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The Self-organizing List and Processor 
Problems under Randomized Policies 

T . Makjamroen* 

Abstract 
We consider the self-organizing list problem in the case that only one item 

has a different request probability and show that transposition has a steady 
state cost stochastically smaller than any randomized policy that moves the 
requested item, found in position t, to position j with some probability dij, i > 
j. A random variable X is said to be stochastically smaller than another 
random variable Y, written X <„ Y if Pr{X > Jfc} < Pr{Y > k}, for any 
k. This is a stronger statement than E[X] < E[Y|. We also show that the 
steady state cost under the policy that moves the requested item i positions 
forward is stochastically increasing in t. Sufficient conditions are given for the 
steady state cost under a randomized policy A to be stochastically smaller 
than that under another randomized policy B. Similar results are obtained 
for the processor problem, where a list of processors is considered. 

OPTIMAL LIST ORDER; MEMORY CONSTRAINTS; TRANSPOSITION 
RULE; RAMDOMIZATION 

0 Introduction 
A self-organizing list problem is characterized by a sequential list of n items subject 
to a reordering policy. At the beginning of each time period, an item is requested 
and the list is searched sequentially from the first position until the requested item 
is found. Each of these n items has an unknown probability of being requested. 
Let p = (pi,p2, • • • ,Pn) be the request probability vector, where p,- is the request 
probability of item t,i = 1 , . . . , n, and 0 < p,- < 1, Pi — 1. At the end of each 
period, the items on the list are reordered according to the reordering policy. The 
cost of each period is taken to be the position where the requested item is found. 
We are interested in the steady state costs under various policies. A reordering 
policy is called optimal if it minimizes the expected steady state cost for any given 
request probability vector p. The self-organizing list problem will now be called 
the list problem and the policy will mean the reordering policy. 

Kan and Ross [6] define a no-memory policy as a reordering policy that depends 
only on the position of the requested item and the current ordering. Some of 
the most studied examples of the no-memory policies are the transposition, move-
to-front, and move-i-position policies. Keeping the relative positions of all other 
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items unchanged, the move-»-position policy moves the requested item » positions 
closer to the front if the requested item is found at position j,j > i, otherwise the 
requested item is moved to the first position. Transposition is just move-l-position 
and move-to-front is move-(n— Imposition for a problem of n items. Hendricks [3,4] 
gives the steady state probability distributions of states under move-to-front ana 
transposition. See Hester and Hirschberg [5] for a recent survey of the list problem. 

Anderson, Nash and Weber [l] show by counterexample that transposition is 
not optimal. However, their counterexample not only moves the requested item 
but also changes the positions of other items. So it is still an open question if 
transposition is optimal among policies that move only the requested item, leaving 
the relative ordering of the rest unchanged. 

In the special case where only one item has a different request probability, Kan 
and Ross [6] and Phelps and Thomas [7] show that transposition is indeed optimal 
among policies that move only the requested item. We will show in Section 1.2 that 
transposition is optimal in a stronger sense. In particular, by extending the induc-
tion argument used by Phelps and Thomas, we can show that transposition has 
a steady state cost stochastically smaller than that of any randomized policy. Let 
C(p; A) be the steady state cost of the list problem with request probability vector 
p under policy A. Then C(p; A ) is stochastically smaller than C(p ;B) , written 
C ( p ; A ) <. t C(p; B), if P r { C ( p ; A ) > k) < P r { C ( p ; B ) > k}, k = 1, 2 , . . . , n. 
It follows immediately that E[c7(p; A)] < E[C(p;B)|. A randomized policy is a 
policy which, when an item is requested and found at position », moves that item 
to position j with some probability a^, £ y = i a-ij = 1, leaving the relative ordering 
of others unchanged. 

Section 1.1 defines the randomized policy and shows its properties. By the 
introduction of the randomized policy, we also show in Section 1.2 that move-
i-position has a steady state cost stochastically increasing in i. This partially 
supports the conjecture of Gonnett, Munro, and Suwanda [2]. Their conjecture 
says that if A and B are two no-memory policies such that if tne requested item is 
found at position t, it is moved forward A(t) and B(i) positions by the policies A 
and B respectively, and A(i) < B(i),i = 1 , . . . , n, then the expected steady state 
cost under A is smaller than or equal to that under B, but B converges to its 
asymptotic behavior more quickly than A. Furthermore, it also follows that if the 
cost is taken to be an increasing function of the position where the requested item 
is found, move-t-position will have an expected steady state cost increasing in i. 
A special case of this situation is found in the paging problem as also discussed by 
Phelps and Thomas [7] where for a fixed integer m , l < m < n , the cost is taken to 
be zero if the requested item is found in a postion less than m, and one otherwise. 

Tenenbaum and Nemes [9] consider two spectra of policies. Assuming that only 
one item has a different request probability, the policies in each of the two spectra 
are ordered by the values of their expected steady state costs. Each spectrum has 
transposition at one end with the minimum expected steady state cost and move-
to-front at the other with the maximum expected steady state cost. We will show 
in Section 1.2 that the steady state costs of these policies in each spectrum are 
stochastically smaller or larger than each other. 

A problem related to the list problem is called the processor problem which was 
studied by, among others, Topkis [10]. In the processor problem, we consider a 
sequential list containing an ordering of the n processors. Each of these processors 
has an unknown probability that it will successfully process a given job. At the 
beginning of each time priod, there is an arrival of a job to be processed. The job is 
attempted by the processors successively according to the ordering in the list until 
either one of the processors succeeds or all of them fail. Then the job is dismissed. 
The cost in each period is taken to be the number of processors attempted until 
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the job is processed, or, in the case that all n processors fail, it is taken to be n. 
At the end of each period, a reordering policy is applied in the same manner as 
in the list probelm. For example, we might move the successful processor to the 
beginning of the ordering (move-to-front), or we might just move it one position 
closer to the front (transposition). 

Topkis [10] gives the steady state probabilities of the move-to-front and move-
to-back policies and shows that move-to-front has a steady state cost stochastically 
smaller than move-to-back, which in turn, has a steady state cost stochastically 
smaller than the random policy where processors are equally likely to be in any of 
the n! orderings. 

Section 2.1 shows the properties of randomized policy when applied to the pro-
cessor problem with only one processor having a different success probability. In 
this special case, Ross [8] shows that the expected steady state cost under trans-
position is smaller than or equal to that under move-to-front. In Section 2.2, we 
also use randomized policies to obtain results closely parallel to those of the list 
problem. That is, the steady state cost under transposition is stochastically smaller 
than that under any randomized policy. Furthermore, the steady state cost under 
move-t-position is stochastically smaller than that under move-(t + Imposition. The 
steady state costs under the policies in the two spectra proposed by Tenenbaum 
and Nemes [9] are also ordered such that the steady state cost of each policy is 
stochastically smaller or larger than its neighbors in the same spectrum. 

1 The List Problem 
When only item 1 has a different request probability, the expected steady state 
cost can be written in terms of the expected position of the item 1. That is, by 
conditioning on whether item 1 is being requested, 

E[C(p; A) ] = C p E [ y l ( p ; A ) ] + P ^ - 1 ) E ' 1 + 2 + • + n ~ y i ( p ; A ) ' 

p(c - l )E[yi (p ; A ) ] + 

n - 1 
pn(n + 1) 

where Yi(p; A ) is the steady state position of item 1 of the list problem with request 
probability vector p under policy A , p i = cp,p2 — p,... ,pn = p, and c > 0. 

So when c > 1, we want to minimize E[yx(p; Aj] , and maximize it when c < 1. 
For the rest of the paper, we assume that c > 1. The results for c < 1 will be just 
the opposite. 

1.1 Randomized Policy 
A randomized policy is characterized by a matrix A = [A,yj„xn, where A,-y = 
Ylk=i fltki a n d Oij is the probability that given an item is requested and found at 
position t, it is moved to position j , where = 1 f ° r all t, and 0 < o,-y < 1. 
So Ai j is the probability that given the requested item is found at position t, it is 
moved to a position less than or equal to j . 

Given a policy A defined in a system of n items, define a related policy A d in 
a system of n — 1 items as follows. 

A < i = Wy] (n - l )x (n - l ) , 
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where Af}- = Ei=i afk, and 

ad = I ° i + 1 ' 1 
0 I <*+ij. 

+ «¿+1,2 , 3 = 1 
j + i , 3 > 2. (1.1) 

Let ir^ be the steady state probability that item 1 is at position t under policy A . 
That is, = Pr{Yi(p; A ) = t'}. Alternatively, we can say F i ( p ; A ) < , t Y i ( p ; B ) 
by using the notation { * / } <> t Define K * = Lemma 1.1 to Lemma 
1.4 below show the relationships between {ir/1} and {*fA} under the assumption 
that (Pi,P2i • • • Pn-i ) = (cPd> Pd} • • •, Pd)• Lemma 1.1 and Lemma 1.2 «ire also 
obtained by Phelps and Thomas [7], where they consider only policies that move 
the requested item, found at position t, to a fixed position r(t),r(t) < i. 

Lemma 1.1 Under policy A, for i = 2 , . . . , n, 

-.A ¡ A _ if A _ dA / dA 

Proo f . The transition matrix, showing only columns 1, r + 1 and n can be written 
as 

CP + P E E aij 
i=23=2 

cpa21 
cPa31 

cpanl 

0 
n r 

P E E a.'j t=r+iy=l 

cPar+l,r+l + 
cpar+2,r+i 

epan< r + i 
p(l - a „ „ ) 

cpann + p(n - 1) 

(1 .2) 

where 8 = r + £ E °ty 
i=r+2 j'=r+2 

Except the first column, column r + 1 contains zeros from row 1 to row r. Using 
the (r + l)8 t column of the transition matrix and suppressing the superscript A , 
we have 

cPar+l,r+l +p8 

+ E .cP°«>+i ,r»i 
t=r+2 

for r = 1 , . . . , n — 1. 
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Since p = , the above equation becomes 

\ t = r + l / = l ) 

— "V+l 

— "V+l 

c + n - 1 - CO r+l , r+l - f r + aO ) 
\ « = r + 2 / = r + 2 ) 

n » 

n -I- c ( l - o r + 1 > r + i ) - (r + 1) - Yh Z ) 
t ' = r + 2 j ' = r + 2 

— Z ) c o».r+l*« 
i = r + 2 

n 
— C ^ Oĵ +iTT,-, 

t = r + 2 

(1.3) 
where r = 1 , . . . , n — 1. 

For policy AD, using the r th column of the transition matrix of n — 1 items and 
noting that pd = we have in the same manner as (1.3) above 

"-(siH 
c + n — 2 — ca*r — i r — 1 + Y l J 2 

V i = r + l j = r + l 

n-1 i 
„ + c ( l - d ? r ) - ( r + l ) - E 4 

i=r+lj=r+l 

caln? 
n - l 

— y 1 -"•ir-'t 
i=r+1 

n - l 

Ed d 

i = r + l 

where r = 2 , . . . , n — 1. By the definition of af}- given in ( l . l ) , (1.4) becomes 

1 

\i=r + iy=l / 

(1.4) 

= *V n + c ( l - a r + 1 , r + 1 ) - ( r + l ) - ] C 
i=r+2j'=r+2 

- c Y! a « > + i , , f - i > 
• = r + 2 

(1.5) 
where r = 2, . . . , n — 1. FVom (1.3) and (1.5), (x2 , . . . , i r n ) and (fl^, • • • 
satisfy the same set of equations. We will use this fact to show that Ki = Kf_lti = 
2 , . . . , n, and this proves the Lemma. Since Kn = = 1 by definition, we use 
the induction hypothesis that Ki — Ki_ l t x = r + 1 , . . . , n. We will show that it 
is also true for i = r. But this follows immediately by dividing both sides of (1.3) 
and (1.5) by irn and ^ - i respectively. • 

If we know r f , » = 1 , . . . , n, then we know *fA, i = 1 , . . . , n — 1. The exact 
relationship is given in Lemma 1.2. 
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L e m m a 1.2 Under policy A, for i = 2 , 3 , . . . , n, 

P r o o f . Prom Lemma 1.1, we need to show that = (1 — H j 1 ) * ^ ! . By suppressing 
superscript A , 

n—1 n— 1 n 
1 = E ^ = E = <-1 E * = ^-li1 - *!)/*»• 

1 = 1 t '= l 1=2 

• 
Conversely, given ir?A, » = 1 , . . . , n — 1, we can compute nf, i = 1 , . . . , n, using 

Lemma 1.2 and the following Lemma 1.3. 

Lemma 1.3 Under policy A, 

A C(A2LF2 + «31^3 + ANL""N ) 
= . 

«21 + «31 + h a„i 

P r o o f . The Lemma is proved by using the first column of the transition matrix 
(1.2) and noting that p = • 

FVom Lemma 1.1 and Lemma 1.3, Lemma 1.4 below says that we can write Äy 
in terms of Äy+i, Äy+2, • • •, K n . Note that An = a n , i = 2 , . . . , n. So Lemma 1.3 
and Lemma 1.4 are equivalent when j = 1. 
Lemma 1.4 Under policy A, for j = 1, 2 , . . . , n — 1, 

Kf = 
c(A3+1JKf+1 + AJ+2,,Kf+2 + -.. + An]K£) 

3 Ai+1,} + ^y+2,y H 1- A. nj 

Proo f . From Lemma 1.1, K2 = K*, K3 = = Kf,..'., Ks = K? ' . By exactly 
the same argument, we have = K^'+i — • •• = -Ky+k-i, k = 2 , . . . , n — j + 1. 
From Lemma 1.3, 

c { 4 : l K t l + 4 r * t x + • • • + 
" l = di-i , di-' , . adi~* 21 ^ °31 ^ ^ n—y+1,1 

Now, by definiton (1.1), 

S21 — a31 + a32 
- a4 1 + a4 2 + o 4 3 

= ° y + l , l + ° i + l , 2 + • • • + a / + l , y 

= Al + U-

Similarly, = i4y+fc_i,y, k = 3 , . . . , n — j + 1. So follows the Lemma. • 
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1.2 Comparison of the Steady State Costs and Probabili-
ties of Two Lists under Two Different Policies 

Let S be the set of policies that the resulting probability distribution { t « } is 
decreasing in t when pi > p and increasing in t otherwise. The question of how to 
determine if a policy is in 5 will be addressed later. We are now ready to prove 
the following Theorem that compares {*<} of two different policies. 

Theorem 1.5 Let A and B be two policies such that, ¡or j = 1 , 2 , . . . , n — 1, k = 
j + 1,..., n, 

A y + i ,y + A y + 2 , y + H AKy -By+i ,y + -By+2,y + H BK] 

AJ+I,} + A y + 2 , y + • • • + A „ y ~~ -By+i .y + - S y + 2 , y + h BN)- ' 

(1.6) 
and at least one of these two conditions holds: 

(a) A S S and Bij is decreasing in i for all j = 1 , . . . , n, 
(b) B S S and A{j is decreasing in i for all j = 1 , . . . , n. 

Then <„t { f l f } for any p = (cp, p,..., p), c > 1. 

Proo f . We will prove this Theorem by induction. It is easily checked that the 
Theorem is true for n = 2. Assume that it is true for the problem of n — 1 items. 
Now given such policies A and B , their corresponding policies A d and B d also 
satisfy all the conditions above. We can check this by first noting by that by (1.1) 

Aij — aii + ai2 H 1" aij = a « + i , i + ° t + i , 2 + Oi+1,3 + H a » + i , y + i = A i + i , y + 1 . 

Therefore, Af - is also decreasing in t, and 

A3+l,3 + AJ+2,J + • • • + Akj + Ad + • • + Ad_ 1,3- 1 
AJ + 1,J + A)+2J + " • • + A „ y ¿1,3- 1 + A1+1,3-1 + • • 1,3- 1 

Bd-^ 3,3-1+Bf+1,3-1 + • •• + Bd_ 1,3- 1 
Bd. 3,3- 1 + Bf+1,3-1 + Bd. 1,3- 1 

Secondly, since A e 5, vA > > ••• >irA. B u t from Lemma 1.2, vfA = 
A 

YZ^x, so > ir$A > > jr^lj . This means A d g S. So we have the induction 
hypothesis that 

From Lemma 1.2, ^ + + • • • + r A = (1 - + * f A + • • • + n ^ J . 
All we need to show is that * A > ir f . From Lemma 1.2 and Lemma 1.3, 

>1 (1 A , A 21*IA + A 3 i ^ A + • • • + AnlTTdA1 TTj = C^l — TTj J . 
A 2 1 + A 3 1 + h A„ 1 
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A B 
Since > 7rf if and only if j ^ x > i - ^ » , we need to show that 

A21w*A + A31*jA + • • • + A^x*^ > B21 <B + + ••• + nni<B-i 
A2i+A31+ - + Anl ~ B21+B31+- + Bnl 

Assume first that (a) holds. Then', by (1.6) with j — 1 and, because Ad G 
S, *FA>*$A>-~>*F£I, 

B2i*iA + B 3 ^ + • • • + B n i n ^ i 
B2\ + B3\ + 1- Bn 1 

B21**B + B31**B + • • • + 
B2i + B3i + 1- Bn 1 

The second inequality follows from the assumption that B n is decreasing in t 
and from the induction hypothesis that { n f A } <> t { n f B } . 

Similarly, if (b) holds, 

+ A31x$A + --- + Anl > A2 l 7rfB + A31x*B + ••• + 
A 2 i + A 3 1 + 1- A n l ~ A 2 1 -I- A 3 1 H h A r e l 

> B21xjB +B31**B + -- + Bnln*Bx 

~ B21 + B31 + • • • + B„i 

• 
A consequence of this Theorem is that the steady state cost under policy A is 

stochastically smaller than the steady state cost under policy B . 
Corol lary 1.6 Under the conditions of Theorem 1.5, C ( p ; A ) <„ t C ( p ; B ) . 

P r o o f . Conditioning on whether item 1 is at the first position, for k = 2 

P r | c ( p ; A > Jfcj 

= n A P r|c (p ; A) > A i n t p j A ) = l } + ( l - ^ t ) P r { c ( p ; A ) > A ^ f a A ) ? l } 

- x J * P r { c ( p ; B ) > fc|n(p;B) - l } + ( 1 - ^ ) P r { c ( p ; A ) > A ^ f a A ) ? l } . 

Now given that item 1 is not at position 1, the probability that it will be at 
IT*4 . . dA position t, 2 < i < n, is ' x , which is exactly by Lemma 1.2. That is, given 

. 1 

item 1 is not at position 1, its probability distribution over { 2 , 3 , . . . , n) is the same 
as the probability distribution of over { l , 2 , . . . n — 1}. Using the induction 
hypothesis that the Corollary is true for the list of size n — 1, we have 

P r { c ( p ; A ) > fcinipjA) / l } = (1 — p) P r | c ( p d ; A d ) > fc — l j 

< ( l - p ) P r { c ( p d ; B < , ) > f c - l } 

= P r j c f a B j ^ f c l Y k f o B ) ? * ! } . 

A 2 i * r + A31n«A + • • • + A „ 1 j t „ _ 1 

A 2 I + A 3 1 + •• • + A nl 

> 
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Therefore, 

Pr{<7(p;A) > fc} 

< T* P r j c ( p ; B ) > fc|n(p;B) = l } + (1 - P r { c ( p ; B ) > ¿ ^ f o B ) ft l } 

< * f Pr j c ( p ; B ) > fc|Fi(p;B) = l } + (1 - * ? ) P r { c ( p ; B ) > ¿ ^ f o B ) ft l } 

= P r { ( p ; B ) > f c } . 

The second inequality follows from the fact that irf > 1rf and, when pi > p, 
P r { c ( p ; B ) > fc|yx(p;B) = l } < Pr{(7(p;B) > fc|Yi(p;B) ft l } . • 

By Lemma 1.2 and Corollary 1.6, transposition is optimal in the sense that it 
has a steady state cost stochastically smaller than any randomized policy. Let T 
denote the transposition policy. 

Corollary 1.7 For any policy A , C ( p ; T ) < t i C(p; A ) . 

Proo f . Given c > 1, Phelps and Thomas [7] show that n j > nf for any policy 
Z that moves the requested item strictly forward by using the fact that = 
(l — 7r Since this fact also holds for any randomized policy A as shown in 
Lemma 1.2, so irj" > and thus { t ^ } } by the same induction argument 
in Theorem 1.5. The Corollary then follows by Corollary 1.6. • 

The next question is how we know if A G S. The counterexample below shows 
that not every policy A is in S even with Ai}• nonincreasing in t for all j. 
A counterexample: 

Let A be a policy characterized by the following matrix. 

A = 

0 

1 

1 — £ 

0 

0 

1 

1 - e 

0 0 

0 

1 

1 - e 
e 

Let e be some small number. The policy A almost always moves the requested 
item one position closer unless the requested item is founded at position 2 where 
it stays put with probability 1 — e and moves to position 1 with probability e. By 
selecting small enough e, we can get the values of Ki, as given by Lemma 1.4, to 
approach cn~' arbitrarily close for t > 2. The value of K i t as also given by Lemma 
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1.4, is 

c(ecn~2 + e c n - 3 + h ec + e) 

c j c " - 1 - 1) 
( n - l ) ( C - l ) ' 

With c = 3 and n = 6, = 72.6 while K2 = 34 = 81. So here K{ is not 
decreasing in i when c > 1. Thus not every policy has {«",-} decreasing in i when 
c > 1. • 

The following Proposition gives a sufficient condition for A 6 5 , This sufficient 
condition turns out to be true for any policy A under which the distribution of 
the number of positions to move the requested item is independent of the position 
where it is found. In other words, there is only one distribution for all positions. 
Call these policies position independent. One can interpret a position independent 
policy as one that uses a mixture of move-t-position, t = 1 , . . . , n — 1. 
Propos i t ion 1.8 A policy A 6 5 if, for j = 1,... ,n — 1, 

Aj + iJ ^ Anj < Ai+i,j H y An-i,j < . . . < A1++ 3 
Aj + 2,j + l + 1" An,j+1 A]+ 2,3 + 1 + 1- An_i i J + x Ay+ 2 , j + l 

(1.7) 

Proo f . Since Af j = A i + i j + i , a condition similar to (1.7) holds for A d . By the 
induction hypothesis, AD £ 5 and n f A > IRDA > • • • > ^n- i - So by using Lemma 
1.1 we have > nf > •• • > k a and > > • • • > K * . Thus it remains to 
show that 7TJ4 By Lemma 1.3, this means we have to show 

A2lK$ + + ''' + > A21 + A3 i + • • • + Anl 

K* + • • • + An2^A A32 + A*2 + h An2 

Rewrite the nominator on the left hand side of the above inequality as follows. 

A21KA +A31Ka +-+AnlKA = KA{A21 + A31+-+Anl) 

+ (KA_, - Ka)(A21 + A 3 I + • • • + A N - I . I ) + 

••• +(^-Ka)(A21 + A31) + (Ka-Ka)A21 

The left hand side of the last inequality becomes 

K£(A21 + A3i + 1- Ani) + (KA_X ~ K*)[A2i + A 3 ! + ••• + A n _ l t l ) + - • • 
^ ( A 3 2 + A42 + - - + A n 2 ) + - • 

• • • + [KA - Ka){A21 + A3X) + [Kf - K*)A21 
• • + (KA_i ~ Ka)(A32 + A4 2 + • • • + A „ - 1 i 2 ) + -•• + № - K*)A32' 

and because KA — > 0, » = 2 , . . . , n — 1, it is greater than the right hand side 
if 

A 2 I + A 3 1 + H AnI A 2 I + A 3 1 H H A N _ X | I < A 2 I + A 3 1 

A32 + A 4 2 + H A„2 — A 3 2 -T- A42 + B 
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which is just (1.7) with j = 1. This follows from the fact that, f < f^a if f < g, 
where a, 6, c and d are positive. • 

We will show next that (1.7) holds for any position independent policy that 
moves, with probability a,-, X -̂TQ1 = requested item i positions forward 
if it is found at a position greater than or equal to i + 1. Otherwise the policy 
moves the requested item to the first position. Thus, a,-y = Oi-i>j > 1, and 
ciii = o,-_i + a,- + • • • + an_ i . Let A; = °fc be the probability that the 
requested item is moved more than or equal to t positions. Thus, 

An = a,i + cm + • • • + oi}- = (o,-_i + (- a„_ j ) + Oi-2 H h a,_y = A,_y. 

So (1.7) becomes 

Ai + A 2 + < A j + A 2 + • • • + A n - 2 < _ < A t + A 2 

AI + A2 + • • • + 3 „ - 2 ~ Ai+A2 + H A „ _ 3 Ai ' 

which can be shown to be true by just cross-multiplying terms on each side of each 
inequality and noting that A,- is decreasing in t by its definition. Thus we have 
proved the following Lemma. 

L e m m a 1.9 Let A. be a position independent policy that moves requested item i 
positions with probability ai, ^"Jq1 â  = 1. Then A S S. 

When a0 > 0, we can look at the embedded Markov chain when the items 
actually change positions. The probability that item 1 is at position t in this 
embedded Markov chain will be equal to the proportion of time item 1 is at position 
t in the original chain. The policy governing the embedded chain is characterized 
by 

ai — i_'ao > * — Ij • • • i ni a n d a0 — We can, without loss of generality, restrict 
ourselves from now on to the position independent policies that always move the 
requested item at least one position closer to the front, unless it is already at the 
first position. 

When two position independent policies A and B are compared, (1.7) of Propo-
sition 1.8 becomes, for k = 1 , . . . , n — 1, 

M + A2 + • • • + Ak B i + B 2 + - + B k 

Ax + A2 + ... + An_! ~ Bj. + B2 + ... + Bn_!' (L8) 

An interpretation of this condition (1.8) is as follows. Let XA be the renewal 
time of some renewal process with Pr{X j 4 = »} = o<, t = 1 , . . . , n — 1, and ao = 0. 
Then the equilibrium renewal time of XA, called XA, will be distributed by 

pr{x* < *} = 3 + 3 + - - - + 3 
- A 1 + A 2 + - + A „ _ 1 

Therefore, (1.8) means XA <„t Xf. Theorem 1.5 combined with Corollary 1.6 
can be restated for position independent policies as follows. 

Theorem 1.10 Given two position independent policies A and B such that 
XA <,t X*, then <st } and C ( p ; A ) < ( t C ( p ; B ) for p = 
[cp,p,...,p),c > 1. 
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Proo f . Direct application of Theorem 1.5, Corollary 1.6 and Lemma 1.9. • 

Note that the condition that is decreasing in » in Theorem 1.5. becomes A{ 
is decreasing in t which is true by its definition. An immediate result of Theorem 
1.10 is that moving » positions closer is better than moving » + 1 positions closer. 
Formally, 

Corollary 1.11 The steady state cost under move-i-position policy is stochastically 
smaller than that under move-(i + 1)-position policy. 

Proo f . Direct application of Theorem 1.10. • 

Tenembaum and Nemes [9] examine two spectra of policies. For each spectrum, 
they show that the policies are ordered by their expected steady state cost, having 
tranposition at one end of the spectrum with minimum expected steady state cost 
and move-to-front at the other with maximum expected steady state cost. It can be 
shown that this also results directly from Theorem 1.5 and Corollary 1.6, and not 
only are the policies ordered by their expected steady state cost but their steady 
state costs are also stochastically smaller or larger than each other. 

The first is a spectrum of policies POS(A;), k — 1 , . . . , n where the requested item 
found at position j is moved to position k if j > k, and it is moved one position 
closer to the front if j < k. We can write the matrices A and B representing 
policies POS(fc + 1) and POS(fc) respectively as follows. 

1 
1 1 

0 1 

0 1 

A = 1 1 
O i l 

1 

1 

0 0 0 1 1 
1 1 
1 1 1 

Col. ( ! ) • •• (A: + 1) 
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1 

1 1 

0 1 

B = 

0 0 0 1 1 
1 1 
1 1 1 

Col. (1) . . . ( * ) . . . (n) 

The upper triangles of both matrices A and B consist of zeros. It can be easily 
checked that both policies A and B are in S as they satisfy (1.7) of Proposition 1.8. 
Moreover, all the conditions of Theorem 1.5 are also satisfied. We can then make 
a stronger statement that the steady state cost under POS(fc 4-1) is stochastically 
smaller than the steady state cost under POS(fc). 

The second is a spectrum of plicies SWITCH(A;),k — l , . . . , n , where the re-
quested item found at j is moved one position closer if j > k, and is moved to the 
first position if j < k. A1 the conditions of Theorem 1.5 and (1.7) of Proposition 
1.8 are satisfied by the following matrices A and B representing SWITCH(fc) and 
SWITHC(fc + 1) respectively. 

Row 

A = 

•• 1 
1 l .. .. 1 1 
0 0 .. .. 0 1 1 
; 0 1 '• 

0 . 1 

* 1 
0 0 • • 0 0 0 • • 0 

1 
1 1 

( 1 ) 

(k) 

in) 
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Row 

B = 

0 0 

1 
1 1 
0 1 

: o 

0 0 0 

1 1 
O i l 

(1) 

( f c + 1 ) 

(n) 

The upper triangles of A and B also consist of zeros. Similarly, the steady state 
cost under SWITCH(ifc) is stochastically smaller than that under SWITCH(Jb + 1). 

2 The Processor Problem 
Let C(p; A ) now be the steady state cost and Yi(p; A ) the steady state position of 
processor 1 of the processor problem with success probability vector p under policy 
A . When only processor 1 has a different success probability, the expected steady 
state cost, conditioning on the position of processor 1, can be written as 

n 
£ [ C ( p ; A ) ] = JS7 [C(p; A ) j (p; A) = »] ^ 

; = i 

= [l + î i ( l + g + - - - + gB - 3 ) ] ir i 

+ E [(i + « + ••• + <Tx) + a (g- 1 + j + • • • + g" - 2 ) ] * t = 2 

+ ( l + g + ' + g " - 1 ) * » 

i - g i g " 1 pi - p sr i-1 
= — - P — 

where p = (pi ,p , . . . ,p), gi = 1—Pi, g = 1—p and -K, is the steady state probability 
that processor 1 is at position ». Prom (2.1), since g* is decreasing in t, if pi > p 
and the position of procesor 1 under policy A is stochastically smaller than under 
policy B, the expected steady state cost under policy A will be smaller than the 
expected steady state cost under policy B . For the rest of the paper, we assume 
that pi > p. 
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2.1 Randomized Policy 
Define the randomized policy A and its related randomized policy Ad in exactly 
the same way as in the list problem. Also let -rf be the steady state probability 
that processor 1 is at position i under policy A . Define Kf = xf/ic*. Lemma 2.1 
to Lemma 2.4 below show the relationships between and { n f A } under the 
assumption that (p?, pi,..., p ^ ) = (pi, p , . . . , p). 

L e m m a 2.1 Under policy A , for i = 2,..., n, 

= = 1. 

P r o o f . Similar to Lemma 1.1, the Lemma is proved by using the column r + 1 of 
the transition matrix, which is given by 

1 - qr +qrPlar+1<r+i + qrqlP £ " = r + 2 ?*'~r~2 Ey = r + 2 aH + 

9r+1Piar+2,r+l 

? r + 1 Pl a » ,r+i 

• 

L e m m a 2.2 Under policy A, for i = 2,3,..., n, 

P r o o f . Same as Lemma 1.2. • 

L e m m a 2.3 Under policy A, 

WA = Eil( a21*2 + 1a31*3 + •" • + \ 
1 hP\ a2i + 7a3i + h qn~2anl J' 

P r o o f . Similar to Lemma 1.3, the Lemma is proved by using the first column of 
the transition matrix, which is given by 

P I + 9 L P E , N = 2 ? , 2 E Y = 2 °»Y + 9 " V 
9Pla21 
i2Pla31 

i " 1Piani 

• 
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Lemma 2.4 Under policy A , for j = 1 , 2 , . . . , n — 1, 

^ = Piff ( A > + ^ K U i + + • • • + q n ~ } ~ 1 A n ] K A \ 
' qiP \ Ay+1,y + gAy+2,y + -- +qn-'~1An,- J' 

P r o o f . Same as Lemma 1.4. • 

2.2 Comparison of the Steady State Costs and Probabili-
ties of Two Problems under Two Different Policies 

We can now state a result similar to Theorem 1.5 that compares the steady state 
probability {jr,-} under two different policies. As in the list problem, let S be the 
set of policies under which the resulting probability distribution {«¿ } is decreasing 
in t when pi > p and increasing in t otherwise. 

Theorem 2.5 Let A and B be two policies such that, for j = 1, 2 , . . . , n — 1, k = 
j + 1 , . . . , n, 

Ay+i,j + gAj+3,y + • • • + qk-j-1Akj > 5y+1 ,y + <?fly+2,y + • • • + g^^By 
Ay+1,y + gAy+2,y + • • • + qn~>-lAnj - Bj + u + qBJ+2,j + • • • + qn->~xBni ' 

(2.2) 

and at least one of these two conditions holds: 

(a) A 6 S and Bij is decreasing in i for all j = 1 , . . . , n, 
(b) B g S and A,y i*5 decreasing in i for all j = 1 , . . . , n. 

Then <Jt { jrf } for any p = (pi, p , . . . ,p),pi > p. 

P r o o f . Same as Theorem 1.5 because if A,y is decreasing in t for all j then so is 
A,-y. _ • 

It should be noted that (1.6) and (2.2) are not equivalent when Â y and Bi j 
are decreasing in t for all j, even though (2.2) gives (1.6) when q = 1. A simple 
counterexample can be constructed as follows. Suppose (1.6) is true. Let j = 1 
and A2 i + A31 + 1- Anl = B21 + B31 + • • • + Bnl, with A2 i = B21. So by 
(1.6), (A21, A 3 1 , . . . , A „ i ) majorizes (B2i, B31,..., Bnl). With the fact that q* is 
decreasing in t, we have 

A21 + qA31 + ••• + q"-2Anl > B21 + qB31 + • •• + qn~2Bnl, 

which means 

A21 ^21 
A21 + qA31 + • • • + qn~2Anl ~ B21 + qB31 + • • • + qn~2Bnl' 

This contradicts (2.2) for j = 1 and k = 2. 
A consequence of Theorem 2.5 is that the steady state cost under policy A is 

stochastically smaller than the steady state cost under policy B. 

Corol lary 2.6 Under the conditions of Theorem 2.5, C ( p ; A ) < , t C ( p ; B ) . 
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P r o o f . Same as Corollary 1.6. • 
By exactly the same reason as in Corollary 1.7, transposition has a steady state 

cost stochastically smaller than any randomized policy. 

Corol lary 2.7 For any policy A , C ( p ; r ) < ( t C(p; A ) . 

P r o o f . Same as Corollary 1.7. • 
A counterexample similar to that in Section 1.2 can be made to show that not 

every randomized policy is in S. A sufficient condition for a policy A to be in S 
turns out to be the same as in the list problem. That is, when pi > p, {i",^} is 
decreasing in t when (2.3) below, which is (1.7) of Proposition 1.8, holds. 

Propos i t i on 2.8 A policy A 6 S if, for j = 1 , . . . , n — 1, 

Aj+i ,y H h Any < Ay+i.y H V A „ - i , y < < Ay+1|y + Ay+2 ,y 

Ay+2,y+i + f" A„,y+i Ay+ 2 ,y+l + V A n _ l j + i Ay + 2 , y + i 

(2.S) 

Proo f . By the same argument as in Proposition 1.8, A S S if, for k 

Ay+i,y + gAy+2 ,y + • • • + qk~i-1 Akj 

Ay+2,y+i + 9Ay+3>y+1 + • •• + qk-i~2 AkJ+1 

< Ai+1,3 + <lAj+ 2,y + • • • + g fc~y~2Afc-i,y 

~ ^y+2,y+i + 1A}+3,j+i + • • • + qk~:>-3Ak-u+1 ' 

It is then sufficient to show that (2.3) implies (2.4). By cross-multiplying and 
rearranging terms, (2.4) is equivalent to 

gAfcy Ay+i,y + h Afc_i,y 
Ay+i,y + ?Ay+ 2 ,y + h qk~3~2Ak-it]- Ay+i,y + h A fc_i,y 

= j + 3 , . . . , n , 

(2.4) 

< Afc,y y+1 Ay+2,y+l + 1- Afc_i,y y+i 
Ay+2,y+1 + gAy+3,y+i + 1- qk 3 3At-i,y+i Ay+2,y+i H h Afc-i,y+i 

(2.5) 

Now, 
Afc,y + i 

Ay +1,y + h A f c - i j Ay+ 2 ,y+i + 1- A f c _ l i J + 1 

Ay+i,y H H Afcy 
Ay+2,y+1 H 1" Afc,y+1 

< Ay +1,y + h A f c - i ,y 
AJ+2,3+1 + ' ' " + Afc_i,y+i 

(2.6) 
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where the inequality on the right hand side of the equivalence is given by (2.3). 
Also from (2.3), for m < k — 1, 

A] + H h Amy ^ A y + 2 , y + l + • • • + A m > y + 1 

A3 + l,3 + 1- -¿fe-io -¿j'+i.y+i + 1- -4fc-l,y+l 

and because q% is decreasing in t we have 

A]+i,j + gAy+2,y + •-• + q k ->~ 2 A k - l t y 
Ay+i,y + Ay+2,y H h Ajt_i,y 

?^y+2,y+i + ?2Ay+3,y+i + • • • + qk~3~2Akti+i > 
A»"+2,y+l + ^y+3,y+l H 1- -¿k,y+l 

(2.7) 

Then (2.5) follows from (2.6) and (2.7). • 
Thus for the processor problem, by the same argument as in Lemma 1.9, any 

position independent policy is also in S. Formally, 

Lemma 2.9 Let A. be a position independent policy that moves the succesful pro-
cessor I positions with probability a,-, a»' = 1- Then A E S. 

Proo f . Same as Lemma 1.9. • 
We can then restate Theorem 2.5 combined with Corollary 2.6 for position 

independent policies as follows. 

Theorem 2.10 Given two position independent policies A and B such that, for 
k = l , . . . , n - 1 , 

At + qA2 + • • • + g^Afc > Bx + qB 2 + • • • + gfc_15fc 

A1+qA2 + -- + qn~2 An-i B1+qB2 + -- + qn~2Bn 

(2.8) 

then { a / } <,t {wf } and C(p; A ) <,< C(p;B) for any p = ( P l , p , . . . , P ) , P l > p. 

Proo f . Direct application of Theorem 2.5 Corollary 2.6 and Lemma 2.9. • 
There is no obvious interpretation of (2.8), unlike (1.8), as in the list problem. 

However, (2.8) yields the same monotonicity result as in the list problem that 
move-t'-position has a steady state cost stochastically smaller than move- (t + 1)-
position. Let A and B represent the move-t-position and move-(t + Imposition 
policies respectively. Then, 

Ai = A2 = • • • = Ai = 1, Ai+i = Ai+1 = • • • = An-i = 0 

B\ = B2 = • • • = Bi+i = 1, Bi+2 = Bi+3 = • • • = = 0. 
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Therefore, for k = 1 , . . . , n — 1, 

Ai + g A 2 + - + g f c ~ 1 A f c _ 1 + q+-+qk~l 

A1 + gA2 + --- + g " - 2 A „ _ 1 ~ 1 + g + • • • + g - 1 

> 1 + g + • • - + gfc~x 

1 + g + • • • + g«' 
J31 + qB2+-+ qk~^k 

Bx + qB2 + ••• + g"-25„_r (2-9) 

We have proved the following Corollary. 

Corol lary 2.11 The steady state cost under the move-i-position policy is stochas-
tically smaller than that under the move-{i + Imposition policy. 

P r o o f . By (2.9) and Theorem 2.10. • 
By Theorem 2.5, it also holds, as in the case of the list problem shown in Section 

1.2, that the policies in the two spectra of Tenenbaum and Nemes [9] tire ordered 
such that the policies in each spectrum have steady state costs stochastically smaller 
or larger than each other. 
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