
Acta Cybernetica, Vol. 10, Nr. 4, Szeged, 1992

Computing Maximum Valued Regions

G. J. Woeginger*^

Abstract
We consider the problem of finding optimum connected configurations

in the plane and in undirected graphs. First, we show that a special case
concerning rectilinear grids in the plane and arising in oil business is NP-
complete, and we present a fast approximation algorithm for it. Secondly,
we identify a number of polynomial time solvable special cases for the corre-
sponding problem in graphs. The special cases include trees, interval graphs,
cographs and split graphs.

1 Introduction
P r o b l e m statement and applications. In this paper, we deal with the MAXI-
MUM VALUED REGION problem (MVR, for short) which is defined as follows. We
are given a subdivision of a rectangle into equisized squares. Every single square
has some (known) positive value. The problem is to find for a given number k a
connected subregion of the rectangle that consists of exactly k squares and that
has the maximum overall value under these conditions.

Practical applications of MVR arise e.g. in the context of oil business, cf.
Hamacher, Joernsten and MafEoli [6]. Suppose a company is searching for oil at
many places of some large area and assigns values to the pieces of land according to
the results of these trial prospects. The places form some regular (rectilinear) pat-
tern as described above. Afterwards, the company will buy the 'best' k landpieces;
assuming unit prices for the land we exactly arrive at MVR.
A related graph prob lem. The corresponding problem in vertex-valued graphs
is to find a connected subgraph on k vertices with maximum overall value. We call
this graph problem the Maximum Valued Subtree problem, MVS for short. Problem
MVS is known to be NP-complete for arbitrary graphs (see [6]). It is easy to see
that MVS restricted to gridgraphs becomes MVR.
K n o w n results. Hamacher et al. [6] introduced the problem MVS and proved
it to be NP-complete for arbitrary graphs. They also developped a branch-and-
bound scheme for MVS, and gave an integer program formulation. As a main open
problem they asked whether the restriction of MVS to gridgraphs can be solved in
polynomial time. Maffioli [8] derived a polynomial time algorithm for solving MVS
in trees.

"TU Graz, Institut für Theoretische Informatik, Klosterwiesgasse 32/11, A-8010 Gras, Austria.
Electronic mail: gwoegiQigi.tu-graE.ac.at

tThis research was supported by the Christian Doppler Laboratorium für Diskrete
Optimierung.

I
304 G. J. Woeginger

O u r results. We prove that MVR (and hence the restriction of MVS to gridgraphs)
is NP-complete and we give a polynomial time approximation algorithm with worst
case guarantee;O [*/k) (Ee. the* approximation- algorithm, always .outputs absolution
with value'at least the optimum value divided by c\/k).

For the graph problem MVS, we will identify several polynomial time solvable
subcases, e.g. MVS in trees, interval (graphs ¡and cographs. It turns out that MVS
and the famous STEINER TREE problem are closely related in the following sense:
The investigated restrictions to the various 'famous' graph classes (as described in
Johnson [7]) are either NP-complete for both problems or polynomial time solvable
for both problems.
Organization of the paper . In Section' 2, we give the NP-completeness proof
for MVR,Mand,;in: Section, 3;;oiiri.approximatibñoalgorithm .is described'^and ana-
lyzed. sSection, 4 de^.fwith.treelike;graph.classescforiwhich. MVS. is. polynomial
time solvable-by, a, dynamic- prqgrammiiig approach. :Section; 5 summarizes. >some
other results on special graph.classes (interval graphs,xographs and split.graphs).
Section 6 contains,the discussion.,;,. . . : . .'.,, .,. - „,,;;:

2 NP-completeness of the Región Problem
To give a precise presentation of the problem and our method, we will .need the
following definitions. A gridpoint in the Euclidean pláné' is á :pbint 'with1 both"
coordinates integer. Two gridpoints are called adjacent iff they are at distance,,
orie^fr'om ^each' other.' This 'adjacency1 relation'induces1 an' infinite -• graph .on' 'tHe-
gridpoints: A 'regioW-is1 á set of- 'gricipoints that' is connected' in1 this- infinite1 graph.1

" f ó Á X i M Ü i i í ' . R E G I O N ; P R O B L E Í Í Í { M Y F C) ^ . . . " ; " J V I F V.:
Input . A rectangular region # = [1,..,. ri] ̂ x j l njfwith^,sidelength:in;;,%yalue„,-.
function c, : R r-"; ZZjr^a.jpositiye integer fc;an intégeí.bound .CVii: ! ,•• <<J.
•¡Questions. Does'. ther.e'existoa£region;;/ii G;lRlofpexactly!'A;;rpoints'- with •total'"
valué c[R') '^C T' - • - ' •< vo.. i • .-..-. -1, . - . < . , .'-n^ a ,

: We will show that the.NP-complete planar. Steiner-Tr.ee problem..(cf^Garey^and,
Johnson [3]) is polynomial time reducible to our problem MvR.
; I. . tmUvi ; s,;j.0i'.>t<::9YI0 , ' i i ><-('- Vf'-yr1 K02:? OS,' i'.'!
«•:;"• '̂ STEINER 'T'REE\INi!PLvANAR•'GR;APHS-(PST) ri^,'" ¡V--;- : . ! v . , i! V ?i

c / input'v" A; pianar^g^apn G t r = ' (^„E) -,. a weight w(:' jj.—-ZZ; * a ..subset•. f. i
< ^ ii'te£er"bound ¡V,?*- . V ; V a.,'.

h Question.¿Doesthere e^ta^S.teine^Tree Tl=n(Vx,.ET) of Giqr.,A\(i.'e.
'' does there'iexist a'subtree T61-G'with X C'W,) such that ... Olii- f ' i - - « •>••>•:,!>r: 1 •'»> •• >x — ; v ' ' -1 • "

**T • n- .t •:'•>;»RI;;ru'..'i -l." :u •-••"fy .. V,-; :•'. '• brj; , •
We start.-with an i^W'-i '^i '•
is' solvable' if and' only if PST issolvable.' To' simplify the presentation,* we will also1,
use negative values for points in problem MVR. Since .exactly, k points, have.to be
chosen,, adding,- adarge positive constant to .all values yields.-an equivalent- problem
with positive values. -3-1 1 >../,-• ion:

3 "In'a first siejy^we"cdtti^ute^awree<rfftt«br planar /oVouit bf'th^ grap'h'&. Such a
layout maps the vertices of G to (pairwise disjoint) horizontal line segments'arid
maps the edges of G to (pairwise disjoint) vertical line segments, with all endpoints

Computing Maximum Valued Regions 305

8

1

Figure 1: A planar graph and its rectilinear planar layout.

of segments at positive integer coordinates. Two horizontal vertex-segments are
connected by a vertical edge-segment, if and only if the corresponding vertices are
adjacent in the graph. Figure 1 shows a drawing of a planar graph together with
its rectilinear planar layout.

Rosenstiehl and Tarjan [9] show how to compute a rectilinear planar layout for
planar graphs with n vertices in O(n) time. The height of their layout is at most
|V|, and the width is at most 2|V| — 4. Most important, one can choose an arbitrary
vertex to become the bottom horizontal vertex-segment of the layout. We choose
some vertex x in X to become the bottom segment.

In the second step, we stretch the rectilinear planar layout in horizontal and
vertical directions by a factor of two, i.e. we multiply the coordinates of all endpoints
by 2. This ensures that points on distinct segments are at distance at least two,
unless they correspond to a vertex-edge incidence.

In the third and last step, we finally transform the layout into a weighted region
for problem MVR. We distinguish five types of gridpoints: vertex-points, edge-
points, link-points, dummy-points and fill-points. The vertex-points, edge-points
and link-points together cover exactly all gridpoints on the line segments of the
stretched rectilinear planar layout.

• For each vertex v in X (the set that has to be spanned by the Steiner "free),
we choose an arbitrary gridpoint on the horizontal line segment corresponding
to v and make it a vertex-point G(v). The value c of every point G(v) is set
to M := Y,e€E «»(e) + 1.

• For each edge e in E, we choose an arbitrary gridpoint on the vertical line
segment corresponding to e and make it an edge-point G(e). The value c(G(e))
equals the weight —ui(e).

• All points lying on line segments of the stretched rectilinear planar layout
that are neither vertex-points nor edge-points become link-points and receive
a value of 0.

306 • G. J. Woeginger

• e •

• o •

e e • •

• • • • • •

• e e •

• • • • o • • •

e e e e •

• • • • • • • • •

e e •

• • • • • o • • • • •

X

X X X X X X X X X X X

Figure 2: The upper part of the constructed region instance.

Now let n„, ne and nt denote the number of vertex-, edge- and link-points, respec-
tively. Set k = n„ -I- ne + ni and observe that k & 0(|V|2).

• We create a connected region of k points just below the layout, separated from
the layout by a single row of unused gridpoints (in other words, the topmost
points in this new region are at distance two from the lower border of the
layout). Moreover, we connect this region by a single gridpoint in this unused
row to the vertex-point corresponding to vertex x G X. The gridpoints in
this new region and this single gridpoint constitute the set of dummy-points.
All of them have value 0.

• Finally, we enclose the vertex-, edge-, link- and dummy-points by a rectangle
(obviously, the sidelength of this rectangle is polynomial in |K|). All points
in this rectangle to which we did not assign a value till this moment are the
fill points; they have value — |X| • M — 1.

An illustration for this construction is given in Figure 2, where the graph depicted
in Figure 1 is transformed in its corresponding region. The vertices in X are 1,
4 and 7 and the corresponding vertex-points in the region are marked by a " O " .
The edge-points are marked by an "e", and the link-points by a Empty space
corresponds to fill points. For reasons of readability and space, we did not show all
dummy-points (marked by an "x") that lie below the bottom "O " -

We claim that the constructed instance of MVR has a solution with value at
least C = • M — W if and only if there exists a Steiner Tree of G for X with
weight at most W. W.l.o.g. we assume W < w(e) = Af — 1> as otherwise the
PST is trivially solvable.

(only if) Assume there exists a region R' with value at least |X| • M — W. Since
the only points with positive value are exactly the |X| vertex-points with value M

Computing Maximum Valued .Regions 307

and since W < M — 1 holds, R' must contain all the vertex-points. Since all
fill-points have value — |X| • M — 1, no fill-point appears in R'.

Obviously, the dummy-points (outside of the layout!) cannot help in connecting
the vertex-points. Hence, the connections must result from the edge- and from the
link-points. Vertex-points on two distinct horizontal segments can be connected to
each other only via points on the vertical edge-segments. Using link-points (with
value 0) is no problem, but in the middle of each edge there sits an edge-point,
substracting u>(e) from the value of region R'. In order to connect all vertex-points
while substracting at most W from the total value |X| • M of all vertex-points,
we must find a connected configuration that has edge-weight at most W and that
contains X. This exactly yields the claimed Steiner Tree.

(if) Now assume we are given a Steiner TVee with edge-weight at most W. We
start with putting into the region R' all gridpoints on line segments corresponding
to edges and vertices used in the Steiner Tree. Hence, it contains all vertex-points
(with total value |Jf| • M) , some edge-points (with total value at most W) and a
number of link-points with zero value. By the definition of k, the overall number
of these points is at most k. To get a region with exactly k points, we add an
appropriate number of dummy-points to R' such that R' remains connected. As
all dummy points have zero value, the total value of the constructed R' is at least
\X\-M-W.

Summarizing, we have proven the following theorem.

Theorem 2.1 Problem MVR is NP-complete. •

3 A Heuristic for M V R
In this section we analyze the following fast and simple heuristic for the region
problem MVR (for convenience we assume throughout this section that k — a2 is
a square number).

Take the highest value axes-parallel quadratic region Q* with sidelength
y/k.

Clearly, this quadratic region can be found in 0(kn2) time and a slightly more
sophisticated implementation runs in o(Vk n2) time. Our main interest is to de-
termine the worst case quality of Q* compared to the optimum region R*.

Let k = a2. Consider a staircase, consisting of a / 2 vertical and at/2 horizontal
line segments where each line segment contains exactly a gridpoints. All gridpoints
on the staircase receive value one, all other gridpoints receive value zero. Then the
optimum region R* has value k, whereas no square with sidelength a can cover more
than 2a gridpoints on the staircase. Hence, for this configuration our heuristic is a
factor of Cl(>/k) away from the optimum. It is easy to see that the staircase is also
a bad configuration for the more general heuristic where we do not only consider
axes-parallel squares but also arbitrary (not necessarily axes-parallel) rectangles.

Surprisingly, OiVk) is also the worst that can happen as will be shown in the
remaining part of this section. We cover the optimum region R* by an orthogonal
grid with gridlength a and vertices that are integer points shifted by the vector
(1/2,1/2). This grid is called the A-grid and it partitions the plane into A-cells.

308 • G. J. Woeginger

Lemma 3.1 Atmost .10a of the lA-cells contain 'a point of R*.'

Proof. . , Denote rby, ,Víi the set -of- aÜL. A;cells, that..contain,-at;least one):poiiit of
R*.rTw;o Á-cells-,4!,and.Á2 in]yR.are called adjacent iff A,/contains a^gridpoint
Pi & R*-,..!•-< i:, < 2,.suchvthat P i and p2 are at distance one. Let T = .(Vjt> Er)
be an arbitraryspanning tree of the graph,induced by this adjacency relation. We
root T at an arbitrary leaf ofrT;j this defines fathers_and sons,,:and-by the choice, of
the,root.no vertex has.morethan .three sons-, - ,r . •
, ..Then we repeat the following two stepsj'oyer and oyerJagain. until T- contains
less tlian'-lO vertices. "(The "tree.is processed in",a b^Upm-up^fashion from the leaves
towards' the "root. Step 1 rémóves'iubtreés, that . are "paths on, four vertices, and
btep 2 removes branching subtrees).

. v. cc J". v ; h o ujb:: zyf£ •¡cu:::"' ¡ r¿ s'. -' ' • "u
V (Stepi;!) ..• Assume, ^contains a^veií.ex ,v whose.only •descendants, forma <••£••.

t,jT.'(;,:pathion., three /yeRtices ui,<V2iand :Vs ̂ su<&Za subgraph.. isxaUed' type-íb-. o *
a <%,! /au6^rapA).;,ThenxthetCojrMpOnding foj^A-ceUs-contain atleasta points ^jy ,
.. d-r «of JZ.v-The only interesting case ;occurs when the A^cells corresponding'' —
,-, - :-.;,to.u, vi;:U2>and «¿ form a 2 X2rConiiguration'.' W-.l.o.g.let.v berthe lower r\-. '; ;
í.»-.. J.left; A-cellin;this;configuration-, and-let.,y._be. connectedjto^its.father ¡via;. .-
¿¿at,' ..its left side.-£:Thenjthisfleft.jside. must be>linkedy to, the-diámetric A-,cell "> '

d2. A-cell «2 is at distance a from the left side of v, and there are at
least a vertices necessary to link them.
We iteratively removejajl type-l; subgraphs from.T..-?.->' / .v.

-i (Step 2). Next, we consider some vertex w of-degreeat least-two with n o j ; n
descandants of degree at least two (to must exist, unless Step 1 deleted
all but three vertices; in this case we terminate).
Vertex to has at most three sons, and since T doesmot contain any type- ?
1 configuration any more, each of its sohs"has at most two descendants.
Summarizing, the maximal subgraph of T rooted at to contains at most , ,

' ° - o • lb.A-cells'.' On the.dther hand', the 'A-cell córrespbndin'gtó to^hasoutside'"'
^ J "connections'onrat least three of its foiir sides (óne to its father,1 arid'at''' ">

least two to its sons). Two of these outside connections'-must' l ie^ñ' ' ;

opposite sides of the cell, and in order to link them to each other, the
•'JA-céÜ1müsVcontairií'á't^lea!st á p o i n t s ' ó f 7 2 * . ' '•BV '•""-i' ' '•
We remove the maximal subgraph of T rooted at to from T and return
to. Step 1. ,

. . y..t'.I-J " ''....i: jív.1.'.- . ','..' i: : ' • .>-.• ."•;.'•:- -p
To finishothe proof of the lemma, we .observe that each:removal'operation:in Step 1
and 2 removes^(i) atjinostclO A-cells-and-.(ii) at least a .points OÍTJ2*._/Because of
(ii), at most fc/a removal operations are performed and because-of (i), T,contains
at most 10fc/a '= ' l0a A-cells.' . ' • v- : / • - n ; D .i' ' in'r - J >. . x.q.o" i> . ., ' "t;1-'- i'iw. . -;s kiL.'-.xn^ - '
ThéorémcSt2 ' TKere exist coñstdñfaTex-^'-ei > 0 süch^that the heuristic detects
-for all- instances ^¿region Q* whose 'value 'is at' least' the[value- of-R*1 divided by
íc{y/ky'ahd1'tÍtere exist instances for whi'cÚ' the 'palue óf Q* js^at most .the "valtte* of
H* divided by c2\/kl ' ' i' v:-v " : r"'1'' ' " ' " r^

Proo f . We prove the statement' for ct = 10 and c2 = 1/2.'' ' ; - i e ' : : ! - ' ' ' ' ' ''
Applying Lemma, 3.1 andan averaging, argument, we see .that, there .exists an

-'A-cell An such that the póintsiniZ* n A0 have "overall valúe •atleast' the optimum .• -J _ • V..' . . 'f— 31 í • . •;• -'•.- ' .-'J- ' •'• Blij.f 1J •;'-.'.i «ií.f.j.--;-••.. t
-value divided byjlOy k.: Since-all-other gridpoints in AQ have nonnegatiye-value,
the Value of iQ*cis at least the valué of Í2*ldiyidedr!by l0\/fc.' " ' J ' . ' i

Computing Maximum Valued .Regions 309

The lower bound follows from the staircase configuration described at the be-
ginning of this section. •

Remark. The factor 10 in the statement of Lemma 3.1 is not the smallest possible.
A more elaborate argument decreases the factor down to 4. For our purposes, any
constant factor suffices.

4 Results for Trees
In this section, we consider the following problem corresponding to MVR in graphs.

MAXIMUM VALUED SUBTREE PROBLEM (M V S)
Input . A graph G = (V, E); a value function c : V —• IN; a positive integer k
and an integer bound C.
Prob lem. Does there exist a fc-subtree T of G with total value at least C ?

For general graphs, problem MVS is NP-complete since MVR is a special case of
MVS. We will present a polynomial time result for trees. As usual, we assume that
the input graph G is given by its adjacency list, i.e. for each vertex v G V we have
a list of its neighbors in G. The number of vertices in G will always be denoted by
n. A tree on k vertices will also be called a k-tree or a k-subtree.

Subsection 4.1 analyzes a related matrix problem and Subsection 4.2 gives an
0{nk2) algorithm for MVS on trees, The algorithms are based on Dynamic Pro-
gramming approaches. Maffioli [8] derived another (more complicated) polynomial
time algorithm for MVS in trees with the same running time as our solution.

4.1 A Matrix Problem
In this subsection we will analyze a matrix problem that is closely related to the
MVS-problem. Let M be a matrix with nonnegative integer entries that consists
of d rows and k columns. We define that the entry in the t-th row and j-th column
has value M¡,- and weight j. For 0 < j < k, we denote by MAXVAL(M, j) the
maximum value for which there exists a subset Sj of the entries in M fulfilling the
following conditions.

• Sj contains at most one entry from every single row in M,

• the overall weight of Sj equals j, and

• the overall value of Sj is MAXVALjii(j).

Lemma 4 . 1 For a d x k matrix M, all numbers M A X V A L (M , 0) , . . .
. . . , MAXVAL(A/, k) can be computed in overall time 0(k2d).

Proo f . We apply the Divide and Conquer paradigm to solve the problem by the
following recursive procedure.

(1) We divide matrix M by a horizontal line into an upper and into a lower
submatrix of equal size. We call these two submatrices U and L.

(2) We recursively calculate all numbers MAXVAL({7, *) and MAXVAL(L, *).

310 • G. J. Woeginger

(3) We determine MAXVAL(M , *) from MAXVAL((7, *) and MAXVAL(L , *) ac-
cording to the formula

M A X V A L (M , j) = m a x МАХУАЬ({ / , j - *') + M A X V A L (L , I) o<»<y

for all j, 0<j<k.

The correctness of the algorithm is obvious. Since the Divide-Step (1) takes only
constant time and the Merge-Step (3] is done with at most к2 operations, the time
complexity T(d, k) fulfills the inequality

T(d,k) < 2T(d/2,k) +k2.

Standard calculations yield T(d,k) < dT(l,k) + dk2, and consequently the time
complexity is at most 0(dk2). •

4.2 Trees
Now let the tree G = (V, E) constitute an instance of MVS with n = |V| = \E\ + 1.
We root G at an arbitrary vertex r. This assigns to every vertex v (with exception
of the root r) a unique father f(v). With every vertex v € V, we associate the
maximal subtree rooted at v. Let vi,v2,... ,v„ be an enumeration of the vertices
in V such that each v comes before its father /(t>). Such an enumeration can easily
be found in O(n) time.

We introduce a two-dimensional integer array AR[t,y] with n(k + 1) entries.
The rows are indexed by the vertices V{ in the above enumeration, and the columns
are indexed by the numbers from 0 to k.

The meaning of "AR[t,y] = to" is that "the maximum value j-subtree
of T(u,) that also contains its. root Vi, has value to".

Lemma 4.2 The values of all entries in AR can be calculated in 0(k2n) time.

P r o o f . We consecutively calculate all rows of AR, starting with the row corre-
sponding to vi and ending with the row corresponding to vn = r.

If Tfa) consists of the single vertex we set AR[»,0] = 0, AR[», l] = e(t^) and
all other entries in AR[t, *] to —oo.

If T(u.) consists of at least two vertices, we consider the sons vmi, vmj,..., vmi

of Vi, where d = deg(vj) — 1. In order to compute AR[t,y], we must find the
optimum partitioning of the number j — 1 into d nonnegative numbers j\,. •. ,jd
that maximizes E ? = i AR[t>mi, У,]. But this exactly amounts to solving the matrix
problem treated in Section 1 on the submatrix M of AR[*, *] generated by the
rows corresponding to the vertices vmi, u m , , . . . , vmi. According to Lemma 4.1,
this problem can be solved in 0(k2d) time. Finally, we add to each of the к
resulting numbers the value c(vi) of the root of this subtree.

To get the overall time complexity for computing AR[*,*], we have to sum up
the Jfc^deg^) — 1) steps for every with at least one son plus the к steps for every
Vi without a son. This is clearly dominated by k2 deg(uj) e 0(k2n). •

Computing Maximum Valued .Regions 311

Theorem 4.S For trees, the problem MVS can be solved in 0(k?n) time and 0(kn)
space.

Proo f . Assume that the maximum value A:-subtree T is spanned by vertices W =
I t o i , . . . , tUfcl and let to denote the unique vertex in W whose father is not in W.
Then the value of T equals AR[to, A;]. Conversely, each entry in AR[*, j] corresponds
to a j-subtree.

Hence, the maximum number in the fc-th column of AR[*,*] gives the value
of the maximum value fc-subtree. The time complexity follows from the preceding
lemma, the space complexity is determined by the sue of AR. •

Remark . We only showed how to find the value of the maximum value fc-subtree.
If we also want to find the corresponding k-subtree, we have to store for each entry
in AR[*, *] its 'history' consisting of at most k — 1 predecessor entries as used in
the dynamic program. This increases the time and the space complexity both by a
factor of k.

5 Other Graph Families
This section deals with interval graphs, cographs and split graphs. We derive
polynomial time results for the former two graph families and an NP-completeness
proof for the latter family.

5.1 Interval Graphs
The vertices of an interval graph G = (V, E) can be represented by intervals on the
real line in such a way that two intervals intersect if and only if the corresponding
vertices are adjacent. Most NP-complete graph problems become polynomial time
solvable when restricted to interval graphs, cf. [5,7].

W.l.o.g. we may assume that intervals corresponding to distinct vertices have
distinct endpoints. To find the MVS of a vertex-valued interval graph, we use the
following decomposition of a connected interval graph G: The interval with the
rightmost right endpoint is called the head of G. In general, there will be several
intervals covering the left endpoint of the head. Among those intervals we choose
that one with leftmost left endpoint, and we call it the neck of G; its endpoints are
denoted by nj and n r . The remaining intervals either belong to the body of G (if
their right endpoint lies to the left of n r) or to the hairs of G (if their right endpoint
lies to the right of n r) . Intuitively speaking, the body intervals are connected to
the head via the neck. The hair intervals are directly connected to the head (their
left endpoints are to the right of nj, and their right endpoints are covered by the
head).

Now sort the intervals from left to right according to their right endpoint
and call the resulting sequence Ii,...,Jn. We construct a twodimensional array
AR[1 . . . |V|, 1 . . . A:] such that the maximum valued subtree with head 7y and con-
sisting of k' vertices (1 < k' < k) has value AR[J, A:']. We compute all values in
AR[*,*], starting with level AR[1, *] and going up to level AR[M, *]. The initializa-
tion steps are trivial, hence we only show how to compute AR[J, A:'] for some fixed
j > k'.

By definition, I j constitutes the head of the optimum subgraph G'(j, k') we are
looking for. There are at most n— 1 possibilities for the neck of G'(j, A/). There are
at most 0(k2) pairs (fcj, k2) with sum A^-fA^+2 = k', where kx denotes the number

312 • G. J. Woeginger

of hairs and k2 denotes the number of body-vertices. For fixed head and neck and
for fixed numbers ki and k2, the value of the optimum G'(j,k') can be found in
the following way. The body is the maximum valued connected subgraph on k2 + 1
vertices and with our neck as new head; its value has already been computed and
we find it in constant time. The hairs are the kx most precious intervals with left
endpoints to the right of the left endpoint of the neck, and with right endpoints
covered by the head. We claim that the optimum value for the kt hairs can be
calculated in constant time with O(nk) preprocessing for every head.

For a fixed head h, we enumerate all intersecting intervals sorted by their left
endpoints from left to right in O(n) time (in a preprocessing step, we sort all
intervals by their left endpoints; if we deal with a fixed head, we run thru this list
and select all intersecting intervals). We run through this enumeration from right
to left and always store the k most precious values in a balanced tree: if the current
interval has a value larger than the minimum in the tree, we remove the minimum
and insert the value of the current interval (in case the tree has less than k vertices,
we just insert the new value). Hence, we know in every single step the 1 < k' < k
largest values and can compute their sum in 0(k) time.

Theorem 5.1 For interval graphs, the problem MVS can be solved in 0(k2n2) time
and O(kn) space.

Proof . The approach described above takes 0(kik2n + kn) time for each of the n
possible heads. Hence, the overall time is in 0(fc2n2). The space requirements are
dominated by the space of array AR. •

5.2 Cographs
In this section, we give a polynomial time algorithm for MVS in cographs.
Definition 5.2 For r > 2 disjoint graphs Gi = (Vit Ei) with V{ n Vy = 0 for
i], the union Ui=i defined as the graph (U,r=1 Vit |T=i EA. Their product
X,-=1G, is obtained by first taking the union of the r graphs and then adding all
edges (v,-, vy) with E V|, vy 6 Vy and i ^ j. •

Definition 5.3 The class of cographs is the smallest set of graphs fulfilling the
following rules.

1. The graph with one vertex and no edges is a cograph.

2. If Gi, 1 < » < r are cographs with pairwise disjoint vertex sets, then their
union is a cograph.

S. If Gi, 1 < t < r are cographs with pairwise disjoint vertex sets, then their
product is a cograph. •

To each cograph G = [V,E), we associate a corresponding rooted tree T =
(I , F) , called the cotree of G and reflecting the above definition in the following
way. Each non-leaf vertex in the tree is labeled either with U (union-vertex) or
x (product-vertex) and has two or more children. If two non-leaf vertices are
connected by an edge, then they have different labels. Each vertex x E I of the
cotree corresponds to a cograph Gx = (Vx, Ex), and a leaf corresponds to a single-
vertex graph. A union-vertex (product-vertex) corresponds to the union (product)
of the cographs associated with the children of the vertex. Finally, the entire
cograph is given by the cograph associated with the root r E I of the cotree. Corneil,
Perl and Stewart [2] have shown that one can decide in linear time 0(|V| + |-E|),
whether a graph is a cograph, and build the corresponding cotree.

Computing Maximum Valued .Regions 313

T h e o r e m 5.4 For a cograph G = (V, E), the problem MVS can be solved in 0(k2n)
time and O(kn) space.

P r o o f . We will compute two twodimensional arrays ARC[X, A;'] and ARA[X, A:'],
where the rows correspond to the vertices x of the cotree and where 0 < k' < k
holds. Once more, we start the computation of the array values at the leaves and
go up to the root. ARC[X, A;'] stores the largest possible value of any connected
subgraph on k' vertices of the cograph Gx associated with x, and A R A [X , kf] stores
the corresponding value for arbitrary (not necessarily connected) subgraphs.

The initialization is straight forward and we only show how to compute
A R C [X , *] and A R A [X , *] for a non-leaf vertex x. The computation of A R A [X , A:']
is easy: We simply take the k' most valuable vertices in the corresponding cograph.
Applying e.g. the matrix algorithm from Subsection 4.1 this can be performed in
0{k2n) overall time for all vertices in the cotree. The computation of A R C [X , k'\ is
more envolved; we have to distinguish between union- and product-vertices x. For
a union-vertex x, A R C [I , k1} equals the maximum of ARC|S, fc'] over all sons s of
x in the cotree (as a union operation cannot change connectivity properties of the
graph). For a pro duct-vertex x with sons . . . , sp, we perform two computations
to find ARC[x, A:']:

(i) We compute the maximum value of ARAJSX, ki) + . . . + A R A [S p , fcp] over all
p-tuples (ki,... ,kp) with sum k' and at least two non-zero fc,- (by applying
the matrix algorithm). Since this maximum value results from at least two
distinct sons of x, the corresponding graph is connected.

(ii) We compute max,- ARC[S,-, A;'J. By the definition of ARC[S,-, *], the corre-
sponding graph is again connected.

Obviously, the maximum of the two values computed in (i) and (ii) yields
ARC[X, A:'].

The entry ARC[r, A:] for the root r of the cotree gives the desired value of the
MVS. Since the cotree has 0(n) vertices, the claimed time and space complexity
follows from the discussion in Subsection 4.1. •

5.3 Split Graphs
A graph G = (V, E) is a split graph, if there is a partition of its vertices into an
independent set / and in a clique C (and arbitrary edges between I and C), see
Golumbic [4].

T h e o r e m 5.5 Problem MVS restricted to split graphs remains NP-complete.

P r o o f . By reduction from the NP-complete SET-COVERING PROBLEM: Given
a set S = (1 , . . . , p } and subsets Ax,..., Aq C S, the SET-COVERING PROBLEM
consists in finding r subsets A, - , , . . . , A<r with Uy=1 A^. = (1 , . . . , p} . This problem
is known to be NP-complete [3].

We construct a split graph on p + q vertices that are labeled by some label in
(l , . . . ,p, A i , . . . , Aq}. The vertices A i , . . . , A , form a clique, the vertices 1 , . . . , p
form an independent set. We introduce an additional edge from t to At> iff t £ A t j
holds. All vertices 1 , . . . , p receive value 1, all other vertices receive value 0. Finally,
we set A; = p + r and ask whether there exists a subtree with value at least p.

314 • G. J. Woeginger

Trees Intervalgraphs
L J L J

Figure 3: Containment relations for some of the treated graph classes.

In case such a tree exists, it uses all p vertices with value 1 and r vertices
belonging to the clique must connect them; this yields the existence of a small set
cover. In case a set cover with at most r subsets exists, we choose the corresponding
r vertices in the clique and all p vertices not in the clique; clearly, the spanned graph
is connected and of value p. •

Remark. We observe that there exists a simple approximation algorithm for MVS
in split graphs with (tight) worst case guarantee 2: We simply take the k/2 most
valuable vertices t>i,..., vk /2 a n d for every » some clique vertex c,- adjacent to t>,-.
Obviously, the resulting spanned graph is connected and its value is at least half of
the optimum possible value.

6 Discussion
In this paper, we investigated the computational complexity of two closely related
combinatorial problems, called MVR and MVS. The geometric problem MVR was
shown to be NP-complete, and a polynomial time approximation algorithm was
derived. The graph problem MVS is NP-complete for arbitrary graphs, but it can
be solved efficiently on many well known special graph classes by applying Dynamic
Programming techniques.

Figure 3 summarizes some of our results for MVS. Directed arcs represent
containment of the lower graph class in the upper graph class. For classes with

Computing Maximum Valued .Regions 315

a solid frame, MVS is NP-complete, and for classes with a dashed frame, MVS is
polynomial time solvable (for exact definitions of all graph classes cf. Johnson [7l).
Cographs, trees, interval graphs and split graphs were treated in this paper. Tne
NP-completeness result for split graphs implies NP-completeness for chordal graphs
and for perfect graphs. NP-completeness of MVS for bipartite graphs can be seen
easily (by subdividing the edges of an arbitrary graph, assigning value sero to the
new vertices and replacing k by 2k — 1), and this also yields the NP-completeness
for comparability graphs. Finally, a polynomial time algorithm for directed path
graphs can be derived by standard Dynamic Programming techniques (the method
is analogous to that we applied to trees and cographs, and left to the ambitious
reader as an exercise).

Moreover, for planar graphs we have proven the following results. MVS on grid-
graphs (and consequently on arbitrary planar graphs) is NP-complete. However,
the restriction to outerplanar and series-parallel graphs (these two classes are sub-
sets of the partial 2-trees) can be solved in polynomial time. Bodlaender [l] derived
an 0(k2n) algorithm that solves MVS in partial if-trees, where K is not part of
the input.

The most intriguing open problem is to construct polynomial time approxima-
tion algorithms for the geometric problem MVR with constant worst case guarantee
(or prove that such algorithms do not exist).

References
H.L.Bodlaender, private communication, 1992.

D.G.Corneil, Y.Perl and L.K.Stewart, A linear recognition algorithm for
cographs, SIAM J. Comput. 4, 1985, 926-934.

M.R.Garey and D.S.Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, Freeman, San Francisco, 1979.

M.C.Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic
Press, New York, 1980.

U.I.Gupta, D.T.Lee and J.Y.-T.Leung, Efficient algorithms for interval graphs
and circular-arc graphs, Networks 12, 1982, 459-467.

H.Hamacher, K.Joernsten and F.Maffioli, Weighted k-cardinality trees, Report
91.023, Dipartimento di Elettronica, Politécnico di Milano, 1991.

D.S.Johnson, The NP-Completeness Column: an Ongoing Guide, J. Algo-
rithms 6, 1985, 434-451.

F.Maffioli, Finding a best subtree of a tree, Report 91.041, Dipartimento di
Elettronica, Politécnico di Milano, 1991.

P.Rosenstiehl and R.E.Tarjan, Rectilinear planar layouts of planar graphs and
bipolar orientations, Discr. Comp. Geometry 1, 343-353, 1986.

Received November 8, 199B

