
Acta Cybernetica, Vol. 11, No. 1-2, Szeged, 1993 

A Tourist Guide through Treewidth 
H. L. Bodlaender** 

Abstract 
A short overview is given of many recent results in algorithmic graph the-

ory that deal with the notions treewidth, and pathwidth. We discuss algo-
rithms that find tree-decompositions, algorithms that use tree-decompositions 
to solve hard problems efficiently, graph minor theory, and some applications. 
The paper contains an extensive bibliography. 

1 Introduction 
In recent years, the notions 'treewidth', 'pathwidth', 'tree-decomposition', and 
'path-decomposition' have received a growing interest. These notions underly sev-
eral important and sometimes very deep results in graph theory and graph algo-
rithms, and are very useful for the analysis of several practical problems. 

In this paper, we give an overview of a number of these applications, and al-
gorithmic results. In section 2 we give the main definitions. Applications of the 
notions discussed in this paper are given in section 3. In section 4 we explain the ba-
sic idea behind linear time algorithms on graphs with constant bounded treewidth. 
In section 5 we review some results that deal with graph minors. In section 6 we 
discuss algorithms that find 'suitable' tree- or path-decompositions. 

It should be noted that the constant factors, hidden in the 'O'-notation can be 
quite large for several of the algorithms, discussed in this paper. In many cases, 
additional ideas will be required to turn the methods, described here, into really 
practical algorithms. 

2 Definitions 
In this section we give the most important definitions, with an example. The 
notions of treewidth and pathwidth were introduced by Robertson and Seymour 
[109,115]. 
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Figure 1. . 
Example of a graph with tree- and path-decomposition 

Def init ion. A tree-decomposition of a graph G = (V, E) is a pair 
({Xt- | t £ /}, T = (I, F)) with { X , | t e 1} a family of subsets of V, one for each 
node of T, and T a tree such that 

• Uv eIXi = v. 

• for all edges (u, w) £ E, there exists an i S I with «•£ X,- and w £ X,-. 

• for all i, j, k £ I: if j is on the path from i to k in T, then X ; fl C X}-. 

The treewidth of a tree-decomposition ({X,- | t £ / } , T = (I, F)) is max,g/ |X,| — 1. 
The treewidth of a graph G is the minimum treewidtn over all possible tree-
decompositions of G. 
The notion of patliwidth is defined similarly. Now T must be a path. 
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Definition. A path-decomposition of a graph G = (V, E) is a sequence of subsets 
of vertices (X i , X 2 , . . . , Xr), such that 

•\Ji<i<rXi = V. 

• for all edges (v, w) € E, there exists an i, 1 < i < r, with v £ X,- and w £ Xi. 

• for all i,j, k € I: if t < j < k, then X,- D X^ Q Xj. 

NI 
N2 

N3 
N. 

A' 

G1 G2 C5 C7 

1 1 0 0 0 1 1 0 

0 0 0 1 1 0 0 0 

0 0 1 0 0 0 1 0 

0 1 0 1 0 0 0 1 

0 0 1 0 1 1 0 0 
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3 tracks 

Figure 2. 
Example of gate matrix layout 

The pathwidth of a path-decomposition (Xi , X 2 , . . . . is maxi<,<r | — 1. 
The pathwidth of a graph G is the minimum pathwidth over all possible path-
decompositions of G. 
In figure 1, an example of a graph with treewidth and pathwidth 2 is given, together 
with a tree- and path-decomposition of it. 

Clearly, the pathwidth of a graph is at least its treewidth. There are several 
equivalent characterizations of the notions of treewidth and pathwidth, see e.g. 
[3,15,18,99,143]. The (probably) most well known equivalent characterization of 
treewidth is by the notion 'partial Ar-tree', see [132,139]. Also, tree decompositions 
are reflected by graph expressions, where graphs are built by operations on graphs 
with some special vertices (the sources) like: parallel composition, forget sources, 
renaming of sources. The treewidth can be characterized in terms of the number 
of sources used in the operations. See [50]. 

3 Applications 
Several well-studied graph classes have bounded treewidth or pathwidth, hence 
many results discussed here also apply for these classes. Examples are trees 
(treewidth l ) , series-parallel graphs (treewidth 2), outerplanar graphs (treewidth 
2), and Halin graphs (treewidth 3). See e.g. [18,20,132,143]. We mention some 
otheryapplications. 
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3.1 VLSI layouts 
A well studied problem in VLSI layout theory is the GATE MATRIX LAYOUT 
problem. This problem is stated in terms of a matrix M = (mij), whose columns 
represent gates G1,..., Gn, and whose rows represent nets Nit..., Nm. If m^y = 1, 
then net N{ must be connected with gate Gj. An example is given in figure 2. The 
problem of finding a permutation of the gates, such that all nets can be made within 
the minimum number of tracks is equivalent to the pathwidth problem (see [63]). 
See [99] for an extensive overview. See also [53]. 

3.2 Cholesky factorization 
There is also a close connection between treewidth, and Choleski factorization on 
sparse symmetric matrices. 

In the multifrontal method for Choleski factorization, one step is of the form 

' d vT ' Vd 0 ' ' 1 0 ' Vd «>T/Vd 
V B u/y/d I 0 B - v • vT/d 0 I 

where u is an (n — l)-vector, and B is an n — 1 by n — 1 maxtrix. I is the n — 1 
by n — 1 identity matrix. The process is repeated with the matrix B — v • vT. 
Consider the graph with vertices 1, 2 , . . . , n, and edges between vertices i and j, if 
the matrix entries on positions ( t , / ) and [ j , i ) are non-zero. One step as described 
above corresponds to removing a vertex and connecting all its neighbors. As the 
matrix is sparse, one wants to find an order of coluins/rows to be eliminated for 
which all matrices v • vT are small, i.e. have a large number of columns and rows 
that are entirely 0. One can show that to bound the maximum size of these matrices 
corresponds to bounding the treewidth of the graph, described above. For more 
details, see e.g. [29]. 

3.3 Expert systems 
Graphs modelling certain type of expert systems have been observed to have small 
treewidth in practice. Tree-decompositions of small treewidth for these graphs can 
be used to perform efficiently certian otherwise time-consuming statistical compu-
tations needed for reasoning with uncertainly in these systems. See e.g. [92,138]. 

3.4 Evolution theory 
Researchers in molecular biology are interested in the problem, given a set of 
species, a set of characteristics, and for each specie and each characteristic, the 
value that that characteristic has for that specie, to find a 'good' evolution tree 
for these species and their possibly extinct ancestors. One variant of this problem 
is called the PERFECT PHYLOGENY problem. This problem can be shown to be 
equivalent with the following graph problem: given a graph G = (V, E) with a 
coloring of the vertices, can we add edges to G such that the resulting graph is 
chordal but has no edges between vertices of the same color? Equivalently, does 
there exist a tree-decomposition ( { X j ] t 6 I},T) oi G such that for all t € I: if 
v, w G Xi, v w, then v and w have different colors. So, a necessary condition is 
that the treewidth of G is smaller than the number of colors. See [2,28,33,79,80,98]. 
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3.5 Naturs .language processing 
Kornai arid Tuza |88] have observed that dependency graphs of sentences encoding 
the major syntactic relations among the words have usually pathwidth at most 6. 
The pathwidth closely resembles the narrowness of these graphs1. For the relation-
ship of this notion to natural language processing, see [88]. 

4 Bounded treewidth and linear time algorithms 
An important reason for the interest in tree-decompositions, is that if we have a 
tree-decomposition of a graph G — (K, E) with its treewidth bounded by some fixed 
constant fc, then we can solve many problems that are hard (intractable) for arbi-
trary graphs, in polynomial and often linear time. Problems which can be dealt with 
in this way include many well-known NP-complete problems, like INDEPENDENT 
SET, HAMILTONIAN CIRCUIT, STEINER TREE, etc., but also certain statistical 
computations (including some with applications to reasoning with uncertainity in 
expert systems [92,138]), and some PSPACE-complete problems [4,5,26]. Results 
of this type can be found — among others — in [3,4,5,8,10,14,19,26,22,31,37,44,47, 
52,55,67,69,71,73,74,75,87,90,93,94,95,96,107,132,137,141,142,143,144,145]. 

As an example we consider the maximum independent set problem. In this 
problem, we a looking for the maximum size of a set W C V in a given graph 
G = (V, E), such that for all v, w £ W : (v, w) & E. 

Given a tree-decomposition, it is easy to make one with the same treewidth, 
and with T a rooted binary tree. Suppose we have such a tree-decomposition 
({Xi | i £ I},T = (I,F)) of input graph G, with root of T r, and with treewidth 
k. For each i £ define Y{ = {u 6 Xj | j = i or j is a descendant of i } . 

Note that if v £ Y,-, and v € Xj for some node j £ I that is not a descendant 
of i, then by definition of tree-decomposition, v £ X,-. Similarly, if v £ Y,-, and v is 
adjacent to a vertex w £ Xj with j a descendant of t, then v £ X; or w £ Xi. As 
a consequence, we have that, when we have an independent set W of the subgraph 
induced by Yi, (?[?<], and want to extend this to an independent set of G, then 
important is only what vertices in X,- belong to W , not what vertices in Y{ — Xi 
belong to W. Of the latter, only the number of the vertices in W is important. 

For t £ I, Z C Xi, define isi(Z) to be the maximum size of an independent set 
W in G[Yi] with W n X{ — Z. Take i s , ( 2 ) = — CXJ, if no such set exists. 

Our algorithm to solve the independent set problem on G basically consists of 
corriputing all tables isi, for all nodes i £ I. This is done in a bottom-up manner 
in the tree: each table isi is computed after the tables of the children of node i 
are computed. For a leaf node t, the following formula can be used to compute all 

values in the table is ; . 

• ( 7 \ - i \Z\ ifV„,ti,€£: {v,w) <£E 
l S i K ) \ - o o U3v,weZ-:{v,w)eE 

For an internal node i with two children j and k, we have the following formula. 

isi(Z) = 

max{ta y (Z ' ) + isk (Z") + \Z n (X{ - X; - Xt) | 
-\Z r\ Xj n Xk\ I ZnXj = Z'nXi-
and ZnXk = Z"n Xi} • if Vv.we Z : (v,w) & E 

—oo if 3v, w £ Z : (t>, w) £ E 
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The idea behind the last formula is: take the maximum over all sets Z' C Xy 
that agree with Z in which vertices in X ; n X3 belong to the independent set, and 
similarly for Z" C X*. Vertices in Z n X ; — Xy — X^ are not counted yet, so their 
number should be added, while vertices in Z n Xy O X^ are counted twice, hence 
their number should be subtracted once. 

We compute for each node t £ I the table is,- in some bottom-up order, until we 
have computed the table tsr. Note that we then can easily find the maximum size of 
an independent set in G, as this is max^cx,. Hence, we have an algorithm, 
that solves the independent set problem on G in 0(23kn) time. (Optimizations can 
bring the factor 23fc down to 2fc.) It is also possible, by using standard dynamic 
programming techniques, to construct the maximum sized independent set W itself. 

The idea behind this example is: each table entry gives information about an 
equivalence class of partial solutions. The number of such equivalence classes is 
bounded by some constant, when the treewidth is bounded by a constant. Tables 
can be computed using only the tables of the children of the node. 

The technique works for many examples. However, there are also results that 
state that large classes of problems can be solved in linear time, when a tree-
decomposition with constant bounded treewidth is available. One of the most 
powerfull results of this type is the result by Courcelle [47,51,46], which has been 
extended by Arnborg et al [8], by Borie et al [38], and by Courcelle and Mosbah [52], 
on (Extended) Monadic Second Order formulas. These result basically state that 
each graph problem that is expressible with a formula using the following language 
constructions: logical operations (A, V, -i, =>•), quantification over vertices, edges, 
sets of vertices, sets of edges (e.g. 3D £ V, Ve £ E, VW C V, 3F C E), membership 
tests (u £ W, e £ E), adjacency tests (u, w) £ E, v is endpoint of e), and certain 
extensions, can be solved in linear time on graphs with given a tree-decomposition 
of constant bounded treewidth. The extensions allow not only to deal with decision 
problems, but also optimization problems (like maximum independent set). 

For example, the problem whether a given graph G can be colored with three 
colors can be stated as 

3W x C V : 3W2 C V : 3W 3 C V : Vt> £ V : (u £ V v £ W2 V u 6 
W3) AVv S V : Vty e W : (u-, to) 6 E (->(w £ Wi Am G H / i ) a - ( v £ 
W2 A w 6 W2) A -.(u £ W3 A w £ W3)) 

In many cases, the information, computed per node t £ / is an element of a 
finite set. Then, the algorithm can be seen as a finite state tree-automata, and 
optimalization techniques can be applied, similar to Myhill-Nerode theory [14,62]. 
(See also [48,45,49].) 

In [64,65] parametric problems on graphs with bounded treewidth are solved, 
using modifications of the technique, presented above. 

For some problems (e.g. the maximum independent set problem) polynomial 
time algorithms are still known to exist, if the input graph is given together with 
a tree-decomposition of treewidth C?(logn). (See e.g. [19].) For other problems, it 
is unknown whether such algorithms exist. 

The problem whether two given graphs are isomorphic is also solvable in poly-
nomial time, when the graphs have bounded treewidth [11,22,42]. The techniques 
are here somewhat different. 

There also exist problems that remain hard when restricted to graphs with 
constant bounded treewidth, for instance the bandwidth problem is NP-complete 
for a very restricted subclass of the trees [100]. For some problems the complexity 
when we restrict the instances to graphs with bounded treewidth is open, like the 
problem to determine the pathwidth of graphs with treewidth < 2 [30]. 



A Tourist Guide through Tree width 7 

c ^ o - o - o 

c > - < > - 6 - < 3 
G Ö 

o 
o 
o 

a — o — o 

o o - a 

C h - o 

o 
o 

H 

Figure 3. 
G is a minor of H 

5 Graph minors 
In this section, we give a short overview of some recent results on graph minors. A 
graph H = {W, F) is a minor of a graph G = (V,E ) , if (a graph isomorphic to) H 
can be obtained from G by a series of zero or more vertex deletions, edge deletions, 
and/or edge contractions (in arbitrary order), where an edge contraction is the 
operation to replace two adjacent vertices v and w by a vertex that is adjacent to 
all vertices that were adjacent to v or to. For an example, see figure 3. 

Robertson and Seymour obtained the following deep results on graph mi-
nors [17,109,115,111,122,122,116,117,121,124,123,125,114,118,119,120,126,127,128, 
129,110,112,113]. 

Theorem 5.1 
For every class of graphs that is closed under taking of minors, there exists a 
finite set of graphs, ob(§), called the obstruction set of such that for each graph 
G: G G Q, if and only if there is no H & ob(p) that is a minor of G. 

For example, the obstruction set of the planar graphs is {K&, -^3,3} [140]. Theorem 
5.1 was formerly known as Wagners conjecture. 

Theorem 5.2 
For every graph H, there exists an 0 ( n 3 ) algorithm, that, given a graph G, tests 
whether H is a minor of G. 

Theorem 5.3 
For every planar graph H, there exists a constant cjf, such that for every graph G: 
if H is not a minor of G, then the treewidth of G is at most CH. 
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The constant factor of the algorithm in theorem 5.2 is very high, making this 
algorithm not suitable for practical use. In [129]; it-is shown -that one can take in 
5.3 Cff = 204 | v 'h I + 8 | £ ; ' ' I5 . Prom theorem 5.1 and theorem 5.2 it follows that every 
class of graphs, closed under minor taking, is recognizable in 0 ( n 3 ) time (do a 
minor test for each graph in the obstruction set.) Using theorem 5.1, theorem 5.3, 
the result of the next section, that states that for graphs with constant bounded 
treewidth, a tree-decomposition of constant bounded treewidth can be found in 
0(n) time, and the fact, that with such a tree-decomposition, minor tests can be 
done in linear time with a procedure of the type, discussed in section 4, the following 
result can be derived: every class of graphs that does not contain all planar graphs 
and that is closed under minor taking, can be recognized in 0[n) time. (See also 
[13].) 

Many applications of this theory were found by Fellows and Langston ¡58,60,61]. 
Note however that the constants hidden in the 'O'-notation may be quite large, and 
that the proof of theorem 5.1 is inherently non-constructive (in a deep mathematical 
sense) [66]. I.e., it is not possible in all cases to extract the obstruction set of a class 
of graphs Q, given a formal proof that § is minor closed. Thus, we may arrive in a 
situation where we know that a polynomial algorithm exists for the problem without 
knowing the algorithm itself. Also, the algorithms are recognition algorithms: they 
do not constuct anything (like a vertex ordering, tree-decomposition, etc.) 

A technique that allows us in some cases to overcome non-constructive aspects 
of this theory is self-reduction, advocated by Fellows and Langston, see e.g. [21,39, 
59,63]. 

Self reduction is the technique to consult a decision algorithm a number of times 
with different inputs in order to construct a solution for the original problem. As 
an example, consider the problem of finding a simple path of length at least k (k 
constant) in an undirected graph. (There are direct and more efficient algorithms 
for this problem [27,63]; the solution here is presented only to explain the tech-
nique.) The class of graphs that do not contain such a path is closed under minor 
taking, and does not contain all planar graphs, so we have a linear time algorithm, 
deciding whether a given graph contains a simple path of length at least k. Given 
a graph G, we can solve the problem in 0 ( n • e) time by first testing whether G 
contains a desired path, and then repeatedly trying to remove an edge from G, such 
that the resulting graph still contains a simple path of length k. When no edge can 
be deleted anymore, the resulting graph is precisely the desired path. 

Even when we do not know the obstruction set, in several cases it is still possible 
to construct polynomial time algorithms based on minor tests (see [63]). 

In some cases, obstruction sets, and hence the decision algorithms themselves are 
computable [12,16,40,57,62,78,81,91,103,131,136]. The size of the obstruction sets 
can grow very fast: for instance, the obstruction set of the graphs with pathwidth 
at most k contains at least k\2 trees, each containing 5 3 2 ~ x vertices [136]. This 
clearly limits the practicality of the approach described above. 

Also, in some cases, linear time minor tests are possible [27,25,54,63]. For 
instance, suppose that H is a cycle of length k. The algorithm is as follows: first 
make a depth-first search spanning tree T = (V, F) of the input graph G = (V, E). 
If there is a backedge between a vertex u and a predecessor to of v which is at 
least k — 1 levels above v in T, then G contains H as a minor, stop. Otherwise, 
construct ( { X „ | t; G V},T = (V, F)), with X„ = { v } U {tu | w is a predecessor of 
v and differs at most k — 2 levels from v in T). This is a tree-decomposition of G 
with treewidth at most k — 2. Use this tree-decomposition to solve the problem in 
linear time. (See [63].) 
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6 Finding tree-decompositions 
In this section we consider the problem of finding tree-decompositions, and deter-
mining the treewidth of a graph. Unfortunately, determining whether the treewidth 
of a given graph G = f V , E ) is at most a given integer k is NP-complete [6]. The 
latter result holds also for pathwidth [6]. The complexity of these problem has been 
studied for several classes of graphs. Table 1 mentions several of the known results 
of this type. 

Polynomial time approximation algorithms with O(logn) performance ratio for 
treewidth, and 0 ( log 2 n) performance ratio for pathwidth, are presented in [29]. 
For several classes of perfect graphs, polynomial time approximation algorithms 
can be found in [84]. Seymour and Thomas gave a polynomial time algorithm for 
the branchwidth of planar graphs [134]; this directly implies a polynomial time 
approximation algorithm for the treewidth of planar graphs with a performance 
ratio l\ [114]. 

Class Treewidth Pathwidth 
Bounded degree N [35] N [101] (3) 
Trees/Forests C P [133] 
Series-parallel graphs C P [32] 
Outerplanar graphs C P [32] 
Halin graphs C [143] P [32] 
fc-Outerplanar graphs C [20] P [32] 
Planar graphs 0 N [101] (3) 
Chordal graphs P ( l ) N [68] 
Starlike chordal graphs P ( l ) N [68] 
fc-Starlike chordal graphs P ( l ) P [68] 
Co-chordal graphs p [85] P [85] 
Split graphs P ( l ) P [68,84] 
Bipartite graphs N N 
Permutation graphs P [34] P [34] 
Circular permutation graphs P [34] 0 
Cocomparability graphs N [6,72] N [6,72] 
Cographs P [36] P [36] 
Chordal bipartite graphs P [86] N [35] 
Interval graphs P ( 2 ) P ( 2 ) 
Circular arc graphs P [135] 0 
Circle graphs P [83] N [35] 

P =.polynomial time solvable. C = constant, hence linear time solvable. N = 
NP-complete. O = Open problem. (1) The treewidth of a chordal graph equals its 
maximum clique size minus one. (2) The treewidth and pathwidth of an interval 
graphs equal its maximum clique size minus one. (3) NP-completeness is shown for 
vertex separation number, but this is equivalent to pathwidth. 

Table 1: 
Complexity of Pathwidth and Treewidth on different classes of graphs 
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Remove a vertex of degree 1 

Contract over a vertex 
with degree 2 

Figure 4. 
Rewriting a graph with treewidth < 2 

For constant k, polynomial time algorithms exist for the problems. The graphs 
with treewidth 1 are exactly the forests. Algorithms that recognize graphs with 
treewidth 2 and 3 in linear time, and find the corresponding tree-decompositions 
were described by Matousek and Thomas [97j, using results from [9]. A similar 
algorithm (with a quite involved case analysis) for treewidth 4 was found recently 
by Sanders [130]. For example, the connected graphs with treewidth 2 are exactly 
those graphs that can be rewritten to a single vertex, using the operations shown in 
figure 4. For larger k, also recognition algorithms based on rewriting exist [7]. (In 
[7j, a much larger class of problems is also shown to be solvable with these rewrite 
techniques.) The latter algorithms can at present, not produce a corresponding 
tree-decomposition of the input graph. 

For arbitrary fixed k, an O ( n l o g n ) algorithm can be found, using the following 
result, due to Reed (108|. 

T h e o r e m 6.1 
For every constant k, there exists an O (n logn ) algorithm, that given a graph 
G = (V, E), either outputs that the treewidth of G is larger than A:, or outputs a 
tree-decomposition of G with treewidth at most 3k + 2. 

Actually, the result proven by Reed has a number, larger than 3A: -f 2. Minor 
improvements give the result stated above. The running time of this algorithm 
is singly exponential in k. Similar, but slower algorithms have been found by-
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Robertson and Seymour [119] and by Lagergren [89], the latter result also has an 
efficient parallel variant. 

Figure 5. 
Illustration to approximation algorithm 

These algorithms and the approximation algorithm in [29] are based on repeat-
edly finding separators. An 1/3-2/3 separator of a set W C V in a graph G = (V, E) 
is a set S C V, such that V — S can be partitioned into two non-adjacent sets of 
vertices Vj, V2, such that both Vi and V2 contain at most 2|W|/3 vertices in W. 

Each of the algorithms can be described by a recursive procedure which is called' 
with two arguments: a graph G' = (VE') (an induced subgraph of G), and a set 
of vertices X C V'. The algorithm produces a tree-decomposition with the root 
node set Xr of T containing all vertices in X (X C Xr). It works basically as 
follows: When V' is 'small enough', yield a one-node tree-decomposition, the node 
containing all vertices in V . Otherwise, first find a 'small' 1/3-2/3 separator S of 
X in G', separating V' — S into Vi and V2. Call the procedure recursively for graph 
G[Vi US] and set S u j l f l Vi), and for graph G[V2U5] and set S u ( X n V2V The 
desired tree-decomposition is obtained by taking one new node containing X n S, 
and connecting this node to the root nodes of the two tree-decompositions yielded 
by the recursive calls of the procedure (see figure 5). If the treewidth of G is at 
most k, then a 1/3-2/3 separator, as needed for the algorithm, exists of size at most 
k, and can be found, in time, linear in V , using flow techniques [119]. Starting 
with an arbitrary set X of size at most 3k, it follows with induction, that each call 
of the procedure uses sets X of size at most 3k, assuming the treewidth of G is at 
most k. (|X n Vi U S| < 2\X\/Z -I- |S| < 2k + k.) Hence, the algorithm produces in 
this case a tree-decomposition of treewidth less than 4k. 

Reed [108] has shown that one can also find small sized separator sets 5, that 
do not only separate X , but also partition V into sets of size at most 3/4 of |V'|. 
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This gives a recursion depth of O(logn), and results in an 0(n log n) algorithm. 
(The expose above is only a very rough sketch of some of the most important ideas 
of the algorithms. See further [29,89,108,119].) 

Using the algorithm of theorem 5.1, and a constant number of minor tests, it 
follows that the 'treewidth < k' and 'pathwidth < k' problems (for constant k) 
are decidable in O(nlogn) time. (Use that the treewidth and pathwidth can not 
increase by taking minors.) However, it is also possible to obtain direct, explicit 
and constructive algorithms for the problems. 

Both Lagergren and Arnborg [91] and Bodlaender and Kloks [31,82] give such 
an algorithm, using an involved application of the technique, discussed in section 4. 
Independently, results of a similar nature were obtained by Abrahamson and Fel-
lows [l]. From these results it follows that a technique of Fellows and Langston [62] 
can be used to compute the corresponding obstruction set. Bodlaender and Kloks 
[31] also discuss how in the same time bounds the path- or tree-decompositions 
with pathwidth or treewidth at most k can be found, if existing. 

Recently, the author has found a linear time algorithm for the problems to 
decide whether a graph has pathwidth or treewidth at most some constant k, and 
if so, to find a path- or tree-decomposition with pathwidth or treewidth at most k 
[24]. This algorithm uses a recursion technique, and the result in [31] as essential 
ingredients. 

A study to dynamic algorithms for graphs with small treewidth has been made 
by Cohen et al. [43] and recently by the author [23]. 
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