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A note on intersections of isotone clones

Janos Demetrovics and Lajos Rényai *

Abstract

We show that for every k > 3 there exists two chains P;, P; over a base set
A, |A] = k such that the only isotone functions P; and P; have in common are
the constants and projections. This settles a question raised by Demetrovics,
Miyakawa, Rosenberg, Simovici and Stojmenovié. We prove a related result
which generalises the observation that two 3-element chains over the same
ground set always admit a nontrivial common order preserving operation.

1 Introduction

Let A be a nonempty finite set. An n-ary operation over A is a function from A"
to A. O,,XA) denotes the set of all n-ary operations over A and we put O(4) =
Un>00n(A). A set of operations C C O(A) is a clone over A if it contains
the projections and is closed under arbitrary superpositions (cf. Jablonskii [J58],
Poschel, Kaluznin [PK79|, Szendrei [SZ86|). The set of all clones over A is denoted
by L(As. L(A) is a partially ordered set with respect to inclusion and is closed
under intersection. Clearly the set K4 of all projections and constant operations
form a clone over A.

Let P =< A, <> be a partial order (a poset for short) on A. We say that an
operation f € O,(A) preserves Pif z; < y1, 23 < y2,...,%n < yn implies that
fz1,22,...,2,) < F(¥1,Y25-++1Yn), for every z;,y; € A. In this case f is called
an 1sotone function (with respect to P). It is easy to see that

Pol(P) = {f € O(A); f preserves P}
is a clone over A and Pol(P) 2 K,. In [DMRSS90] Demetrovics, Miyakawa,

Rosenberg, Simovici and Stojmenovié studied intersections of clones of the form
Pol(P). In the context of semirigid relations they proved that if |A| > 7 or)z}l =6
then there exists two posets P, P; over A for which we have Pol(P;) N Pol(P;) =
K 4. Also, they constructed four chains Qy, Q2,Q3, @4 over A for which the clones
Pol(Q;) intersect in K 4. The objective of this note is to improve the latter result.
For |A| > 3 we exhibit two chains P, P, over A with the property Pol(P;) N
Pol(P;) = K4 (Theorem A). It is easy to see that any two chains over a 3-element
set admit a common order preserving function. This observation is generalized in
Theorem B. We show for a large class of posets P that any two isomorphic copies
of P over the same ground set have a common order preserving operation. This
class, besides the 3-element chain, includes the diamond and the pentagon. The
note is concluded with a problem for further research.
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2 The results

Recall that a pair of elements a < b of a poset P forms a cover if thereisnoc€ P
such that a < ¢ < b. In this case we say also that b is an upper cover of a and a
18 a lower cover of b. A poset P is bounded if there exist z,y € P such that for
every z € P we have z < z < y. In the sequel we shall use the following result (cf.
[LP84), [P84]).

Lemma 1 Let |A| > 2 and C be a clone over A. Then C = K, if and only if
C’nOl(A) =Kasn Ol(A)

In simple terms, Lemma 1 states that a clone C is K4 exactly when the unary
fuctions in C are the constants and the identity function. For k > 0 let Ax denote
the set {0,1,...k — 1}.

Theorem A. For every integer k U 8 there exists two chains Py, P; on Ag such
that POI(Pl) N POl(Pz) = KA“.

Proof. We give first the definitions of P; and P, by specifying the covers in the
respective orders:

P: 0<1<2<...<k-2<k-1.

In the definition of P, we distinguish two cases, corresponding to the parity of k.
If k = 2m then we put

Py 2m—-2<2m—4<...<2<0<2m-1<2m-3<... <3 < 1.
If k=2m+ 1 then we set
P: 2m—-2<2m-4<...<2<2m<0<2m—-1<2m—-3<... <3< 1.

In other words, P; is the standard ordering of A, while in P; we have first
the cven integers from the interval [0,k — 1] in a decreasing order (with respect
to the standard ordering) followed by the odd numbers listed decreasingly again,
provided that k is even. If k is odd then a little perturbation is introduced: k — 1
18 placed between 2 and O rather than to the beginning of the sequence. This is
possible because k > 3 and therefore 2 # 2m.

As for the proof, let f € Pol(P;) N Pol(P;) be a nontrivial unary function (i.e.
f is not constant and not the identical function on Ag). Chains have no nontrivial
automorphisms, therefore there exists a # b € Ax such that f(a) = f(b). Using that
f € Pol(P;), we can assume that b = a + 1, hence a and b have different parities.
Now from f € Pol(P;) we infer that f(0) = f(k—1) if k is even and f(0) = f(k—2)
if k is odd. Switching back to P, we obtain that f(0) = f(1) =--- = f(k — 1) for
k even. In this case the proof is finished. For k odd the same argument gives that
f(0) = f(1) = f(2) = - -- = f(k—2). From the relations 2 < 2m < 0 in P, we infer
f{0) = f(2m) = f(2) and conclude that f is a constant. The proof is complete.

0O

The unary functions over A; are the identity function and the constants. If P,
and P, are chains over A3 then an easy argument shows that Pol(Py) N Pol(ng
is nontrivial. Next we prove a generalization of this observation. A finite bounde
poset has the cover property if every element, except possibly the least and the
greatest elements, has either a unique lower cover or a unique upper cover. We argue
that there are many posets having the cover property. In fact, if P is an arbitrary
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bounded poset then if we replace every z € P (except possibliy the greatest and
the least elements of P) by a two-element chain then the resulting poset will have
the cover property. :

Theorem B. Let P be a bounded poset on the finite base set A. Let 0,1 € A denote
the least and the greatest elements of P. Suppose that there vs an element a € P
such that 0 < a and & < 1 are covers and that the poset P\ {a} has the cover
property. Let Q be an other poset on the base set A isomorphic to P. Then Pol(P)
and Pol(Q) have a nontrivial intersection, s.e. Pol(P,) N Pol(P;) D K,4.

Proof. Let ¢ : A — A denote the map establishing an isomorphism phs : P — Q
and put b = ¢(a). Observe first that an arbitary map f : P — P which is the
identical map on P\ {a} is actually an order preserving map of P. For this reason
if b = a then for the map g : A — A defined as g(a) = 1and g(y) =y ify # a
we have g € PolﬁP) N Pol(Q). We can henceforth assume that a # b. If b & {0,1}
then we can easily construct a nontivial function h € Pol(P) N Pol(Q) as follows.
As P\ {a} has the cover property, b € P has either a unique upper cover in P or
a unique lower cover in P. We shall assume that ¢ € P is a unique upper cover of
b in P (the other case can be treated in exactly the same way). Now set h(b} =c
and h(z) = z if z € A\ {b}. From the fact that c is a unique upper cover of b in
P\ {a} an therefore in P, we obtain that h € Pol(P). By our first observation we
have h € Pol&Q) as well.

We are left with four cases to consider: a # b, b € {0,1} and (by symme-
try) a € ¢(0},,¢ 1)}. In each case we shall define a nontrivial unary function
h '€ Pol(P) N Pol(Q) .

i) If =0 and a = ¢(0) then we set h{a) = h(b) = a and h(y) =1 if y & {a,b}.
i1) Analogously, if b = 1 and a = ¢(1) then we set h(a) = h{d) = a and h(y) =0 if

b).
gﬁ?;&?b }= 0 and a = ¢(1) then we set h(a) = h(b) = a and h(y) = 1if y & {a,b}.
ifiv é‘.l{lalc’; ously, if b =1 and a = ¢(0) then we put h(a) = h&) =aand héy) =0
y & {a,b}.

In all cases we have |Im(h)| = 2 therefore h neither is constant nor is the identity
function on A. The easy verification of the fact that h is an isotone function with
respect to both P and Q is left to the reader.

]

Corollary C. Let P and Q be two posets on Ag tsomorphic to the pentagon
g.e. the poset on Ag defined by the covers0<1<2<3and0<4<3). Then

ol(P) and Pol(Q) have a nontrivial intersection.
0O

Example. In contrast to Corollary C, consider the posets R and S over the
base set Ag defined by covers as follows:

R: 0<1<2<3and0<4<5<3.
S: 1<3<0<5andl1<4<2<5.

Note that R is obtained from the pentagon by inserting a new element between 4
and 3. Clearly R and S are isomorphic posets. We show that Pol(R) and Pol(S)
have a trivial intersection, i.e. Pol(R) N Pol(S) = Kj,,.

To this end, let f € Pol(R)N Pol S? be a unary function. We consider first the
case when f(0) # 0 or f(3) # 3. We claim that in this case [Im(f)| < 2. Indeed,
f € Pol(R) implies then that Im(f) is bounded in R and is consequently a subset
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of one of the following four sets: {0,1,2}, {0,4,5}, {1,2,3} and {3,4,5}. On the
other hand, Im(f) is a bounded poset with respect to S as well. As neither of
the above four subsets of Ag form a bounded subposet of S, the claim follows. If
f is not a constant then we have |Im(f)| = 2 and f(0) 4(3). Now an inspection
of S reveals that f(1) = f§3) and f(5) = f(0). Using again that f € Pol(R) we
obtain that f(2) = f(3) and f(4) = f(5). The latter implies in S that f(2) = f(5),
showing that f is a constant, a contradiction.

From now on we can assume that f(0) = 0 and f(3) = 3. Now f € POI£S)
implies that f£l5) 66{0,5} and f(1) € {1,3}. But f(5) = 0 would imply in R that
f(?' = 0 which in S leads to f(2) = 0. The latter in R implies f{ll) = 0 which
in S leads to the contradictory f(3) = 0. A similar argument switching back and
forth between R and S shows that ( (1) = 1. At this point we have f(¢) = ¢ for
1 € {0,1,3,5} and (from R) f(3 € {0,4,5}. Here f(4) € {0,5} would give (in S)
that f (23 € {0,5}, which contradicts the relation

(+) f(2) € {1,2,3}

obtained from R. We infer that f(4) = 4 and this gives in S that f(2) € {2,4,5}.
This together with (*) implies that f(2) = 2, i.e. f is the identity function of Ag.
This proves the statement.

Motivated by our considerations we propose the follwing open research prob-
lem.
Problem. Find a characterization of the (bounded) posets P =< A,<p> for
which there exists a poset Q@ =< A, <g> such that P and Q are isomorphic and

Pol(P) N Pol(Q) = Ka.
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