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Some problems concerning Armstrong relations
~of dual schemes and relation schemes in the
relational datamodel*

J. Demetrovicst V. D. Thif

Abstract

Several papers {3,5,6,7,8,9,11,12] have appeared for investigating dual de-
pendency. The practical meaning of dual dependency was shown in [5,6]. In
this paper we give some new results concerning dual dependency. The concept
of dual scheme is introduced. Some characterizations of dual scheme, such
as closure, generator, generating Armstrong relation, inferring dual depen-
dencies, irredundant cover, normal cover are studied from different aspects.
We give a characterization of Armstrong relations for a given dual scheme.
We prove that the membership problem for dual dependencies is solved by
a polynomial time algorithm. We show that the time complexity of finding
an Armstrong relation of a given dual scheme is exponential in the number
of attributes. Conversely, we give an algorithm to construct a dual scheme
from a given relation R such that R is Armstrong relation of it. This paper
gives some polynomial time algorithms which find closure, irredundant cover,
normal cover from a given dual scheme.

In the second part of this paper we present some results related to Arm-
strong relations for functional dependency (FD for short) in Boyce-Codd nor-
mal form. The concepts of unique relation and unique relation scheme are
introduced. We prove that deciding whether a given relation R over a set of
attributes U is unique is solved by a polynomial time algorithm. We show
some cases in which FD- relatxon equivalence problem i is solved in polynomml
time.

Key Words and Phrases: relation, relational datamodel, dual dependency,
dual scheme; generating Armstrong relation, inferring dual dependencies, mem-
bership problem, closure, closed set, irredundant cover, normal cover, minimal
generator, Boyce-Codd normal form.

1 Introduction

Now we give some necessary definitions that are used in next sections. The next
sections present our new results. N
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Definition 1.1 Let R = {hy,...,hm} be a relation over U, and A, B C U. Then
we say that B dually depends on A in R denoted A —;—» B) iff

(Vhi, h; € R}(3a € A)(hi(a) = hj{a)) = (3b € B)(hi(b) = h;(})))

Let Dp = {(A,B) : 4,B C U, A%B}. Dg is called the full family of dual
dependencies of R. Where we write (A,B) or A — B for A—;—&B when R,d are

clear from the contezi.

Definition 1.2 A dual dependency (DD) over U is a statement of the form A —
B,where A,B C U. The DD A -+ B holds tn a relation R :fA——vB We also say
that R sahsﬁes the DD A — B.

Definition 1.3 Let U be a finite set, and denote P{U) 1its power set. Let Y C
P(U) x P(U). We say that Y 1s a d-famsly over U iff for all A,B,C,DC U

(1) (4,4) €

(2) (4, B) e ( CleY = (4,C) €Y,
(3)(A,B)EY,CC A BCD=>(C,D)€Y
(4) (A,B) €Y, (C,D)e Y = (AUC,BUD) €Y.

(5) (A,0) €Y => A =9.

A, B
A, B
A, B

Clearly, DR is a d-family over U.
. It is known [6,7] that if Y is an arbitrary d-family, then there is a relation R
over U such that Dp =Y.

Definition 1.4 A dual scheme P 1s.a pair < U, D >, where U 1s a set of attributes,
and D is a set of DDs over U. Let DY be a set of all DDs that can be derived from
D by the rules in Definition 1.9. It is easy to see that DV 1s a d-famaly over U.

Clearly, if P =< U,D > is a dual scheme, then there is a relation R over U

such that Dp = D% ( see, {6,7]). Such a relation is called an Armstrong relation
of P.

In this paper we consider the comparision of two attributes as an elementary
step of algorithms. Thus, if we assume that subsets of U are represented as sorted
lists of attributes, then a Boolean operation on two subsets requires at most |U|
elementary steps.

Definition 1.5 Let I C P(U),Ue€l,and AABeI = ANB € I. Let M C P(U).
Denote M+ = {NM' : M' C M}. We say that M is a generator of I iff M+ = I.

Note that U € M but not necessarily in M, since it is the intersection of the empty
collection of sets.

Denote N ={A€I: A;én{A el:Ac A'}).
It 1s proved {7] that N is the umque minimal generator of I. Thus, for any

generator N' of I we obtain N C N'.
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Definition 1.6 Let D be a d-family over U, and (A, B) € D. (A, B) is called a
mazimal left-side dependency of D if VA' : A C A', (A, B) E D = A" = A
Denote by M(D) the set of all mazimal lcft side dependenczes of D. Then A is
called a mazimal left-side of D if there exzisist a B such that (A, B) € M(D).
Denote by G(D) the set of all mazimal left-sides of D.

Definition 1.7 Let G Q P(U). We say that G is a d-semilattice over U if §,U €
G,A,BeG= AnBEeQG.

Theorem 1.8 [6] Let D be a d-family over U. Then G(D) is o d-semilattice over
U. Conversely, 1f G 1s a d-semilattice over U, then there ezists ezactly one d-family
D such that G(D) = G, where D = {(A,B):YVC€G:AZC =>BZC}.

Theorem 1.9 Let K be a Sperner system over U. We define the set of antikeys of
K, denoted by K=, as follows:

I {ACU:(BeK)= (B A)and(4CC) = (3B € K)(BC C))

It 1s easy to see that K~ 1s also a Sperner system over U.
y p

2 Dual schemes

Definition 2.1 Let R be a relation over U. Set N;; = {a € U : hi{a) # hj(a)},
and Np = {N;; : 1 <4 < j < |R|}. Then Ng is called the non-equality system of
R. ' .

According to definition of relation § & Ng.

Let P =< U, D > a dual scheme over U. Then DY is a d-family over U, G(D")
is the set of all maximal left-sides of D*. Clearly, G(D) is a d-semilatiice over U.
Denote by N(D™) the minimal generator of G(D™).

Now we present a characterization of Armstrong relations for a given dual
scheme.

Theorem 2.2 Let P =< U, D > be a dual scheme,R be a relation over U, Then R
1s an Armstrong relation of P if and only if N(DT) C N u {8} C G(D™).

Proof: (=): We assume that R is an Armstrong relation of P, i.e. Dg = D™,
According to Theorem 1.8 we obtain G(Dgr) = G(D*). Now we prove that for an
arbitrary relation R G(Dgr) = (Ng — U)* U {8} holds. Because G(Dg) is a d-
family over U, we have 8,U € G(Dg). Clearly, U € (Ng — U]{' It is obvious that
VN;; # 8. We suppose that N;; # U.Because for any a € U we obtain h;(a) =

h;(a), but Vb € N;j:hi{b) # hj(b),ie. {a}U N;,-?N;J-. Hence, N;; € G(Dg),

holds. Consequently, Np C G(Dg). Thus, we obtain (Ng — U)" U {#} C G(Dg).
Conversely, if A € G(Dgr) — {8,U}, then if we suppose that for all h;,h; € R

then there is a € A such that h;(a) = h;{a). So U—;—}A which contradicts the
definition of A. Consequently, there is an index pair (7, 7} such that A C N;;. We set

T = {N;; : AC N;;}. If there exists an N;j : A = N;; then A € Ng. In the converse

case we set B = (| N;;. If A C B then for all N;; € T we have A C N;;.So
N;;eT
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B —%’ A which contradicts A € G(Dg) — {9, U}.Consequently, we obtain A = B.

Hence, A € (Ng — U)* U {8} holds. Thus, G(Dg) = (Nr — U)" U {#} holds.
Consequently, we have G(D*) = (Ng — U)* U {#}. According to definition of
minimal generator we obtain N(D*) C Np u{#} C G(DY).

(<=):From N(D*) C NrU{#} C G(D*) we have G(D*) = (N — U)* u{8}.
According to above part of proof we obtain G(Dg) = G(D*). By Theorem 1.8 R

is an Armstrong relation of P. The theorem is proved.

Let P =< U, D > be adual scheme. Weset Hp(A) ={a€ U:{a} - A€ D*}.
Let Z(P) = {A € P(U) : Hp(A) = A}. It is easy to see that Z(P) = G(D*).
Clez(lrb} s forall A € P(U) tAC HP(A) = HP(HP(A)) and AC B= Hp A) -
Hp(B).

Algorithm 2.3 [ Compute Hp(A) )

Input: P=<U,D = {4; — B; :1=1,...,m} > a dual scheme over U, A € P(U).

Output: Hp(A)

Step 1: We set A(0) = A.

Step 1+ 1: If there is an A; — B; € D such that B; C A(¢) and A; € A(?), then
we set A(1+1) = A(x)U (Up,ca(;) 45)- In the converse case we set Hp(A4) = A(2).

- It can be seen that there is a £ such that A = A(0) C A{1) C ... C A(¢) =

Alt+1)=...

By rules (3) and (4) in Definition 1.3 it can be seen that the DD {a;y,...,a;} —
B is equivalent to a set of DDs'{{a;1} — B, ..., {ait} — B}. Consequently, we can
assume that D only contains the DDs form {a} — B. Clearly, if A # @ then
A—0¢&D. .

In {2] the notion of a F-based derivation tree for functional dependency is in-
troduced, in the analogous way we present a derivation tree for dual dependency
as follows. :

Definition 2.4 Let P ¥< U,D > be a dual scheme and D only contains the DDs
form {a} — B. The set of derivation trees (DT for short) over P is constructed as
follows:

1. A node labeled with a 1s a DT, where a € U.

2. If a is label of a leaf of DT Q and {a} — {by,...,b:} € D. Then we replace
this leaf in Q by the subtree whose root labeled with a and by,...,bs as chidren
of root.An obtained tree 1s a DT.

3. Nothing else +s a DT.

Remark 2.5 Let P =< U,D > be a dual scheme and D only contains the DDs
form {a} — B. We call a sequence DDs (d1,...,dm) is a derivation of e DDE — F
over P if d, = E — F and for each 1(1 < t < m) one of the following holds:

(1)d; €D ord;=A— A

(2) d; is the result of applying rule (8) to two of DDs dy,...,di_;
(8) d; is the result of applying rule (3) to one of DDs dy, ..., di_y -
(4) di is the result of applying rule (4) to two of DDs dy,...,di_;..
Where rules (2),(8),(4) in Definition 1.8.
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Proposition 2.6 By Algorithm 2.8 we obtain Hp(A) = A(t) and the time com-
plezity of Algorithm 2.8 1s polynomial in the size of P. .

Proof: It is easy to see that the time complexity of Algorithm 2.3 is polynomial
in the size of P. Now we have to prove that a € A(t) iff a € Hp(A).

=) : We prove by the induction. It is obvious that a € A(0) = A C Hp(A).
We assume that A(s) C Hp(A), and a € A(i + 1) ~ A(z).

According to construction of Algorithm 2.3 there exists A; — B; € D such that
B; C A(i},a € A; — A(7). By (2) and (3) of Definition 1.3 we have {a} — B;. By
B,- C A(7) and (3) of Definition 1.3 Bj — A(t) holds. According to the in_duct.ive
hypothesis A(1) — A holds. Consequently, by (2) of Definition 1.3 we obtain
{a} — A. Thus, a € Hp(A) holds.

(«<=): We can assume that D only contains the DDs form {a} — B. By induc-
tion on the length of the derivation of {a} — F we can show that if {a} —+ F € D?
then there is a DT with root labeled a and a set of leaves of this DT is a subset of.
F. This proof is in the analogous way as for functional dependency ,see (2], it will
be omitted. From this consider and based on the notion of DT by induction on the
depth of derivation trees we can show that if a € Hp(A) then a € A(t). This proof
is easy, it will be omitted. Our proof is complete.

It can be seen that A — B € Dt iff A C Hp(B). From this and by Algorithm
2.3 the following proposition is clear.

Proposition 2.7 (The membership problem )

Let P =< U, D > be a dual scheme. X — Y is a dual dependency. Then there
exists a polynomial time algorithm deciding whether X — Y € D+,

Let D be a d-family over U, G(D) is the set of all maximal left-sides of D.
Denote by N(D) the minimal generator of G(D). Denote s{D) = min{m:|R| =
m, DR = D} -

Theorem 2.8 [11] (2|N(D)|)*/? < s(D) < 2|N(D)).

Theorem 2.9 (Generating Armstrong relation for a given dual scheme) The time
complezity of finding Armstrong relation of a given dual scheme P 1s ezponential
in the size of P. .

Proof: Let P =< U,D > be a dual scheme. We set Hp(4) = {a € U :
{a} = A€ D*}. Let Z(P) = {A € P(U): Hp(A) = A}. Tt is easy to see that
Z(P) = G(D*). Thus, N(D*) is the minimal generator of Z(P). First we con-
truct an exponential time algorithm that finds a relation R such that D = D™,
From P we compute Z(P) by Algorithm 2.3. After that we construct the minimal
generator of Z(PZ We assume that N(D*) = {Al, ., A,}. Construct a relation
R— hl) 2. 28— 1)h2a} asfollows . : :
Vi=1,...,8 "Va€ Ut hgi_1{a) =21 -1

o N ) 2t ¢ ifa€ A
hai(a) = { 2¢— 1 otherwise.
According to Theorem 2.2 we obtain D = D*.- - =
Let us take a partition U = Xju,...,UXny UW where m= [n/3} and |X |=3
(1<i<m). :
“We set
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H

H
| =

H= {B|B|—ZBCXforsomet 1<i<morB=W }if |W|=2.

It is easy to see that

H '={A:|AnX;| =1V} if |W|=0,

H'={A:|AnX;|=1,(1<i<m-1)and |[AN (X UW)| =1} if [W|=1,

H1={A:|AnX;|=1,(1<¢<m)and |[ANW|=1}if |W|=2.

It is clear that n—1 <AH| < n+2,307/4l < |H~!|. We construct a dual scheme
P=<UD={U — B:B € H} > . Based on Definition 1.9 and by Algorithm

2.3 we obtain H~! C N(D%). By Theorem 2.8 we have (2|1V(D+)|)1/2 < s(D*).

Consequently, we obtain 3!%/8! < s(D™). Based on the definition of s(D¥) it can
be seen that we always can construct a dual scheme P such that the number of
rows of any Armstrong relation of P is exponential in the size of P. Our proof is
complete.

{B:|B| = 2,B C X, for some ¢} if [W|=0,
{B |B|—ZBCX forsomet: 1<t <m-1lor BC X, UW}if

Algorithm 2.10 ( Inferring dual dependencies)

Input: a relation R = {hy,...,hm} over U.

Output: a dual scheme P =< U D > such that Dg = D7

Step 1: Find the non-equality system NER = {Ni;: 1 <1< j < m}, where

Nij = {a €U : hi(a) # hs(a)}, :

Step 2: Find the minimal generator N, where N = {A € NEr : A #n{B €
NEgR : AC B}}.

Denote elements of N by A4;,..., 4,.

Step 3: For every B C U if there is A; such that B C A4;, we compute C =
ﬂBCA A; and set C — B. In the converse case we set U — B.

Denote T the set of all such dual dependencies
Step 4: Set D = T — Q,whereQ—{X——vYET X = Y or there is
X—-Y eT:Y'CY}.

Clearly, according to Theorem 2.2, Algorithm 2.10 finds a relation scheme P
such that a given relation R is an Armstrong relation of P.

Definition 2.11 Let P=< U,D >,P' =< U, D' > be two dual schemes. We say
that P' is a cover of P if D'V = D*. It is obvious that P also is a cover of P'.

It can be seen that if P, P’ are dual schemes over U then based on Proposition 2.7
and Algorithm 2.3 there is a polynomial time algorithm deciding whether Dt =

Dt
Definition 2.12 Let P =< U,D >, D = {A; — B; : 1 = 1,...,m} be a dual
scheme. We say that P is an irredundant cover if for all T C D : Dt # T+,

_ Now we give an algorithm to find an irredundant cover of a given dual scheme.

Algorithm 2.13 (Finding an irredundant cover)

Input : Let P =< UD={A; = B;:1=1,...,m} > be a dual scheme.

Output : P' =< U, D’ > is an irredundant cover of P.
Step 1: Set L(1) =
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~ Step (i+1) : Set Q = L(s) — {A; — B;}, and

. _ Q if A, = B; € Q+
Le+1)= { L(¢) otherwise.

Then we set D' = L(m + 1).
Proposition 2.14 < U, L(m + 1) > is an irredundant cover of P.

Proof: First we show that < U, L(i+1) > is a cover of < U, L(s) > . f L(i+1) = Q
then by A; — B; € Q* we have L(s)* = L(s + 1)*. If L(s + 1) = L(s) it is obvious
that L(i + 1) = L(:)™. So we have D* = L(1)* =... = L(m+ 1)* = D'*. Now
we show that < U, D' > is irredundant. Suppose that there is an irredundant cover
< U,L > of P such that L C L(m + 1). Thus, there is a DD A; — B; € L(m + 1)
but A; — B; ¢ L, where 1 < j < m. From the definition of L(j + 1) we obtain
A; — B; & Q*F, where Q = L(7) — {A; — B;}. Since L(m + 1) C L(j) it follows
that A; — B; ¢ Q' where Q' = L(m + 1) — {4, — B;}. Clearly, Q' C Q,
L C L(m+1)— {A; — B;} hold. Consequently, A; — B; ¢ L*. This conflicts
with the fact that Lt = D%, Our proof is complete.

Let P =< U,D > be a dual scheme. We can assume that the set D only
contains the DDs form {a} — B. Based on this we give the next definition

Definition 2.15 Let P =< U, D > be a dual scheme. P 1s called a normal dual
scheme if P 1is irredundant and the following properties hold :

(1) D only contains the DDs form {a} — B, where a € U,B € P(U),
(2) forall{a} >Be€Dand B c B: <UD~ {{a} = B}u{{a} = B'} > s

not a cover of P.

Proposition 2.16 Let P =< U, D > be a dual scheme. Then there 1s an algorithm
finding a normal cover of P. The time complezity of it is polynomaal in the size of

Proof: (1) is clear. Consequently, we assume that D only contains the DDs form
{a} — B. Based on Algorithm 2.13 from P we construct an irredundant dual

scheme P’ which is a cover of P. Assume that P =< U, D' = {{a;} — B; : i =
1,...,t} >, and B; = {b;5,...,b;n}. For each ¢(1 < ¢ <t) we set E(1) = B;, for
i=1...,h

1+
- E(5) - bi; if {a} = {E(5) -bi;} €D
E + 1) = g 13 . 13}
(G+1) { E(7) otherwise. '

Denote T; = E{(h+1). According to Algorithm 2.3 and Proposition 2.7 we compute
T; in polynomial time in the size of P'. By induction we can show that {a;} — T; €
D'T and VT ¢ T; we obtain {a;} — T ¢ D'". This is clear and so its proof will
~ be omitted. Now we set P" =< U, D" = {{a;} = Ty :i=1,...,t} >. It is easy to
_see that P” is a normal cover of P. By Algorithm 2.13 and Algorithm 2.3 we can
compute P" in polynomial time-in the size of P. Our proof is complete.
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3 Relation schemes in BCNF

In this section we give some new results concerning relation schemes in BCNF.We
show some cases in which FD-relation equivalence problem is solved by polynomial
time algorithms. Now we give some necessary definitions.

Definition 3.1 Let R = {hy,...,hm} be a relation over U, and A,B C U.
Then we say that B functionally depends on A in R denoted (A %b B) iff
(Yhi, by € R)(Va € A)(hifa) = h;(a)) = (¥b € B)(h:(b) = h;(8)))
Let Fr = {(4,B) : A, B C U, A B}. Fp is called the full family of functional
dependencies of R. Where we write (4, B) or A — B for A—=+ B when R,  are

clear from the context.

A functional dependency over U is a statement of the form A — B,where

f
A,B C U. The FD A — B holds in a relation R if A,LIgB. We also say that R.

satisfies the FD A — B.
: It is easy to see that Fp satisfies the following properties:
VB C A:A — B € Fp (pseudoreﬂex1v1ty) if A— B € Fr and C C D, then
AuD} — {BU C} (augmentation), if A - B € Fg and {BUC} — D, then
AU C} — D(pseudotransitivity).

Definition 8.2 A relation scheme S,or RS for short, 1s a pair < U, F >. Where
U 1is a set of attributes, and F is a set of FDs over U. Let F* be a set of all FDs
that can be derived from F by the above rules. Denote AT = {a:A — {a} € F*+}.

A% is called the closure of A over S.Denote Z(F+) = {ACU: AT = A}.

Clearly, in (1] if S =< U, F > is a RS, then there is a relation R over U such that
Fr=F*. Sucha relatlon is called an Armstrong relation of S.

Let R be a relation, § =< U,F > be a RS, and A C U. ThenAlsakeyofR
 (a key of S, respectively) if A ——vU (A — U € F* respectively). A is a minimal

key of R(S, respectively) if A is a key of R(S, respectively), and any proper subset
of A is not a key of R(S, respectively). Denote Kr(Ks, rcspectzvely) the set of all
minimal keys of R(S, respectwely)

Clearly, Kg, Ks are Sperner systems over U. _
Let R be a relation,§ =< U, F > be a RS5.R,S are in Boyce-Codd normal
form (BCNF) if for each A — {a} € F+(E FR,respcctwely) and ¢ € A then

A — U € F*(€ Fg,respectively).

Deﬁmtlon 8.3 Let S =< U,F > be a RS. We say that S is a k-RS over U if
={Ky—U,...,Kn— U}, where Kl, ., Kn} 1s a Sperner system over U. It
1s easy to see that Ks = {Kl,

It can be seen that a relation scheme S =< U,F > isin BCNF if VA C U
either AT = A or A* = U. Clearly, if § =< U, F > is in BCNF then using the
algorithm for finding a minimal cover we can construct in polynomial time a k-RS

S' =< U, F' > such that F+ = Fr , see [10]. Conversely, it can be seen that an

arbitrary k-RS is in BCNF. Consequently, we can consider a RS in BCNF as a
k-RS.
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Theorem 3.4 [4] Let S; =< U, F; >,S; =< U, F, > be two RS over U. Then
Rt =Rt i Z(R7Y) = Z(F1), and ALY C R if Z(FRY) C Z(RY).

Theorem 3. 5 [ Let K be a Sperner system and S =< U, F > be a RS over U.
Then Kg =

{UYUK ' C Z(F*)C {U}uG(K™1),
u_)hereG‘S ;‘h {ACU:3Be K":AC B}.

Base orem 3.5 we have

Theorem 3.6 Let K = {K;,..., K} be a Sperner system over U. Consider the
relation scheme S = (U, F) with F ={K, = U,..., K, — U}.

Then Ks = K, and Z(F¥) = G(K5')u {U}.

Let R be a relation over U. Denote A}, = {a € U:A — {a} € Fgr}, and
Z(Fr)={AC U:A} = A}.

According to Theorem 3.5 we can give examples for which there are two RSs
S, =< U, Fy >,8; =< U, F, > such that K5, = Kg,, but F;* # F,*. Clearly, for
relations this consider is the same.

We give the following notion.

Definition 8.7 Let § =< U,F > be a RS, R be a relation over U. We call S
(R, respectively) is an unique RS ( relation,respectively) if for all RS S' =< U, F' >

relation R',respectively) : Ks = Ks: (Kr = Kg/,respectively) then F* = 't
Fr = Fri,respectively).

Proposition 3.8 The tyme complezity of deciding whether a given relation R over
U 1s unique s polynomsial in the sizes of R and U.

Proof: Let R arelation over U. By [13] from R we can compute Kg ! in polynomial
time in the sizes of R and U, where Kg is a set of all minimal keys of R.

Denote elements of Kr ™! by 41,...,As. Set Mg = {A;—a:ac U,i=1,,. 5 t}.

Denote elements of Mp by Bl, .,B,. We construct’ a relation R =
{ho,h1,-..,hs} as follows

For all ¢ € U, ho(a) = O, for each 1+ = 1,...,s hi(a) = 0 if a € B;, in the
converse case we set h;(a) =1. :

By [10] R is in BONF and Kg = Kp'.

We construct a relation R” = {l,, 11, - 1t} as follows:

lo(a)-—Oforallan For all j=1,...,t then [;(a) =7 if a & A;,

in the converse case set l;(a) =0. .

It can be seen that K = Kg- and Z(FR )= (KRI) (see Definition 1.5).

It is easy to see that Mg, R” and R’ are constructed in polynomial time in the
sizes of U and R.

Based on Theorem 3.5 we see that R is umque 1ff Fpi = Fpn. Clearly,Fgp = FR»
can be tested in polynomial time m the siges of R' and R”. The proposmon is
proved.

Definition 3.9 [4] Let K be a Sperner system over U. We say that K is saturated
if for any A€ K, {A}UK s not a Sperner system.
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Theorem 3.10 [4] Let § =< U, F > bea RS. If Ks 13 a saturated Sperner system,
then S is an uniqué RS.

Examples show that there is a Sperner system K ( K~ ! respectively) such that

K (K1, respectively) is saturated, but K~! (K respectively) is not saturated.
ow we define the next notion.

Definition 8.11 Let K be a Sperner system over U. We say that K 1s inclusive,
if for every A € K there 1s a B € K~! such that B C A. We call K is embedded
if for each A € K there ezists a B€ H: A C B, where H™! = K.

Theorem 3.12 (13| Let K be a Sperner s'ystcm over U. Denote H a Sperner system
for which H™! = K. The following facts are equivalent:

(1} K is saiurated,
(2) K~ is embedded,
(8) H is inclusive.

Let S =< U, F > be a RS in BCNF,R be a relation in BCNF. Then we say

that S is an inclusive RS if K5 is inclusive and R an embedded relation if Kgl is
embedded.
It can be seen that the BCNF property of S is polynomially recognizable. By

[13] we can compute K" in polynomial time in the size of R, and based on poly-

nomial time algorithm }Einding minimal cover we also construct K s from a given

BCNF relation scheme. On the other hand, by definitions of embedded,inclusive
Sperner systems we obtain the following proposition.

Proposition 8.13 Let S =< U, F > be a RS ,R be a relation over U. Then

1. Deciding whether S ts an tnclu,swe RS is solved in polynomial time in the size
of S.

2. There ezists an algorithm deciding whether R 15 an embedded relation and the
time complezity of 1t 1s polynomral in the sizes of U and R.

‘It is easy to see that if § =< U, F >, 8" =< U, F' > are two RSs then ;ieciding
whether F* = F'* can be tested in polynomial time in the sizes of § and S'.

Now we introduct the next problem.
Let S =< U, F >,8' =< U, F' > be two RSs. Decide whether Ks = K.

The following prop051txon is clear.

Proposition 3:14 Let S, S! be two RSs.If S 1is unique then deciding whether Ks = '
Ksi 1s polynomzally recogmzable

In [10] the FD-relation equivalence problem is introduced as follows

Let S =< U, F > be a RS, R be a relation over U. Decide whether F+ = Fp,
i.e. R'is an Armstrong relatlon of S.

Definition 3.15 Let K,;, K2 be two Sperner system over U. We set K = Kl U Kz
“and Ty = {A € K: /HB € K:A < B}. Wc say that the union K = K, U K3 1s
equalzty if VAL, Az € Tk:|A1] = [A2]. :
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Based on Definition 3.15 we give the next theorem related to the FD-relation
equivalence problem .

Proposition 3.16 Let S =< U, F > be a relation scheme tn BCNF and R a
relation over U in BCNF. K5 = {Ay,...,A,} (Kz' = {By,.. B 1)) is the set of
minimal keys of S ( the set of antikeys ofR Then if Ks U K 1s equality then
the FD-relation equivalence problem s solved in polynomial t1me in the sizes of S

and R.

Proof: Clearly, by [13] from R we compute K;! r In polynomla.l time in the size
of R, and from S we find a k-relation scheme that is a minimum cover of S.
The minimum cover is constructed in polynomial time in the size of S. We set

K = Ks UK. Because K is equality,we assume that |A| = m, and |U| = n. We
compute the number CT*. Clearly, K and K~! are uniquely determined by each
other. By definitions of Ks and KE we can see that if |Tx| # CI* then K5 # Kg.

Thus, in BCNF class we obtain F* # Fp.
Now we assume that |Tx| = CI. If there is A; (1t<:<p) such that 4; C
B;(1 < 7 < ¢) then Ks # Kg. Consequently,we can assume that A; ¢ B; for

all 7,.,_7 For each j = 1,...,q we compute B;’. It can be seen that for all D C U
D* is computed in polynomial time in the size of S. We set M = {B; U {a}:a €
. U~ B} = {My,..., M;}. It is obvious that M is computed in polynomial time.
"I B} # Uandforalll=1,...,t M =U hold then B; € K" holds, otherwise
- we obtain B; & K;l. If there is a B;: B; & K;l then by the definition of antikeys
Kr # Kg.We assume that for all j=1,. ,q B; € KZ . Foreachz=1,...,p we

set N = {4; ~ {a}:a € A;} = {Ny,...,N,}. It can be seen that N is computed in
polynomial time. If there is a N, (1 < n < s) such that N, € B; forall y = 1,.

then A; ¢ Kg holds. In the converse case we obtain A; € KR Clearly, if there
is an A,- ¢ Kg then Ks # Kgr. We assume that for each « = 1,...,p we have

A; € Kp. We set
Z={A; —{a}:a€ A;,i =1,...,p},
W={A€Q:A=A"(AU{a})" =U,Ya €U - 4},
J={BjU{a}:aeU-—B_,-,jz_l,.._.,q},
I={BeJ:Bf=U,{B-a)}#UVacB).

Based on definition of ‘Ks and deﬁnition.of KEI we can see that if either there
is an A € W such that A € K5~ or there exists a B. € I but B ¢ Kg then
Kgs # Kgr. It can be seen that ﬁV I are constructed in polynomial time in the
sizes of S, R, KS,K_ Finally, we see that if for all: = 1,...,p,7 = 1,...,¢
A; € Kg,B; € K;Y,W C K 1,1 C Ks hold then by |Tk| = C’"‘ and accordmg
to deﬁmtlon of set of mlmma.l keys and definition of set- of antlkeys we obtain
Kg = Kg. Since S, R are in BCNF we have Fr = F*. The proof is complete.

Let K be a Sperner system over U. We say that K is pseudo-monotonous if for
each Sperner system K' : KNK' =@ and KU K' is a Sperner system over U then
K 'c{KuK}

We say that K is a changed Sperner system if for each H' : H' C H then there
are A€ K,B € H'~" such that A C B, where H™! = K.
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Proposition 8.17 Let S be a RS tn BCNF, R be a relation in BCNF. Then if

etther Kg 15 pséudo-monotonous or KEI 1s changed, then FD-relation equivalence
problem 1s solved tn polynomial time in the sizez of S and R.

Proof: First we assume that K};l is a changed Sperner system. Based on a
polynomial time algorithm finding a minimal cover,we construct a set of all minimal

keys Ks. It is known [13] that from R we compute K in polynomial time in the
size of R. -
If there are A € K5 and B € K5 ' such that A C B, then Ks # Kg. Thus,for

all A € Ks,B € K;'! we can assume that A € B. Weset X = {A— {a}:A €

Kg,ae A}. IfforallC € X,B € Kgl we obtain C C B then Kg € Kg. In the
converse case we have Kg # Kp. It is easy to see that X is computed in polynomial
time. We assume that K5 C Kg. :

For each B € KEI we compute B*. If there is a B such that B¥ = U then
Ks # K. We assume that Bt # U forall B€ K;'. Weset Y = {BU {a}: B €
Kgl,a € U — B}. It is obvious that Y is computed in polynomial time. If for
all D'e Y we have Dt = U then KEI C K;l. In the converse case we obtain
K};‘ # K;‘. Because K and K ! are uniquely determined by each other, we have
Kgr # Ks. Now assume that KEI C K;L and Kg C Kgr. By hypothesis KEI isa
changed Sperner system. Consequently,if Ks C Kg then there are B € K;' and
Fe K;l such that B C E. Hence, KEI Z K;l holds.Thus, Kg = Kg. Because

S, R are in BCNF, we obtain Fp = Ft,
If S is pseudo-monotonous then the proofis the same. The proof is complete.

4 Conclusion
Our further research will be devoted to the following problems:

1. What is the time complexity of finding a dual scheme P from a given relation
R such that D = Dp

2. Given a relation scheme S and a relation R. What is the time complexity of
deciding whether K5 = Kp.

3. Let S1,S2 be two relation schemes over U. What is the time complexity of
deciding whether Kg, = Kg,.

4. Let S be a RS What is the time complexity of deciding whether S is an
unique RS.
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