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Algorithms* 
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Abstract 
In this paper we deal with the vector-packing problem which is 

a generalization of the well known one-dimensional bin-packing 
problem to higher dimensions. We give the first, non-trivial 
lower bounds on the asymptotic worst case ratio of any on-line 
cf-dimensional vector packing algorithm. 

K e y w o r d s , vector-packing, worst-case analysis, on-line algorithms, 
lower bounds, competitive algorithms. 

1 Introduction 
We consider the following problem, called vector-packing: Given a list Ln = 
{ai,... an) of n elements where each element is a a! dimensional vector (d > 1). 
The i-th vector in the liste is denoted by «(a,-) = (wj (a,-),. . . , «¿(a,-)), where 
0 < wy(a>) < 1 for j = 1,2, ...,d. The goal is to pack all elements into the 
minimal number of bins in such a way that for any non-empty B bin of the packing 
and for any index 1 < j < d 

a.eB 
For d = 1, this problem is the famous "classical" bin-packing problem, which is 
known to-be NP-hard. Hence, we are mainly interested in 'good' approximation 
algorithms. 

The quality of an approximation algorithm is usually measured by its asymptotic 
worst-case ratio that is defined as follows. For an arbitrary vector-packing algorithm 
A and an arbitrary list of d-dimensional vectors L, we denote by L* the minimal 
number of bins needed to pack the list L and by A[L) the number of bins which 
algorithm A uses to pack the elements of L. Let R.A{k) denote the supremum of 
the ratios A(L)/L* over all lists L with L* = k. The asymptotic worst case ratio 
RA is defined by the equation 

RA = lim sup RA [k). 
k • oo 
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The first approximation algorithms for vector-packing were designed by Kou and 
Markowsky [31 . They defined so-called irreducible algorithms as-follows. During 
the packing of an irreducible algorithm, for any two non-empty bins Bp and Bq 
there exists an index j, 1 < j < d with 

£ « / (o) + J2«/(«) > 
a€Bp a£B, 

(This means that the algorithm only opens a new bin if a newly arrived item can not 
be packed into any old bin.) Kou and Markowsky proved the following proposition. 

Proposi t ion 1.1 (Kou and Markowsky, [3]) The asymptotic worst case ratio of 
any irreducible algorithm fulfills 

RA<d+ 1. 

Garey, Graham, Johnson and Yao [l] generalized the First-Fit ( F F ) and the 
First-Fit Decreasing (FFD) algorithms to the d-dimensional case. They proved 
that 

RFF = D+W> 

3 
d < RFFD < d+ — ~ r e u ~ io 

Note that both of these algorithms are irreducible and hence fulfill the statement 
of Proposition 1.1. 

Now let us turn to lower bounds on the worst case ratios of heuristics. Yao 
in [6| studied the following class of the "decision-tree" algorithms. Let A be an 
algorithm for the vector-packing problem. For each n > 0, the action of A on a 
list L can be represented by a ternary tree Tn(A). Each internal node of Tn(A) 
contains a test. For any input L, the algorithm moves down the tree, testing and 
branching according to the result of the test, until it reaches some leaf. At the leaf, 
a packing valid for all lists that lead to this leaf is produced. The cost of A for 
input size n, Cn(A), is defined to be the number of tests made in the worst-case. 
(In fact, this is the height of Tn(A)). Yao proved that if A is such an algorithm for 
which Cn(A) = o(nlogn) then RA > d. 

In this paper we deal with the class of the on-line algorithms: If an algorithm A 
is in this class then it packs the elements one by one in the order given by the list 
L. After having packed an element into some bin, the element will be never moved 
again. E.g. algorithm FF mentioned above is an on-line algorithm. For d > 2 FF 
has the best worst case ratio among all known on-line heuristics for «¿-dimensional 
vector-packing. 

As a consequence of the classical result of Liang [5| for one-dimensional on-
line bin-packing algorithms, the inequality RA > 1.5364... holds for all d > 1. 
Till today there is no better results were known. In this paper we will prove a 
d-dependent lower bound for on-line vector-packing algorithms. A formula for our 
lower bounds is given in Theorem 2.1. Table 1 depicts the numerical values for 
some small dimensions. 

The rest of the paper is organized as follows. Section 2 contains some pre-
liminaries and describes the construction of a bad item list for on-line heuristics. 
Section 3 gives a rigorous proof for the lower bound. Section 4 finishes with the 
conclusions. 
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d Lower Bound d Lower Bound 
2 1.67072 7 1.87504 
3 1.75098 8 1.88891 
4 1.80035 9 1.90002 
5 1.83348 10 1.90910 
6 1.85722 oo 2.00000 

Table 1: Our lower bounds, rounded to five decimal places. 

2 The construction 
We start with defining the following sequence for any fixed d > 1. (Note that for 
every d, the reciprocal values l/i,(<i) sum up to 1/2 d). 

t0{d) = 2d+ 1 
U{d) = tii^iU^id) - 1) + 1, t > 1. 

A similar sequence introduced by Golomb [2] became one of the main tools in on-line 
bin-packing. Lee and Lee [4] used it to design a good one-dimensional bin-packing 
heuristic, and Liang [5] based his lower bound proof on the Golomb sequence. 
With this definition, our main result may be stated as follows. 

Theorem 2.1 For any on-line d-dimensional vector-packing algorithm A, its 
asymptotic worst case ratio is at least 

R U)> I 
> ~ V ° ° .1 | A i 1 • 2-1 ) = \ <y(d)-l + d + 2 

Remark . If we set d = 1 in Theorem 2.1, we exactly arrive at the well-known 
lower bound of Liang [5]. 

The exact values for 2 < d < 10 are depicted in Table 1. As d tends to infinity, 
the lower bound tends to 2. The remaining part of this paper is devoted to the 
proof of Theorem 2.1. 

Intuitively speaking, the underlying idea of our paper is as follows. We construct 
an adverse strategy that forces every on-line algorithm A to behave poorly on a 
special item list L or on some prefix of L. In the first step, we give A a list of very 
small items to pack. In case A spreads these items on many bins, it does not receive 
any further item and looses the game. In case A produces a 'reasonable' packing for 
the small items, it receives another list of items. Again, A has the choice between 
either producing a bad packing and loosing the game immediately, or producing a 
(currently) good packing and receiving another list. Then in the final step, A gets 
a list of big items. Now it turns out that everything it did before was wrong. It 
had better packed the smaller items in such a way that remained enough space to 
pack the big items. A looses the game against the adversary. 

Now we start with the definition of the item lists. Let d > 1 and r > 1 
be arbitrarily fixed integers. We consider the following lists, each consisting of n 
elements. 
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LQ L$ LÍ L3 L2 Li - Ll I? 

«1(0 

v2() 

vs(-) 

i + i f + i 0 0 0 0 

í + 5 Í + 5 l + s 0 0 0 

i + 5 i + 5 f + 5 | + 5 I + Í i + 5 

0 0 

0 0 

ÍT + TiW + £2 

Table 2: The elements used in the lists for d = 3 and r = 2 

1. For any j £ { l , . . . , r } and a £ L3, 

7 o i f i c d 

2. For any k € { 1 , . . . , ci} and a £ L2k-i, 

! 0 if i < d - k 
2 ^ + 5 if t' = d - f c + l 
Yi+6 if i = d-k + p,p = 2,...,k. 

3. For any k £ {1, •.. ,d} and a £ ¿2*, 

/ 0 if 
& + Í if 

i < d — k 
i = d— k + p,p — 1,... ,k. 

where 

S < 
4d(tr+1(d) - 1)' 

« l W < 2r(í r + 1 (d) - 1) ' 
and 

W ) 
The lists are presented to the on-line heuristic in the following order: First there 
come the lists L} with j going down from r to 1, and afterwards there come the 
lists Lj with j going up from 1 to 2d. The lists V with superscript contain the 
very small items (all components of the corresponding vectors are zero with the 
exception of the component with index d). The.lists L j with subscript, 1 < j < d 
contain the larger items; Ust L^j is the list with the big items that arrive in the 
final step. An illustration for d = 3 and r = 2 is given in Table 2. 
Convention. Next we shall work under a fixed dimension d and a fixed r. To 
simplify our notations, we shall use tj and Cj instead of t}-(d) and £y(r). 
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3 The Proof 
In this section we prove that any on-line heuristic must perform poorly on the list 
L = Lr ... L1 L± ... L2d (as defined in the preceding section) or on some prefix of 

Observation 3.1 For any integer 1 < j < r, 

P r o o f . It can be proved by induction from definitions of t,-, e,- and S. • 

L e m m a 3.2 For any integer n > 0, if ( i r+i — l)|n 

{Lr _JL_ 1 < j < r. 

P r o o f . In this case ( j = 1 ,2 , . . . , r) are positive integers. On the other hand, 
by Observation 3.1, we can pack ty — 1 items of each of the lists Lr,..., L3 together 
into one bin. • 

Now for any integer 1 < j < 2d, let us define the set N}- in the following way: 

N1=N2 = {k{tr+1-l):k=l,2,...}, 

Nj = {n(2d+l-j) :n€ Nj-i} 3 < j < 2d. 

It is clear that Nx D N2 2 • • • 2 N2d. 

L e m m a 3.3 For any 1 < j < 2d and n e JVy, 

[U...LiLi...Ljy 

P r o o f . The statement is proved by induction on j. First, the simple cases j = 1 
and j = 2 are considered; the induction step is structured into two subcases. All 
we have to do that is to give a feasible packing. Note that Observation 3.1 yields . 

•=i 

( j = 1). Let n € Ni be arbitrary. By the definition of JVy, 2d\n. So we always 
pack 2d elements from each list of (L r ... L1Li) together into one bin B. If i < d 
then for any a G B tij(o) = 0 holds, and if * = a we have 

£ «,<«) < 2 d ^ + 5 +. - 2ds) < 1. 

Hence we have a legal packing, using bins. 
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( j = 2). Let n € N2 be arbitrary. Then d|n. Let us pack together d elements 
from every list. For i < d u;(o) = 0 holds for each о 6 (LT ... Ь-Ь\Ь2), and for 
г = d we have 

Therefore we obtain a feasible packing, using ^ bins. 

(Induction step) Now let 3 < j < 2d and assume that for any positive integer 
j' < j, the statement is valid. Let n 6 Nj be arbitrary. We shall distinguish two 
cases depending on whether j is odd or even. 

A . j = 21 — 1 for some 2 < I < d. In the sequel we say that a non-empty bin has 
type т = ( r r , . . . r1 , Ti,..., r2d) if it contains exactly r* resp. r̂  elements from the 
list LX resp. L{. Let us pack the elements of the concatenated list If . . . L1 Li... LJ 
together into a bin В with type 

2l+r-2 2d-2l+l 
First, we will prove that this gives a legal packing, i.e. the following claim holds 
for the bin B. 
Claim 3.4 

£ v , ( a ) < l 1 < »' < ci. 
a€B 

Proo f . The proof of this claim is divided into cases (i) thru (iv). 
(i) If г < d - I, then Za€B « ¿ И = 
(ii) If t = d — I + 1 then only the elements of L2I- 1 have non-zero coordinates 

and therefore 

£ v,(a) = {2d- 21 + 2)(ы _ 1 з + S) < 1. 
a6B 

(iii) If d - I -1-1 < t < d then 

X>,(a) . = (2d-2l+2)(±-i+6) + (2i~2-2d+j)(±-.+6) 
aSB 

+ 

= ( K - , ) ( I + < ) + ( 5 f l T + i ) < 1 . 

(iv) If г = d then 

X ) « i ( a ) < ( 2 d - 2 I + 2 ) ( i + ff) + 0 " - 2 ) ( ^ + i ) 
a&B 

'2d ' v 2d 

2d — 1 1 1 _ 
2d + 2d+ l + 2d(2d + 1) ~ ' 
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This completes the proof of Claim 3.4 • 
To get a feasible packing for (L r ...L1Li... Lj), we first take 2 d _^ [ + 2 = 2d-j+1 

pieces of r type bins. By the definition of Nj, we know that 2d + 1 — j\n, and so, 
we can pack all the elements of Lj into 2d+i-j bins. From the other lists, there 
remain n = n — 2 d + " _ j . = (2d —j) items. By the definition of Nj, n g iVy-i. 
But then, by our induction hypothesis, these remaining items can be packed into 
n ^ j - bins. Therefore, we can pack all elements of (Lr ... L1 L\... Lj) into 

n • = 2 < f + ( j - l ) ( 2 d - j ) ~ = J_ 
2d-j + l n 2d n (2d + 1 — j)2d "2d 

bins, and case A is settled. 

H. j = 21, 2 < J < d. In this case we are going to pack d — l+l items using the 
bin type below: 

r = ( l ^ ^ M - I + 1, d - I + 1 , 0 i l ^ L 0 ) . 
2! + r-2 2d—21 

Claim 3.5 

< 1 l<i< d. 
A€B 

Proo f . The proof is done in a similar way as the proof of Claim 3.4: 
(i) if i < d — I holds then the above sum is equal to 0, 

(ii) if i = d — I +' 1 then only the lists £21-1 and L2\ have positive coordinates 
on the position t 

E '«*(«) •= (d- j + +«) + (<*-' + lJtrr^T + S) < 1, 
06B 

(iii) i f t f - / + l < » < d then 

£>(a) = (2d-2l + 2)(^ + S) + (2i-3-2d+j)(^ + 6) + ( ^ ~ + S) 

= ( K _ 1 ) ( ^ + 0 + ( _ L _ + i , < i , 

(iv) if t = d then 
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Thus, Claim 3.5 is true. 
To obtain a feasible packing for (Ly.,. LtL\... Lj), we first take pieces of 

r type bins. By the definition of Nj, from n 6 Nj it follows that n = (2d+l—j)(2d+ 
2-j)n' with n- e N¡-2, provided that j > 4. But then n = 2(2d+l-j)(d-l+1 )n\ 
Therefore, d — I + l|n, and so, we can pack all the elements of Ly- i and Lj into 
d _ " + 1 bins. After this packing each list from ( L r , . . . , L1, L\,..., Lj-2) contains n 
unpacked elements where n = n — d_1+ 1 — d_"+1(<f — I). 

Now let us observe that n 6 Nj-2. Then, by our induction hypothesis, the 
unpacked items can be packed into n ^ j - bins. Therefore, we can pack all elements 
of (Lr...L1Ll...LJ), into 

" -3-2 = 2d + (/ — 2)(d— I) _ J_ 
d-l+l 2d n (d-l + l)2d n2d 

bins, which completes the considered case and the proof of Lemma 3.3 too. • 

Lemmas 3.2 and 3.3 give us upper bounds for the number of bins in the optimal 
packings. Next, we will investigate the potential behaviour of arbitrary on-line 
algorithms on the constructed list L. We introduce the following notations: 

o fi = { 2 ? i , . . . , " . . . L i L i . . , L 2 i ) } denotes the final packing of the concate-
nated list (L r ... L1 Li... L2d) produced by the on-line heuristic A. For any 
type t = (rr ... t1 Ti... T2d), the number a(r) equals the number of bins of 
type r in the packing p. 

o, The subset /?* resp. /?y, contain only those bins which were used for the first 
time by the on-line heuristic A during the packing of the list V resp. Lj (i.e. 
their first item comes from Ll resp. Lj). Moreover, define for every 1 < t < r 
and 1 < j < 2d the sets: 
T® = {T : there exists a bin of type r in /? '} , 
Tj = { r : there exists a bin of type r in /?y}, 
and 
T = {r : there exists a bin of type r in ¡3} — Ui<i< r u Ui<y<2<i • 

Now we investigate the number of bins used by an arbitrary on-line algorithm 
A while A is packing the elements of the concatenated list (LT ... L1 Li ... Lj). 

A{L'...Li)=j2I2*(r)> l < t < r , (1) 
<=t rer ' 

A{U ... L1 Lx ... Lj) = £ ¿2 + E E «(0 1 < J < 2d (2) 
1=1 t€t< / = i r e r , 

and the number of the packed elements for each t resp. j, 1 < t < r, I < j < 2d : 
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тёт 

n = 2 » i - a ( r ) , l<]<2d. (4) 
тет 

Let us multiply the equations of (3) by f ^ j - Summarizing the equations of ( l ) 
- (2) and subtracting the multiplied equations of (3) and (4) we get: 

2d r + i 
JZA(Lr...Li) + J2MLr...L1L1...LJ)-2dn-n'£= 

• = i ]=l » = i ' 

r 2d 
= E(2 d+»') E « м + E ( 2 d - > + 4 E «(*) - (5) 

•=i тег1 y=i г ег,-

E - w E ^ + f r , . ) . 

т е г ¿ = i 1 j=i 

L e m m a 3.6 The right hand side of (5) is non-negative. 

P r o o f . The proof is constructed into three parts. A . First we prove that for any 1 < t < r and r € Г* 

. = i z > 1 « = i 

Since т 6 ? , 7r = . . . = T , + 1 = 0 and r* > 0. Now if we have some component 
r„ > 0 for some v (i.e. some item from Lv is contained in the corresponding 
bin), then we replace this item by 2d elements of L1. After the replacement we 
obtain a feasible packing of the considered bin and a new bin type f which is not 
neccessarily contained in T*, but its first nonzero component is (?) ' . On the other 
hand, it is easy to check that the weighted sums on the left hand side do not 
decrease. Therefore, it is enough to prove that for any bin type т of the items from 
the lists Lr,...,L1,L1,..., L2d, if r r = . . . = r< + 1 = 0, then 

y^2d+ s , , . 
> -t' <2d + i: 

t _ i — 
« = i l * 1 

Now we replace each element of Lu by tu — 1 elements of Lu+1. This replacement 
results a feasible packing, since 

(tu - l ) ( - i - + e „ + 1 ) < + e u . 
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On the other hand, the weighted sum in the newly constructed packing increases: 
. 2cf + u + 1 2d + u+ 1 2 d + u 

( '« - — — r = — ; > 7 - = T -

Repeating this procedure for every u < t, we finally obtain a feasible packing 
with only items from Ll and with an increased weighted sum. Since for every 
feasible packing in a bin, r' < i,- — 1 holds, we obtain the desired result. 
B . Secondly, we prove that for any 1 < j < 2d and r G Tj 

2d 2d 

«=1 v=) 

B l . Let us consider the subcase j — 2k, 1 < k < d. We examine the (d- k+ l)-th 
coordinate of the list Lj,..., L2d- Because of the definitions, it follows for each list 
that for any a 6 [Lj !.. L2d), Vd-k+1(®) = 2d-j+2 s o statement is true. 

B2 . If j = 2k — 1 then we again consider the (d — k + l)-th coordinate. Now 
the smallest elements in this coordinate are those ones which belong to the list Lj : 
if a 6 Lj then = 2d-j+2 an<^ s o desired inequality holds. 

C. Finally, we prove that the right hand side of (5) is nonnegative. Indeed, by 
case A , we obtain 

r r 

£ ( 2 d + t) £ a(r) = £ E + 
• = 1 TGT* i=l T6T' 

t'=l T€T{ « = 1 * « = 1 

= E + 
r e u ^ ^ T - «=i * «=i 

On the other hand by the case B, 2d 2d 

3=1 r e TJ j=I RETJ 

2d 2d 

* E E « w ( E M 
j=lr€Tj «=1 

2d 

E «(')£>•>• 

Let us observe that for any 1 < j < 2d and r € Tj, Tr — ... = r1 = 0 , and so 

t€U i<,<Mr, «=1 * 
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Therefore the last three inequalities give us that the considered right hand side is 
nonnegative which completes the proof of Lemma (3.6). • 

Now we are ready to prove of Theorem 2.1. For this reason let n €E N2d be arbitrary. 
Lemma 3.6 together with equation (5) yields 

2d r 2d + t 
^A{Lr ...U) + J2A{Lr •••L1L1...L3) >2dn + n^—!— (6) 

y = i i = l 

A[U...D) 

« = i y = i 

We define 
A(T/ T.*\ 

1 < i < r 
(Lr... L')* 

_ A(Lr ...LiLx...Lj) 
{Lr... L1Li... Lj)* 

and 

1 < j < 2d 

R = max I max r*, max r}-1. 

Now plugging R into (6) and using the results stated in Lemmas 3.2 and 3.3, we 
get 

r i 2 d r OJ , „ \—^ 1 „ n . . , v—N ¿d + i. 

i = l ; = 1 i '=l 

Finally, dividing by n and making r —• oo yields the statement of Theorem 2.1 
• 

4 Conclusion 
In this paper we derived the first non-trivial lower bound for ¿-dimensional on-line 
vector packing algorithms. The best on-line algorithm known today, the First-Fit 
algorithm has asymptotic worst case ratio d + In relation to this result, our 
lower bound is not too attractive, as it remain beneath 2 for any given d and there 
is a wide gap to the upper bound. 

Of course, the main open (and probably very hard) problem consists in giving 
a better lower bound for on-Ime approximation algorithms that tends to infinity 
as d tends to infinity, e. g. O(%/d) or Oflogd). Moreover, we invite the researchers 
to design better on-line algorithms with smaller asymptotic worst-case ratios. A 
good candidate might be the vector-generalization of the Harmonic Fit algorithm 
analysed by Lee and Lee [4]. 
Acknowledgment . We thank Gunter Rote and Balazs Imreh for constructive 
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