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A note on intersections of isotone clones 

János Demetrovics and Lajos Rónyai * 

Abstract 
We show that for every k > 3 there exists two chains P¡, Pi over a base set 

A, |A| = k such that the only isotone functions Pi and Pi have in common are 
the constants and projections. This settles a question raised by Demetrovics, 
Miyakawa, Rosenberg, Simovici and Stojmenovié. We prove a related result 
which generalizes the observation that two 3-element chains over the same 
ground set always admit a nontrivial common order preserving operation. 

1 Introduction 
Let A be a nonempty finite set. An n-ary operation over A is a function from A n 

to A. 0 „ ( A ) denotes the set of all n-ary operations over A and we put O(A) = 
Un>oO„(i4). A set of operations C C 0 (A ) is a clone over A if it contains 
the projections and is closed under arbitrary superpositions (cf. Jablonskii [J58], 
Póschel. Kaluznin [PK79], Szendrei [SZ86]). The set of all clones over A is denoted 
by L(A). L(A) is a partially ordered set with respect to inclusion and is closed 
under intersection. Clearly the set KA of all projections and constant operations 
form a clone over A. 

Let P =< A, <> be a partial order (a poset for short) on A. We say that an 
operation / e On(A) preserves P if xx < yj, x2 < y2,..., xn < yn implies that 
f(xi,x2l...,xn) < f[yi,y2,...,y„), for every xityi e A. In this case / is called 
an isotone function (with respect to P). It is easy to see that 

Pol(P) = { / € 0 (A) ; / preserves P } 

is a clone over A and Pol{P) D KA. In [DMRSS90J Demetrovics, Miyakawa, 
Rosenberg, Simovici and Stojmenovid studied intersections of clones of the form 
Pol(P). In the context of semirigid relations they proved that if |A| > 7 or J Aj = 6 
then there exists two posets Pi,P2 over A for which we have Pol(Pi) H Pol(P2) = 
KA. Also, they constructed four chains Qi , Qi, Qs, QA over A for which the clones 
Pol(Qi) intersect in KA. The objective of this note is to improve the latter result. 
For |AÍ > 3 we exhibit two chains Pi,P2 over A with the property Pol(Pi) n 
Pol(P2) = KA (Theorem A). It is easy to see that any two chains over a 3-element 
set admit a common order preserving function. This observation is generalized in 
Theorem B. We show for a large class of posets P that any two isomorphic copies 
of P over the same ground set have a common order preserving operation. This 
class, besides the 3-element chain, includes the diamond and the pentagon. The 
note is concluded with a problem for further research. 
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2 The results 
Recall that a pair of elements o < 6 of a poset P forms a cover if there is no c 6 P 
such that a < c < b. In this case we say also that b is an upper cover of a and a 
is a lower cover of b. A poset P is bounded if there exist x,y 6 P such that for 
every z 6 P we have i < z < y. In the sequel we shall use the following result (cf. 
[LP84], [P84]). 

Lemma 1 Let |A| > 2 and C be a clone over A. Then C = KA if and only if 
CnOi{A) = KA n O x ( A ) . 

In simple terms, Lemma 1 states that a clone C is KA exactly when the unary 
fuctions in C are the constants and the identity function. For fc > 0 let A* denote 
the set { 0 , 1 , . . . * ; - 1}. 

Theorem A . For every integer k U S there exists two chains Pi, P2 on Ak such 
that Poi(Px) n PoI(P2) = KAk. 

Proof . We give first the definitions of Pi and Pi by specifying the covers in the 
respective orders: 

Px\ 0 < 1 < 2 < . . . < * ; — 2 < f c — 1. 

In the definition of P2, we distinguish two cases, corresponding to the parity of k. 
If k — 2m then we put 

P2: 2m — 2 < 2m — 4 < . . . < 2 < 0 < 2m — 1 < 2m — 3 < . . . < 3 < 1. 

If fc = 2m + 1 then we set 

P2: 2m — 2 < 2m — 4 < . . . < 2 < 2m < 0 < 2m — 1 < 2m — 3 < . . . < 3 < 1. 

In other words, Pi is the standard ordering of Ak, while in P2 we have first 
the even integers from the interval [0, k — l] in a decreasing order (with respect 
to the standard ordering) followed by the odd numbers listed decreasingly again, 
provided that k is even. If *; is odd then a little perturbation is introduced: k — 1 
is placed between 2 and 0 rather than to the beginning of the sequence. This is 
possible because k > 3 and therefore 2 ^ 2m. 

As for the proof, let / € Pol(Pi) n Pol(P2) be a nontrivial unary function (i.e. 
/ is not constant and not the identical function on Afc). Chains have no nontrivial 
automorphisms, therefore there exists o ^ 6 6 Ak such that / ( a ) = f(b). Using that 
/ € Pol(Pi), we can assume that b = a + 1, hence a and b have different parities. 
Now from / 6 Pol(P2) we infer that / (0) = f(k-1) if A: is even and / (0 ) = / ( f c - 2 ) 
if *: is odd. Switching back to Pi we obtain that / (0) = / (1) = ••• = / ( £ - 1) for 
k even. In this case the proof is finished. For k odd the same argument gives that 
flO) = fll) = / (2 ) = • • • = f(k-2). From the relations 2 < 2m < 0 in P2 we infer 
/ (0) = / (2m) = / (2 ) and conclude that / is a constant. The proof is complete. 

• 
The unary functions over A2 are the identity function and the constants. If Pi 

and P2 are chains over A3 then an easy argument shows that Pol(Px) D Pol(P21 
is nontrivial. Next we prove a generalization of this observation. A finite bounded 
poset has the cover property if every element, except possibly the least and the 
greatest elements, has either a unique lower cover or a unique upper cover. We argue 
that there are many posets having the cover property. In fact, if P is an arbitrary 
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bounded poset then if we replace every z E P (except possibliy the greatest and 
the least elements of P) by a two-element chain then the resulting poset will have 
the cover property. 

Theorem B. Let P be a bounded poset on the finite base set A. Let 0,1 € A denote 
the least and the greatest elements of P. Suppose that there is an element a £ P 
such that 0 < a and a < 1 are covers and that the poset P \ { a } has the cover 
property. Let Q be an other poset on the base set A isomorphic to P. Then Pol(P) 
and Pol(Q) have a nontriviai intersection, i.e. Pol(Pi) n Poi(P2) D KA-

Proo f . Let <j> •. A —* A denote the map establishing an isomorphism phi : P —* Q 
and put b = <t>(a). Observe first that an arbitary map / : P —* P which is the 
identical map on P \ { a } is actually an order preserving map of P. For this reason 
if b = o then for the map g : A —• A defined as p(a) = 1 and g(y) = y if y a 
we have g E Pol(P) n Pol(Q). We can henceforth assume that a ^ b. If b £ {0 ,1} 
then we can easily construct a nontivial function h E Pol(P) n Pol(Q) as follows. 
As P\ {a } has the cover property, b E P has either a unique upper cover in P or 
a unique lower cover in P. We shall assume that c E P is a unique upper cover of 
6 in P (the other case can be treated in exactly the same way). Now set h(b) = c 
and h(z) = z if z E A \ {6}. From the fact that c is a unique upper cover of b in 
P \ { a } an therefore in P, we obtain that h E Pol(P). By our first observation we 
have h E Pol(Q) as well. 

We are left with four cases to consider: a ^ 6, b E {0 ,1 } and (by symme-
try) a E (0(0), (^(1)}. In each case we shall define a nontriviai unary function 
h E Pol(P) n Pol(Q) , 
ii) If 6 = 0 and a = ¿(0) then we set h(a) = h(b) = a and h(y) = 1 if y g { a , i } . 
(ii) Analogously, if b = 1 and a = ^>(1) then we set h(a) = h{b) = a and h(y) = 0 if 
y {a, fc}. 
(iii) If b = 0 and o = ^(1) then we set h(a) = h(b) = a and h(y) = 1 if y £ (a, b}. 
(iv) Analogously, if b = 1 and a = <£(0) then we put h(a) = h(b) = a and h[y) = 0 
if y & 

In all cases we have \Im(h) \ = 2 therefore h neither is constant nor is the identity 
function on A. The easy verification of the fact that h is an isotone function with 
respect to both P and Q is left to the reader. 

• 
Corol lary C . Let P and Q be two posets on A& isomorphic to the pentagon 

ii.e. the poset on Ag defined by the covers 0 < 1 < 2 < 3 and 0 < 4 < 3 ) . Then 
}ol(P) and Pol(Q) have a nontriviai intersection. 

• 
Example . In contrast to Corollary C, consider the posets R and S over the 

base set Ag defined by covers as follows: 

R : 0 < 1 < 2 < 3 and 0 < 4 < 5 < 3. 

5 : 1 < 3 < 0 < 5 and 1 < 4 < 2 < 5. 
Note that R is obtained from the pentagon by inserting a new element between 4 
and 3. Clearly R and S are isomorphic posets. We show that Pol(R) and Pol(S) 
have a trivial intersection, i.e. Pol(R) n Pol(S) = • 

To this end, let / e Pol(R) n Pol(S) be a unary function. We consider first the 
case when / ( 0 ) / 0 or / (3 ) ^ 3. We claim that in this case \Im(f)\ < 2. Indeed, 
/ € Pol{R) implies then that Im(f) is bounded in R and is consequently a subset 
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of one of the following four sets: {0,1,2}, {0,4,5}, {1 ,2,3} and {3,4,5} . On the 
other hand, I m ( f ) is a bounded poset with respect to 5 as well. As neither of 
the above four subsets of Ae form a bounded subposet of S, the claim follows. If 
/ is not a constant then we have |/>t»(/)| = 2 and / (0 ) / / (3) . Now an inspection 
of S reveals that f(l) = / (3 } and / (5) = / (0) . Using again that / 6 Pol(R) we 
obtain that / (2 ) = / (3 ) and / (4) = / (5) . The latter implies in S that / (2 ) = / (5) , 
showing that / is a constant, a contradiction. 

PYom now on we can assume that f(0) = 0 and / (3 ) = 3. Now / S Pol(S) 
implies that / (5 ) e {0,5} and / (1) 6 {1,3} . But / (5) = 0 would imply in R that 
/ (4) = 0 which in S leads to fl2) = 0. The latter in R implies / (1 ) = 0 which 
in S leads to the contradictory / (3) = 0. A similar argument switching back and 
forth between R and S shows that f( 1) = 1. At this point we have / ( t ) = t for 
i € {0,1.3,5> and (from R) / (4) € {0,4,5} . Here / (4 ) £ {0 ,5} would give (in S) 
that / (2 ) € (0,5} , which contradicts the relation 

(*) / ( 2 ) G { 1 , 2 , 3 } 

obtained from R. We infer that / (4) = 4 and this gives in S that / (2 ) & {2 ,4 ,5} . 
This together with (*) implies that / (2) = 2, i.e. / is the identity function of Ae. 
This proves the statement. 

Motivated by our considerations we propose the follwing open research prob-
lem. 
Problem. Find a characterization of the (bounded) posets P = < A, <p > for 
which there exists a poset Q = < A, <Q> such that P and Q are isomorphic and 
Pol(P) n Pol(Q) = KA. 
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