily irreducible. By definition,
the degree of a equals the degree of the minimal polynomial of a. The basic facts
about minimal polynomials and algebraic extensions of fields which will be needed
in the sequel can be found in [12].

Suppose A is a set of nonnegative integers. Then the series 04 over F, is defined

by
op = Z 2.
1€EA
The following theorem is due to Christol, [2], and Christol et al., [3].

Theorem 2.2 Suppose that p 1s a prime and A 13 a set of nonnegative sntegers.
The set A ts p-recognizable. if and only if the serses

gp = Z z"
i€A
of Fp[|z]] +s algebraic over the field IFy(2). If A is p-recognizable there ezists a
nonzero polynomial P in Fp|z,t] such that

P(z,04(2)) =0

and the degree of P in t 1s at most p® — 1. Here s 13 the number of states in the
minimal determinisisc automaton recognizing the set

{a0a1...an|h 2 0,4a; Ep,ao+a1p+...+ahp"EA}.

The]bound given above for the degree of .P can be deduced from {3, pages
407-408|.

In the sequel we need a characterization of the sets A such that o, has degree
one over IF,(z). By definition, a set A of nonnegative integers is recognizable if A
is a finite union of arithmetic progressions.

Lemma 2.8 A nonempty set A C IN 1s recognizable if and only if there ezists a
nonzero polynomial P sn F,[z,t] of degree one in t such that P(z,04(z)) = 0.

Proof. If A is recognizable, the existence of P is clear. On the contrary, suppose

that
R(z) + Q(z)os =0,

where R(z),Q(z) € Fp[z]. Without loss of generality we suppose that Q(0) # 0.
Therefore 04 18 an [F,-rational power series. Because F, is finite, the set A =

{i | o4 contains the term z'} is recognisable (see [16], Theorem II 5.2).
8]

3 The Main Results

Suppose p is a prime. In this section we repeatedly use the following fact. If
r =73 r;z* belongs to IF,[[z]] and ¢ > 1, then

L] s
r”=§ r.2'P .
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Lemma 3.1 Suppose that N = (n,my,...,m,) 12 an unambiguous number system.
Suppose furthermore that n = p?, where p is a prime and ¢ > 1. Define a(z) =

Yiz1 2™ . Then og(n) € IFp|2]] satisfies the equation
at" —t+a=0

in IFpl[z])].

Proof. Clearly

5t = i +nS) Utrmss ., )

Because N is unambiguous,
(my, + nS(N)) N (m;, +nS(N)) =9

if 83 # 12 and 1 < 1,12 < v. Therefore

os(N) = a(z)+Z(z'"‘ Z 2™)
1=1

JES(N)

= a(z)+ a(2) Z P
JES(N)

= a(z) +a(z)( ). &)
JES(N)

= a(z) +a(z)o5y)-

O

Lemma 3.2 Suppose that R(t) € F,(z)[t] has degree k > 2 in t. Suppose further-
more that R(t) divides

P(t)=at? —t+a
where a € IF,[z], the degree my of the lowest term of a is at least one and ¢ > 1.

Then
g < log, (myk(k —1) + 1).

Proof. Because the derivative of P(t) equals —1, the roots of P(t& are simple.
At least two of the roots of P(t), say 7, and <3, are also roots of R(t). Denote
A=~ 7. Now '

' ap? — = P(11) — P(12) = 0. (3)

Because S is the difference of two roots of a polynomial of degree k, the degree
of the minimal polynomial of # is at most k{k — 1). Suppose that the minimal
polynomial of § multiplied by an element of F;|z| equals

S(t) =ampt™ + ...+ a5t + ay,
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where a; € Fp[z] for 0 <+ < m, and a;, #0. Now
S = B () +...+a5 B +ab
= P (a )™ +... + a’i"(a'l)ﬂ + af,".
Here the last equation follows by (3). Therefore, § is a root of the polynomial
Si(t) =af(a )™t +...+ a8 (a" )t + o’

Because the degrees of S and S; are equal to the degree of the minimal polynomial
of 8, we have

- -
abi"l = qmaf’ L, (4)

Denote the degrees of the lowest terms of a,, and ag by ¢ and j, respectively. Then
(i = )" — 1) < muk(k —1).

Because the degree of the lowest term of a is positive, 1+ > 7, and the claim follows.
0

Theorem 8.8 Suppose p 1s a prime. Given a p-recognizable set A, st ¢s decsdable
whether or not there exists an unambiguous number system N such that A = S(N).

Proof. By Theorem 10 of [10), it is decidable whether or not A is recognisable.
Suppose first it is not.

Consider the series 04 € IFp[(z]]. By Theorem 2.2, 04 is algebraic over Fy(z)
and the degree of the minimal polynomial R(t) of o4 is at most p® — 1. Here s is an
effectively obtainable positive integer. By Lemma 2.3, the degree of R(t) is at least
2. Suppose now that A = S(N) where N = (n,m;,...,m,) is an unambiguous
number system. By Lemma 2.1 and Cobham’s theorem, [4], there exists a positive
integer q such that n = p9. Denote

a(z) =2" + ...+ 2™

and .
P(t) =at?’ —t+a.

By Lemma 3.1, we have P(o4) = 0. Therefore, because R(t) is the minimal
polynomial of o4, the polynomial R(t) divides P(tj. By Lemma 3.2,

g < log,(mi(p® — 1)(p* —2) + 1) < 25 + log, m;.

Here m, is necessarily the least positive element of A. Therefore, to decide whether
or not A is representable by an unambiguous number system, it suffices to decide
whether or not A = S(N) for an unambiguous number system N with a base
p’, + £ 23+ log, m;. This can be done by Theorem 6.3 of [5].
Suppose then that A is recognizable. The decidability in this case will be shown
in the next section of this paper.
O

Corollary 8.4 Given a number system N with a prime power base, 1t 13 decidable
whether or not there ezxists an unambiguous number system Ny such that S(N) =

S(V).
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The decidability status of the problems considered in Theorem 3.3 and Corollary 3.4
is open in the general case. In the last result of this section, however, no primality
assumptions are needed.

Theorem 8.5 Suppose A ts a k-recognizable set for some k > 2. Furthermore,
suppose that A 1s not recognizable. Then there 12 at most one unambiguous number
system N such that A = S(N).

Proof. Suppose that Ny = (ny,m;,...,m,) and Nz = (nz, m ,my) are dis-
tinct unambiguous number systems such that A = S (M)=3S (}V )- Because Ais

not recognisable there exist positive integers n > 2, + and j such that n; = n* and
na = n’. Denote
' a(z) =2™ +...+ 2™

and , ,
b(z) =2+ ...+ 2™
Now :
oa(z) = a(z) + a(z)oa(z") (5)
and )
oa(2) = b(2) + b(z)oa(z"). (6)

Here o4 belongs to F, [[z]] The choice of the prime p is free. Replace in (5) z by
z" and in (8) z by z™ . Hence

oa(z”) = a(s"') + az"")ou (") (7)
and . ) . "
oa(z™) = b(z"") + b(z"")oa(z"). (8)
Now (5)-(8) imply that
oa(2)[b(z)a(z"") = a(2)b(z"")] = a(2)b(2)[a(="") — b(=™)]. (9)

Because necessarily m; = ml, the lowest terms of a(z) and b(z} have the same
degree. Therefore, if n’ # n', the right-hand side of § is nongero. If n? = n’,
necessarily a(z) # b(2), and agam the right-hand side of (9) is nonsero. By Lemma
2.3 this implies that A is recognizable. This contradiction proves the claim.
O
Tl;eorem 3.5 does not hold true for recognisable sets (see e.g. Example 4.4
below

4 Representation of Recognizable Sets

In this section we give a proof of Theorem 3.3 in the case of a recognisable set.
Suppose A C IN is recognisable. Given k € IV, it is decidable whether or not
A C kiN. Denote by d the greatest common factor of the elements of 4. Because d
necessarily divides the least nonzero element of A, d can be found out effectively. If
A = S(N) where N = (n,m,,...,m:) is a number system, d divides all the digits

of N. Therefore
d~'A = {z|dz € A} = S(N')
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where N' = (n,d"!my,...,d"m;). Clearly, N is unambiguous if and only if N’
is unambiguous. Hence we suppose without loss of generality in the rest of this
section that d = 1. Define now the w-word w(A) = ayazas... by

_fo ifiga
%=11 ifieA.

Because A is recognizable, there exist words u,v € {0,1}* such that w(4) = uv¥.
(Here v¥ = vvv...). The words u and v can be obtained effectively. In the sequel
we always assume that v is a primitive word, i.e., that there does not exist a word

v; and an integer k > 2 such that v = v}. If 1,5 > 1, we denote
w(A)[s,7] = aiti41 .. - Bip 1.
The length of a word w is denoted by |w|.

Lemma 4.1 Suppose A is a recognizable set with w(A) = uwo’. If N =
(nymy, ..., ™) 13 an unambiguous number system representing A withn > |u[+]v],
then the length of v divides n.

Proof. Suppose that A = S(N) where N = (n,m,,...,m;) is an unambiguous
number system and n 2> |u| + |v]. Suppose m is a digit of N. Denote

wy = w(A)[mn + [u] + 1, o]

and
wz = w(A)[|u| + 1, [v]].

Clearly, if m; € {Ju|+ 1,...,|u|+ |v]}, then mn+ m; € {mn+ |u|+1,...,mn+
luf+ |ur} On the other hand, any integer in the set {|u|+1,...,|u|+|v|} belonging
to A is a digit of N. Therefore the word w; is obtained from wy by replacing some
0’s by 1’s. However, the number of 1’s in w; i8 equal to the number of 1’s in wy.
Thei}efore w) = wy. Because a primitive word equals no nontrivial conjugate of
itself,

mn + |u]+ 1= |u|+ 1( mod |v)).

Hence |v| divides mn. Because this holds for any digit m and the greatest common
factor of the digits is 1, |v} divides n.

(]

If A C IN, we denote A° = AU {0}. If a set B is a disjoint union of the sets

Bi,...,B,, we denote B= B, UB,U...UB,.

Lemma 4.2 Suppose that A is a recognizable set of positive integers with w(A) =
uv”. Then there 1s an unambiguous number system N = (n,m,,..., m¢) represent-
ing A withn > |u|+|v| if and only sf there czist a positive integer k and nonnegative
" sntegers z1,%2,...,Tk Such that

2.+ A%U.. Uz + A°=IN (10)

and, furthermore, for each z € A there are infinstely many elements of A conérucnt
to £ modulo the length of v.
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Proof. Suppose first that A = S(N), where N = (n,m,,...,m;) is an unambigu-
ous number system such that n > lu +|v|. By Lemma 4.1, |ui divides n. Therefore
there exists an integer 1 with 1 <1 < n such that '

{z]z=i(modn)}NA=1+nN.
Suppose that y;,...,yr are the digits of N that are congruent to t+ modulo n.
Because N is unambiguous, we have
y1 +nA%U... Uy +nd’ =i+ niV.
Hence 1 1
;(!/1 —l)+A0U.U;(yk —I)+A0 =IN.

It is clear that if £ € A there are infinitely many elements of A congruent to =
modulo the length of v.

Conversely, suppose that there exist zy,...,zx such that (10) holds. Fix n >

|ul + |v| such that |v| divides n. The digits are chosen as follows. Consider an
mteger s with 1 <1 <n. If

{zlz=4{(mod n)} N A =1+nlN,

then
t+nz;+nd%0. . Ui+ nzg +nA’ =i+ nlN (11)
and we take the integers 1 + nz;,...,1 + nz; as digits. If
{zlz=+¢(modn)}NA=1i+n+nhN,
then
i+n+nz; +ndU. Ui+ n+nze +nA=i4n+nlV (12)
and we take t + n + nzy,...,1 + n + nzx as digits. Let N be the number system

that has base n and has all the digits chosen above. An inductive argument shows
that A = S(N). The unambiguity of N follows because we have disjoint unions in
(11) and (12).

O

Notice that there exists at most one sequence z,,...,z; of nonnegative integers
such that (10) holds. The existence of the sequence is easy to decide.

Suppose A is a recognizable set with w(A) = uv”. Theorem 6.3 of 5] implies
that all unambiguous number systems N = Yz, my,...,my) representing A with
n < |u| + |v| can be constructed effectively. Lemmas 4.1 and 4.2 give all unam-
biguous representations with base greater than or equal to |u|+ |v|. (This follows
because no set has two distinct unambiguous representations with the same base.)
In particular, given a recognizable set A, it is decidable whether or not there is an
unambiguous number system N such that A = S(N). This concludes the proof of
Theorem 3.3.

Example 4.3 Denote N = (2,1,4). By [5, Example 2.3], S(N) = {z|]z #
2( mod 3),z > 1}. Clearly N is unambiguous. This example shows that sometimes
a recognigable set has unambiguous bases smaller than the period. By Lemma 4.2,
S(N) does not have other unambiguous representations.

Example 4.4 Denote A = {z|z = 0,1(mod4),z > 1}. Then
A°U2+4°=NV.

Therefore, by the proof of Lemma 4.2, the set A has unambiguous base dm if m > 1.
Hence A has infinitely many unambiguous bases. This shows that Theorem 3.5 does
not hold true for recognizable sets.
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