
Acta Cybernetics Vol. 11, No. 1-2, Szeged, 1993

Fundamental Concepts of Object Oriented
Databases

K.-D. Schewe* B. Thalheim*

Abstract
It is claimed that object oriented databases (O O D B s) overcome many

of the limitations of the relational model. However, the formal foundation of
O O D B concepts is still an open problem. Even worse, for relational databases
a commonly accepted datamodel existed very early on whereas for O O D B s the
unification of concepts is missing. The work reported in this paper contains
the results of our first investigations on a formally founded object oriented
datamodel (O O D M) and is intended to contribute to the development of a
uniform mathematical theory of OODBs.

A clear distinction between objects and values turns out to be essential
in the O O D M . Types and Classes are used to structure values and objects
repectively. Then the problem of unique object identification occurs. We show
that this problem can be be solved for classes with extents that are completely
representable by values. Such classes are called value-representable.

Another advantage of the relational approach is the existence of struc-
turally determined generic update operations. We show that this prop-
erty can be carried over to object-oriented datamodels if classes are value-
representable. Moreover, in this case database consistency with respect to
implicitly specified referential and inclusion constraints will be automatically
preserved.

This result can be generalized with respect to distinguished classes of
explicitly stated static constraints. Given some arbitrary method and some
integrity constraint there exists a greatest consistent specialization (GCS) that
behaves nice in that it is compatible with the conjunction of constraints. We
present an algorithm for the GCS construction of user-defined methods and
describe the GCSs of generic update operations that are required herein.

1 Introduction
The shortcomings of the relational database approach encouraged much research
aimed at achieving more appropriate data models. It has been claimed that the
object-oriented approach will be the key technology for future database systems
and languages [8]. Several systems [4,6,7,9,15,16,17,19,26,36,37,38] arose from these

•Cottbus Technical University, Computer Science Institute, P .O.Box 101344, D-03013 Cottbus

49

50 K.-D. Schewe, B. Thalheim

efforts. However, in contrast to research in the relational area there is no common
formal agreement on what constitutes an object-oriented database [10,11,13].

The basic question "What is an object?" seems to be trivial, but already here
the variety of answers is large. In object oriented programming the notion of an
object was intended as a generalization of the abstract data type concept with
the additional feature of inheritance. In this sense object orientation involves the
isolation of data in semi-independent modules in order to promote high software
development productivity. The development of object oriented databases regarded
an object also as a basic unit of persistent data, a view that is heavily influenced
by existing semantic datamodels (SDMs) [2,29,31,39,40,60]. Thus, object oriented
databases are composed of independent objects but must also provide for the main-
tenance of inter-object consistency, a demand that is to some degree in dissonance
with the basic style of object orientation.

A view that is common in OODB research is that objects are abstractions of real
world entities and should have an identity [8]. This leads to a distinction between
values and .objects [10,11]. A value is identified by itself whereas an object has an
identity independent of its value. This object identity is usually encoded by object
identifiers [1,3,34]. Abstracting from the pure physical level the identifier of an
object can be regarded as being immutable during the object's lifetime. Identifiers
ease the sharing and update of data. However, such abstract identifiers do not
relieve us from the task to provide unique identification mechanisms for objects. In
object oriented programming object names are sufficient, but retrieving mass data
by name is senseless.

In most approaches to OODBs an object is coupled with a value of some fixed
structure. To our point of view this contradicts already the goal of objects being
abstractions of reality. In real situations an object has several and also changing
aspects that should be captured by the object model. Therefore, in our object
model each object o consists of a unique identifier id, a set of (type-, value-)pairs
(Ti, v,-), a set of (reference-, object-)pairs (refy,o}) and a set of methods meth^.

Types are used to structure values. Classes serve as structuring primitive for
objects having the same structure and behaviour. It is obvious that the multiple
aspects view of an object allows them to be simultaneously members of more than
one class and to change class memberships. This setting also makes every discussion
on "object migration" unnessecary, as migration is only a specific form of value
change.

In our model a class structure uniformly combines aspects of object values and
references. The extent of classes varies over time, whereas types are immutable.
Relationships between classes are represented by references together with referential
constraints on the object identifiers involved. Moreover, each class is accompanied
by a collection of methods. A schema is given by a collection of class definitions
together with explicit integrity constraints.

The Identification Prob lem. One important concept of object-oriented
databases is object identity. Following [1,12] the immutable identity of an ob-
ject can be encoded by the concept of abstract object-identifiers. The advantages
of this approach are that sharing, mutability of values and cyclic structures can be
represented easily [42]. On the other hand, object identifiers do not have a meaning
for the user and should therefore be hidden.

We study whether equality of identifiers can be derived from the equality of
values. In the literature the notion of "deep" equality has been introduced for
objects with equal values and references to objects that are also "deeply" equal.
This recursive definition becomes interesting in the case of cyclic references.

Fundamenta] Concepts of Object Oriented Databases 51

Therefore, we introduce uniqueness constraints, which express equality on iden-
tifiers as a consequence of the equality of some values or references. On this basis
we can address the problem how to characterize those classes that are completely
representable (and hence also identifiable) by values.

Generic U p d a t e Operations. The success of the relational data model is due
certainly to. the existence of simple query and update-languages. Preserving the
advantages of the relational in OODBs is a serious goal.

The generic querying of objects has been approached in [1,12]. While querying is
per se a set-oriented operation, i.e. it is not necessary to select just one single object,
and hence does not raise any specific problems with object identifiers, things change
completely in case of updates. If an object with a given value is to be updated (or
deleted), this is only defined unambigously, if there does not exist another object
with the same value. If more than one object exists with the same value or more
generally with the same value and the same references to other objects, then the
user has to decide, whether an update- or delete-operation is applied to all these
objects, to only one of these objects selected non-deterministically or to none of
them, i.e. to reject the operation. However, it is not possible to specify a priori
such an operation that works in the same way for all objects in all situations. The
same applies to insert-operations. Hence the problem, in which cases operations
for the insertion, deletion and update of objects can be defined generically.

Some authors [43] have chosen the solution to abandon generic operations. Oth-
ers [6,7,9] use identifying values to represent object identity, thus embody a strict
concept of surrogate keys to avoid the problem. Our approach is different from
both solutions in that we use the concept of hidden abstract identifiers, but at the
same time formally characterize those classes for which unique generic operations
for the insertion, deletion and update of single objects can be derived automatically.
It turns out that these are exactly the value-representable ones.

The Consistency Prob lem. One of the primary benefits that database sys-
tems offer is automatic enforcement of database integrity. One type of integrity is
maintained through automatic concurrency control and recovery mechanisms; an-
other one is the automatic enforcement of user-specified integrity constraints. Most
commercial database systems, especially relational database management systems
enforce only a bare minimum of constraints, largely because of the performance
overhead associated with updates.

The maintenance problem is the problem how to ensure that the database sat-
isfies its constraints after certain actions. There are at present two approaches
to this maintenance problem. The first one, more classical is the modification of
methods in accordance to the specified integrity constaints. The second approach
uses generation mechanisms for the specified events. Upon occurrence of certain
database events like update operations the management component is activated
for integrity maintenance. The first research direction did not succeed because of
some limitations within the approach. The second one is at present one of the most
active database research are sis. One of our objectives is to show that the first ap-
proach can be extended to object-oriented databases using stronger mathematical
fundamentals.

Accuracy is an obviously important and desirable feature of any database. To
this end, integrity constraints, conditions that data must satisfy before a database is
updated, are commonly employed as a means of helping to maintain consistency. In
relational databases the specification and enforcement of integrity constraints has
a long tradition [61], whereas in OODBs the integrity problem has only recently
drawn attention [48].

52 K.-D. Schewe, B. Thalheim

In object oriented databases, integrity maintenance can be based on two different
approaches. The first one uses blind update_operations. In this case, any update is
allowed and the system organizes the maintenance. The second approach is based
on methods rewriting. This approach is more effective. Assuming a consistent
database state the modified method can not lead to an inconsistent state.

In relational databases distinguished classes of static integrity constraints have
been discussed such as inclusion, exclusion, functional, key and multi-valued de-
pendencies. All these constraints can be generalized to the object oriented case.
Then the result on the existence of integrity preserving methods can be generalized
to capture also these constraints. We shall also describe the resulting methods.

T h e O r g a n i z a t i o n o f the P a p e r . We start with a motivating example in Sec-
tion 2 then introduce in Section 3 a core OODM to formalize the concepts used
intuitively in the example. In Section 4 the notions of (weak) value-representabi-
lity are introduced in order to handle the identification problem. The genericity
problem will be approached in Section 5. We show the relationship between value-
representability and the unique existence of generic update operations. The consis-
tency problem is dealt with in Section 6. We outline an operational approach based
on the computation of greatest consistent specializations (GCSs). Since the used
algorithm allows the problem to be reduced to basic update operations, we describe
the GCSs hereof. We summarize our results and describe some open problems in
Section 7.

2 A Motivating Example
In this section we start giving a completely informal introduction to the O O D M
on the basis of a simple university example. We first introduce types and classes,
then show an example of a database instance, i.e. the content of the database at a
given timepoint. The representation of an instance requires object identifiers. Then
we extend the example by introducing user-defined constraints. We shall see that
this enables alternative representations without using identifiers, hence leads to the
notion of value-representability. Finally, we indicate the definition of methods as a
means to model database dynamics. For the sake of simplicity we only describe a
generic update method that can be generated by the system.

As already said in the introduction, we distinguish between values and objects
with the main difference defined by values identifying themselves whereas objects
require an additional external identification mechanism. Types are used to struc-
ture values. Thus, let us first give some examples of types.

Example Basically, every type can be built from a few predefined basic types such
as BOOL, NAT, STRING, etc. and also predefined type constructors for records,
finite sets, lists, unions, etc.

The type definition for PERSONNAME uses both a set constructor {•} and
a (tagged) record constructor (•):

Type PERSONNAME
= (FirstName : STRING ,

SecondName : STRING ,
Titles : STRING)

End PERSONNAME

Fundamenta] Concepts of Object Oriented Databases 53

The definition of a type PERSON uses the type PERSONNAME.

Type PERSON
= (PersonldentityNo : NAT ,

Name : PERSONNAME)
End PERSON

The following defines STUDENT as a subtype of PERSON, i.e. we can naturally
project each value of type STUDENT onto a value of type PERSON.

Type STUDENT
= (PersonldentityNo : NAT ,

StudNo : NAT ,
Name : PERSONNAME)

End STUDENT

Besides these definitions of types as sets of values we may also define new type
constructors as follows, where a is a parameter for this new constructor:

Type MPERSON{ot)
= (PersonldentityNo : NAT ,

Spouse : a)
End MPERSON •

Next we use these types to build the structural part of an OODM schema. We
define a schema as a collection of classes and a class as a variable collection of
objects.

Example Each object in a class has a structure, which combines aspects of values
associated with the object and references to other objects. This structure can be
based on a type definition as above or involve itself a (nameless) type definition.
Moreover, class definitions involve IsA relations in order to model objects in more
than one class. We use o to indicate concatenation for record types.

Schema University
Class PERSONC

Structure PERSON
End PERSONC
Class MARRIEDPERSONC

IsA PERSONC
Structure (PersonldentityNo : NAT ,

Spouse : MARRIEDPERSONC)
End MARRIEDPERSONC
Class STUDENTC

IsA PERSONC
Structure STUDENT o

(Supervisor : PROFESSORC ,
Major : DEPARTMENTC .
Minor : D E P A R T M E N T C) End S T U D E N T C

Class PROFESSORC
IsA PERSONC

54 K.-D. Schewe, B. Thalheim

Structure (PersonldentityNo : NAT ,
Age : NAT ,
Salary : NAT ,
Faculty : D E P A R T M E N T C) End P R O F E S S O R C

C l a s s D E P A R T M E N T C
I s A P E R S O N C
Structure (DeptName : STRING)

End D E P A R T M E N T C •

In principle, we are now able to describe the content of the database at a given
timepoint. For such database instances we need a type I D of object identifiers that
is used for two purposes, first as a unique and efficient internal identification mecha-
nism for objects and second for modelling objects in different classes and references
to other objects. In this case each class will be associated with a representation
type that can be used directly for storing objects.

Example We use P as a name for the instance.
P(PERSONC) =

{ (t ! , (123 , ("John" , "Denver" , { "Professor" , "Dr" }))) ,
(i 2 , (124 , ("Mary" , "Stuart" , { "Dr" }))) ,
(»3 , (456 , ("John" , "Stuart" , { }))) ,
(i 4 , (567 , ("Laura" , "James" , { }))) ,
(i 5 , (987, ("Dave" , "Ford" , { }))) }

¿ » (M ARRIED P E R S O N C) =
{ (tx , (123 , i3)) ,

(¿2 , (124 , H)) }
P (P R O F E S S O R C) =

{ (»! , (123, 48,8000, t6)) }
P (S T U D E N T C) =

{ (t3 , (456 , 1023 , ("John" , "Stuart" , { }) , »'i , t'e , »7)) ,
(i4 , (567 , 2134 , ("Laura" , "James" , { }) , t'i , i6 , »7)) }

P (D E P A R T M E N T C) =
{ (t6 , ("Computer Science")) ,

(t7 , ("Philosophy")) ,
(i 8 , ("Music")) }

•

Note that the following three conditions are satisfied by the instance:

• The object identifiers are unique within a class,

• the IsA relations in the schema give rise to set inclusion relationships for the
underlying sets of identifiers (inclusion integrity), and

• the identifiers occurring within an object's value at a place corresponding
to a reference, always occur as an object identifier in the referenced class
(referential integrity).

We shall always refer to these conditions as model inherent constraints that must
be- satisfied by each instance. Other integrity constraints can be defined by the user

Fundamenta] Concepts of Object Oriented Databases 55

and added to the schema in order to capture more application semantics as shown
in the next example.

Example First let us express that there are no two persons with the same Per-
sonldentityNo, no two students with the same StudentNo and no two departments
with the same name. In order to formulate this, use xp, xs and to refer to
the content of the classes P E R S O N C , S T U D E N T C and D E P A R T M E N T C , and let
cP : PERSON — (PersonldentityNo : NAT) and c s : STUDENT x ID3 —
(StudNo : NAT) be functions that arise from the natural projection to the compo-
nents PersonldentityNo and StudNo in PERSON and STUDENT respectively.
This gives the following uniqueness constraints.

-Vi,y :: ID.Vv, w ::
PERSON. (i,v) e xP A (j, w) exP AcP(v) = cP(w) => i = j.
Vi,j :: ID.Vv,w ::
STUDENT x ID3. (t>) 6 xs A {j,w) 6 xs A c s (v) = cs(w) => i = j

:: ID.Vv, w ::
(DeptName : STRING), (i, v) e xD A (j, w) € xD A v = w => i = j . (l)

Let us further assume that the salary of a professor is determined by his/her age.
For this purpose, let Age, Salary : Tpro/ —NAT be the natural projections to
the Age- and Salary-values respectively. Then we have the following functional
constraint on the class PROFESSORC:

Vt,j :: ID.Vv, w :: TProi. (i,v) € xPro} A [j,w) G xProJ A Age(u) = Age(iu) =5-
Salary(v) = Salary(ui) . (2)

Next assume that we want to guarantee that the spouse of a person's spouse is the
person itself, which gives (with the abbreviations understood) the formula

Vt, j :: ID. Vt>, w ::

Tmp• (*I V) € XMP A (j, w) E xmp A Spouse(u) = j' => Spouse(ty) = i .(3)

Note that all these constraints are also satisfied by the instance above. •

Now we have added uniqueness constraints, the object identifiers used in instances
correspond one-to-one to values of some types associated with the classes. These
are the so-called value identification types Vc- Hence we could remove identifiers
and represent the same information in a purely value-based fashion. In our example
the value representation type for the class PERSONC is simply PERSON, but for
the class MARRIED PERSONC we need the recursive type

VMP = PERSON O (Spouse :VMP)

with values that are rational trees [45,47].
So far only structural aspects (types, classes, constraints) have been considered.

Let us now add methods to classes in order to model the dynamics of the database.
In the OODM methods will be modelled in a simple procedural style.

56 K.-D. Schewe, B. Thalheim

Example Let us describe an insert-method for the class PERSONC.

insert P e r < o n C (in: P :: PERSON, out: I :: ID) =
IF 3 0 e PERSONC . value(O) = P
THEN I : = ident(O)
ELSE I : = Newld ;

PERSONC : = PERSONC U { (I,P)}
ENDIF

For an insertion into the class MARRIED PERSONC we need a more complex input
type V recursively defined as

V = PERSON o (V U ID)

For each P :: V let f(P) :: PERSON be the projection onto PERSON corre-
sponding to the subtype relation between V and PERSON. Then we have

insert*iarriedPcrsonC (in: P :: V, out: I :: ID) =
I : = insert J>ER,0FLC(/(P)) ;
IF V O e MARRIEDPERSONC . ident(O) ± I
THEN P' := substitute^,P,Spouse(P)) ;

IF P' :: ID
THEN J := P'
ELSE J := insertMarriedPerionC {P')
ENDIF ;

MARRIEDPERSONC : = MARRIEDPERSONC U { (I J (P) O (J)) }
ENDIF

We used the global method Newld to denote the selection of a new identifier. The
expression substitute(/ ,P,T) denotes the result of replacing the value I for P in the
expression T. Later we shall use a more abstract syntax oriented toward guarded
commands [20,41,46]. •
Later we shall see that methods as described in this example are canonical and can
be automatically derived from the schema. Corresponding generic update methods
look quite similar with the only difference that there is no output. Such generic
update methods only exist for value representable classes in which case, however,
they enforce integrity with respect to the model inherent constraints. However,
generic update methods need not be consistent with respect to the user-defined
constraints. To achieve this, we have to apply the GCS algorithm to user-defined
methods.

In the following sections we formally define the concepts above and proof the
main results on value representation, generic updates and integrity enforcement.

3 A Core Object Oriented Datamodel
In this section we present a slightly modified version of the object oriented data-
model (OODM) of [45,47,49]. We observe that an object in the real world always
has an identity. Therefore, abstract (i.e. system-provided) object identifiers are
introduced to capture identity. However, neither the" real world object that was the
basis of the abstraction nor the abstract identifier can be used for the identification
of an object.

In contrast to existing object oriented datamodels [1,3,4,6,7,8,9,16,17,26,36,37,
42,43,54] an object is not coupled with a unique type. In contrast, we observe that

Fundamenta] Concepts of Object Oriented Databases 57

real world objects can have different aspects that may change over time. Therefore,
a primary decision was taken to let an object be associated with more than one
type and to let these types even change during the object's lifetime. The same
applies to references to other objects.

In the following let NP, NT, NO, NR, NP, NM and V denote arbitrary pair-
wise disjoint, denumerable sets representing parameter-, type-, class-, reference-,
function-, method- and variable-names respectively.

3.1 A Simple Type System
Relational approaches to data modelling are called value-oriented since in these
models real world entities are completely represented by their values. In the object-
oriented approach we distinguish between objects and values. Values can be gouped
into types. In general, a type may be regarded as an immutable set of values of
a uniform structure together with operations defined on such values. Subtyping is
used to relate values in different types.

In [12,47,49] algebraic type specifications as in [21,23] have been used to allow
open type systems. For the sake of simplicity we deviate here from this approach
and follow the more classical view of [14,15,45] using a type system that consists of
some basic types such as BOOL, NATURAL, INTEGER, STRING, etc., and
type constructors for records, finite sets, bags, lists, etc. and a subtyping relation.
Moreover, assume the existence of recursive types, i.e. types defined by (a system
of) domain equations. In principle we could use one of the type systems defined in
[4,5,14,15,19,24,38]. In addition we suppose the existence of an abstract identifier
type ID in T without any non-trivial supertype. Arbitrary types can then be
defined by nesting. A type T without occurrence of ID will be called a value-type.
We shall proceed giving a more formal definition of types.

Definition 1 1. A base type is either BOOL, NAT, INT, FLOAT,
STRING, ID or L.

2. Let a{ e Np and a, f), a,- € Np (i = 1 ,...,n). A type constructor is either
(ai : <*i , . . . , a„ : a n) (record), {a} (finite set), [a] (list), (a) (bag) or a U ft
(union).

S. A type t is either a base type, a type constructor, a generalized constructor
that results from replacing some parameters in a type constructor by types or
a recursive type defined by an equation t = {a/i}.^, where t' is a generalized
constructor and one of its parameters a is replaced by t G Nx-
In the latter two cases the remaining parameters of the type constructor
together with the parameters of the replacing types yield the parameters
ai,..., an oft.

4- A type t is called proper iff the number of its parameters is 0. t is called a
value type iff there is no occurrence of ID in t.

5. A type form consists of a type name t 6= NT and a type t' with possibly some
of its parameters replaced by type names.

6. A type specification T is a finite collection of type forms t 1 (. . . , t„ such that
the only type names occurring herein are the names of t\,... ,tn.

The semantics of such types as sets of values is defined as usual. Moreover, we
assume the standard operators on base types and on records, sets, bags, . . . We
omit the details here.

58 K.-D. Schewe, B. Thalheim

If t' is a proper type occurring in a type i, then there exists a corresponding
occurrence relation

o : t X t' -> BOOL .

Finally, we introduce subtypes. For a more detailed introduction to types see either
[14] or [49].

Definit ion 2 1. A subtype relation < on types is given by the following rules:

(a) Every type t is its own subtype and a subtype of _L.
(b) NAT < INT < FLOAT .
(c) (. ..,a,_i : ai-i.ai : a,-,a<+1 : ai+1,...) < (....a,-! : aj^.aj-n :

Q»'+i> • • •) whenever ctj < a'..

({ a } < W }
(d) { [a] < [P\ J iff a < ft.

I («) < W J
(e) { a } < (a) and [a] < (a).
(f) aJ<aU0.

2. A subtype function is a function t' —* t from a subtype to its supertype ft' < t)
defined by (a)-(f) above.

3.2 The Class Concept as a Structural Primitive
The class concept provides the grouping of objects having the same structure which
uniformly combines aspects of object values and references. Moreover, generic
operations on objects such as object creation, deletion and update of its values
and references are associated with classes provided these operations can be defined
unambigously. Objects can belong to different classes, which guarantees each object
of our abstract object model to be captured by the collection of possible classes. As
for values that are only defined via types, objects can only be defined via classes.

Each object in a class consists of an identifier, a collection of values and refer-
ences to objects in other classes. Identifiers can be represented using the unique
identifier type ID. Values and references can be combined into a representation
type, where each occurence of ID denotes references to some other classes. There-
fore, we may define the structure of a class using parameterized types.

Definit ion 3 1. Let t be a value type with parameters ai,..., an. For distinct
reference names ri,...,rn £ Nr and class names C\,..., Cn G Nq the ex-
pression derived from t by replacing each aj in t by r,- : C{ for i = 1 , . . . , n is
called a structure expression.

2. A structural class consists of a class name C £ Nc, a structure expression
S and a set of class names Di,... ,Dm € Nq (in the following called the set
of superclasses^. We call r,- the reference named r̂ from class C to class C{.
The type derived from S by replacing each reference ri : C{ by the type ID
is called the representation type Tc of the class C, the type Uc = (ident :
ID, value :: Tc) is called the class type of C.

S. A (structural) schema S is a finite collection of structural classes C\,... ,Cn
closed under references and superclasses.

Fundamenta] Concepts of Object Oriented Databases 59

4- An instance P of a structural schema S assigns to each class C a value P(C)
of type Uc such that the following conditions are satisfied:

uniqueness o f identifiers: For every class C we have

Vi' :: ID.Vv,w :: r c . (t >) 6 P{C) A (i,w) e P(C) = • « = »». (4)

inclusion integrity: For a subclass C of C' we have

Vi :: ID.i 6 dom(P(C)) => i e dom(P{C')) . (5)

Moreover, if Tc is a subtype ofT'c with subtype function f : Tc T'c,
then we have

Vi :: ID.Vv :: Tc. (t,«) e P(C) =» (i, /(«)) € P(C') . (6)

referential integrity: For each reference from C to C' with corresponding
occurrence relation or we have

Vi,j :: ID.Vv :: Tc. (»,») S P{C) A or{v,j) => 3 E d o m { P (C ')) . (7)

3.3 User Defined Integrity Constraints
Let us now extend the notion of schema by the introduction of explicit user-defined
integrity constraints. First we define the notion of constraint schema in general,
then we restrict ourselves to distinguished classes of constraints that arise as gener-
alizations of constraints known from the relational model, e.g. functional and key
constraints, inclusion and exclusion constraints [48,52].
Definition 4 Let S = , . . . , C „ } be a structural schema.

1. An integrity constraint on S is a formula J over the underlying type system
with free variables fr(I) C {xcl,..., xcn}, where each %c{ is a variable of
type {Uc\ }. We call xc, the class variable of C,-.

2. A constrained schema consists of a structural schema S and a finite set of
integrity constraints on S.

3. An instance of a constrained schema is an instance of the underlying structural
schema. An instance P is said to be consistent with respect to the integrity
constraint I iff substituting P(C) for each class variable xc in I evaluates to
true, when interpreted in the usual way.

Note that the conditions for an instance in Definition 4 correspond to model inher-
ent integrity constraints. We refer to these constraints as implicit identifier, IsA
and referential constraints on the schema S. Let us now define some distinguished
classes of user-defined constraints.

Definition 5 Let C, C1,C ,2 be classes in a schema S and let c* : TQ —* T{ (i —
1,2,3^ and Ci : Tc- —• T (i = 1 ,2) be subtype functions.

1. A functional constraint on C is a constraint of the form

:: ID.Vv,v'::
Tc.c1{v) = c1{v') A {i,v)exc A {i',v') exc => c2{v) =c2(v').(8)

60 K.-D. Schewe, B. Thalheim

2. A uniqueness constraint on C is a constraint of the form

Vi',t' :: ID.Wv,v' ::
Tc. C1^) = C V) A (» » E xc A (T',T/) E I C = > I = »•'. (9)

A uniqueness constraint on C is called trivial iff Tc = Ti and c1 = id hold.

S. An inclusion constraint on Cj and C 2 13 a constraint of the form

Vi :: T. 3t'i :: ID, uj :: Tcx. (»i, « i) S i c , A ci(i>x) = t =•
3»2 :: ID, v2 :: T C j . (i2 j t>2) e xCt A c2(t>2) = t . (10)

4- An exclusion constraint on C\, C2 is a constraint of the form

Vi'i,i'2 :: ID.Vvi :: Tc1 .^v2 ::

Tc,-(»i, f i) 6 xCl A (t'2l v2) e xc, => cifwx) ^ c2(v2) . (11)

3.4 Methods as a Basis for Behaviour Modelling
So far, only static aspects have been considered. A structural schema is simply a
collection of data structures called classes. Let us now turn to adding dynamics
to this picture. As required in the object oriented approach operations will be
associated with classes. This gives us the notion of a method.

We shall distinguish between visible and hidden methods to emphasize those
methods that can be invoked by the user and others. This is not intended to define
an interface of a class, since for the moment all methods of a class including the
hidden ones can be accessed by other methods. The justification for such a weak
hiding concept is due to two reasons.

• Visible methods serve as a means to specify (nested) transactions. In order
to build sequences of database instances we only regard these transactions
assuming a linear invocation order on them.

• Hidden methods can be used to handle identifiers. Since these identifiers do
not have any meaning for the user, they must not occur within the input or
output of a transaction.

Definit ion 6 Let S be a structural schema.
Let Ti,..., Tn, T[,..., T'm be types, M € NM and t.\,...,

1. A method signature consists of a method name M, a set of input-parameter
/ input-type pairs tj :: Ti and a set of output-parameter / output-type pairs
Oj :: TV. We write

oi •.•.T[,...,om:-.rm <- M{ti::T1,...,in'::Tn) .

2. Let C be some structural class in S. A method M on C consists of a method
signature with name M and a body that is recursively built from the following
constructs:

(a) assignment x := E, where x is either the class variable xc or a local
variable wit,iin S, and E is a term of the same type as x,

Fundamenta.] Concepts of Object Oriented Databases 61

(bj 3kip, fail, loop,
(c) sequential composition Si] choice Si • projection x :: T | S, guard

P —• S, restricted choice SiftS?, where P is a well-formed formula and
x is a variable of type T, and

(d) instantiation x\,..., x'- «- C' : S'(E'1}..., E'-), where S' is a method
on class C' with input-parameters i'lt..., iy and output-parameters
o\,..., o'i, such that the variables o'j, x'j have the same type and the
term E'g has the same type as the variable i'g.

8. A method M on a class C with signature oi :: T[,..., om :: T^ *— M(ti ::
Ti,...,Ln :: Tn) is called value-defined iff all T< (t = 1 ...n) and T} (j =
1 , m) are proper value types.

As already mentioned the OODM distinguishes between transactions, i.e. methods
visible to the user, and hidden methods. We require each transaction to be value-
defined.

Subclasses inherit the methods of their superclasses, but overriding is allowed
as long as the new method is a specialization of all its corresponding methods in
its superclasses. Overriding becomes mandatory in the case of multiple inheritance
with name conflicts. A method that overrides a hidden method on some superclass
must also be hidden.

Definition 7 Let S be a structural schema and C £ S be a structural class
as in Definition S with superclasses Di,..., Dk- A method specification on C
consists of two sets of methods S — {Mi,...,Mn} (called transactions^ and
U — {M[,..., M^} (called hidden methods^ such that the following properties
hold:

1. Each Mi (i = 1 ,...,n) is value-defined.

2. For each transaction Ml on some superclass Di there exists some i E
{1,..., n} such that Mi specializes M1.

3. For each hidden method Ml on some superclass Di there exists some j 6
{1,..., m) such that Mj specializes Ml.

Let us briefly discuss what specialization means for the input- and output-types.
Sometimes it is required that the input-type for an overriding method should be a
subtype of the original one (covariance rule), sometimes the opposite (contravari-
ance rule) is required. The first rule applies e.g. if we want to override an insert
method. In this case the inherited method has no effect on the subclass, but sim-
ply calls the "old" method. The second rule applies if input-types required on the
superclass can be omitted on the subclass. Both rules are captured by the for-
mal notion of specialization. We omit the details [44]. Now we are prepared- to
generalize the definition of classes and schemata.

Definition 8 1. A class consists of a class name C G Nc, a structure expression
S, a set of class names Di,... ,Dm G Nc (called the set of superclasses^ and
a method specification (S = {Mi,..., Mh) , M {M'u ..., M„,}) on C.

62 K.-D. Schewe, B. Thalheim

2. A (behavioural) schema S is a finite collection of classes {Ci,... ,C„ closed
under references, superclasses and method call together with a collection of
integrity constraints Ii,...,In on $.

S. An instance P of a behavioural schema S is an instance of the underlying
structural schema. A database history on S is a sequence Po,Pi,... of in-
stances such that each transition from P,_i to Pi is due to some transaction
on some class C €E S.

Note the relation between database histories used here and the work on the seman-
tics of object bases in [22,28].

3.5 Queries and Views
Roughly speaking the querying of a database is an operation on the database with-
out changing its state. The emphasis of a query is on the output. While such
a general view of queries can be subsumed by transactions, hence by methods in
the OODM, query languages are in particular intended to be declarative in or-
der to support an ad-hoc querying of a database without the need to write new
transactions [8].

Querying a relational database can be expressed by terms in relational algebra.
This view can be easily generalized to the OODM using its type system. Therefore,
terms over such types occur naturally. Moreover, type specifications are based on
other type specifications via constructors, selectors and functions. Hence, T allows
arbitrary terms involving more than one class variable xc to be built. Then a query
turns out be be represented by term t over some type T such that the free variables
of t are all class variables. This approach is in accordance with the algebraic
approach in [12] and with so called universal traversal combinators [25].

In relational algebra a view may be regarded simply as a stored query (or derived
relation). We shall try to generalize also this view to the OODM.

However, things change dramatically, when object identifiers come into play
[13], since now we have to distinguish between queries that result in values and
those that result in (collections of) objects. Therefore we distinguish in the OODM
between value queries and general access expressions.

A value query on a schema S can then be represented by a term t of some value
type T with fr(t) C (x c | C & 5 } . Ad-hoc querying of a database should then
be restricted to value queries. This is no loss of generality, because for any type
T in T involving identifiers there exists a corresponding type T' allowing multiple
occurrences. Take e.g. a class C. If we want to get all the objects in that class no
matter whether they have the same values or not, the corresponding term would
be xc- This is not a value query, but if Tc is a value type, we may take T' = (Tc)
and the natural projection given by the subtype functions

{(ident: ID, value : a) } ((ident: ID, Value : a)) —» (a) .

In the case of arbitrary access expressions another problem, occurs [13]. So far,
we can only build terms t that involve identifiers already existing in tne database.
Thus, such queries are called object preserving. If we want the result of a query to
represent "new" objects, i.e. if we want to have object generating queries, we have
to apply a mechanism to create new object identifiers. This can be achieved by
object creating functions on the type ID with arity ID X . . . X ID —» ID [32,35].

The idea that a view is a stored query then carries over easily. However, the
structure of a view should be compatible with the structure of the schema, i.e. each
view may be regarded as a derived class. Summarizing, we get the following formal
definition.

Fundamenta.] Concepts of Object Oriented Databases 63

Definition 9 Let S = {Cy,...,Cn} be some schema.

1. A value query on S is a term t over some proper value type T with fr(t) C

&. An access expression on S is a term t over some proper type T with fr(t) C
{xCl,- •• ,xcJ.

S. A view on $ consists of a view name v 6 NQ such that there is no class
C <E S with this name, a structure expression S(v) containing references to
classes in S or to views on S and a defining access expression t(v) of type
{Uv}, where T„ is the representation type corresponding to S(v).

4- A (complete) schema is a behavioural schema together with a finite set of
views. An instance of a complete schema is an instance of the underlying
structural schema such that for every view v replacing each class variable
IQ in the access expressions of v yields a value of type {[/„} satisfying the
uniqueness property for identifiers.

4 The Object Identification Problem
From an object oriented point of view a database may be considered as a huge
collection of objects of arbitrary complex structure. Hence the problem to uniquely
identify and retrieve objects in such collections.

Each object in a database is an abstraction of a real world object that has a
unique identity. The representation of such objects in the OODM uses an abstract
identifier I of type I D to encode this identity. Such an identifier may be considered
as being immutable. However, from a systems oriented view permutations or col-
lapses of identifiers without changing anything else should not affect the behaviour
of the database.

For the user the abstract identifier of an object has no meaning. Therefore,
a different access to the 'identification problem is required. We show that the
unique identification of an object in a class leads to the notion of (weak) value-
identifiability, where weak value-representability can be used to capture also objects
that do not exists for there own, but depend on other objects. This is related
to weak entities in entity-relationship models [62]. The stronger notion of value-
representability is required for the unique definition of generic update operations.

4.1 The Notion of Value- Represent ability
According to our definitions two objects in a class C are identical iff they have the
same identifier. By the use of constraints, especially uniqueness constraints, we
could restrict this notion of equality.

Let us address the characterization of those classes, the objects in which are
completely representable by values, i.e. we could drop the object identifiers and
replace references by values of the referred object.. We shall see in Section 5 that
in case of value-representable classes we are able to preserve an important advan-
tage of relational databases, i.e. the existence of structurally-determined update
operations.

64 K.-D. Schewe, B. Thalheim

Definition 10 Let C be a class in a schema S with representation type Tc-

1. C is called value-identifiable iff there exists a proper value type Ic such that for
all instances D of S there is a function c : Tc —* Ic such that the uniqueness
constraint on C defined by c holds for D.

2. C is called value-representable iff there exists a proper value type Vc such
that for all instances D of S there is a function c : Tc —• Vc such that for P

(a) the uniqueness constraint on C defined by c holds and
(b) for each uniqueness constraint on C defined by some function c' : Tc —»

VQ with proper value type VQ there exists a function c" : VC —> VQ that
is unique on c[codom(D(C))) with c' = c" o c.

It is easy to see that each value-representable class C is also value-identifiable.
Moreover, the value-representation type Vc in Definition 10 is unique up to isomor-
phism.

4.2 Value-Representability in the Case of Acyclic Reference
Graphs

Since value-representability is defined by the existence of a certain proper value
type, it is hard to decide, whether an arbitrary class is value-representable or not.
In case of simple classes the problem is easier, since we only have to deal with
uniqueness and value constraints. In this case it is helpful to analyse the reference
structure of the class. Hence the following graph-theoretic definitions.

Definition 11 The reference graph of a class C in a schema S is the smallest
labelled graph Grep = (V, E, I) satisfying:

1. There exists a vertex tic £ V with l(vc) = {t,C}, where t is the top-level type
in the structure expression S of C.

2. For each proper occurrence of a type t / ID in Tc there exists a unique vertex
vt € V with l{vt) = {i}.

S. For each reference ri : C,- in the structure expression S of C the reference
graph G*rej is a subgraph of Gref.

4• For each vertex vt or t>c corresponding to t(xi,..., x n) in S there exist unique
edges froth vt or vc respectively to vti in case x» is the type t,- or to vc,
in case Xi is the reference r^ : C{. In the first case = {SA, where Si is
the corresponding selector name; in the latter case the label is {Sj,r,}.

Definition 12 1. Let S — {Clt...,Cn} be a schema. Let S' = {C[,... ,C'n}
be another schema such that for all i there exists a uniqueness constraint on
Ci defined by some Ci : Tci —* Tc1.. Then an identification graph Ga of the
class Ci is obtained from the reference graph of C{ by changing each label C'}-
to C,-.

2. The identification graph Gid resulting from the use of trivial uniqueness con-
straints is called the standard identification graph.

Fundamenta.] Concepts of Object Oriented Databases 65

Clearly, there need not exist any identification graph nor does the existence of
one identification graph imply the existence of the standard one. However, if the
standard identification graph exist, then it is equal to the reference graph.

Proposition 13 Let C be a class in a schema S with acyclic reference graph Gref
such that there exist uniqueness constraints for C and each Ci such that Ci occurs
as a label in GTej. Then C is value-representable.

Proof . We use induction on the maximum length of a path in Grej. If there are
no references in the structure expression S of C the type Tc is a proper value type.
Since there exists a uniqueness constraint on C, the identity function id on Tc
also defines a uniqueness constraint. Hence Vc = Tc satisfies the requirements of
Definition 10.

If there are references u : Ci in the structure expression S of C, then the
induction hypothesis holds for each such C<, because GTef is acyclic. Let Vc result
from S by replacing each r,- : Ci by Vc i • Then Vc satisfies the requirements of
Definition 10. •

Corollary 14 Let C be a class in a schema S such that there exist an acyclic
identification graph Gid and uniqueness constraints for C and each Ci occuring as
a label in Gid• Then C is value-identifiable.

4.3 Computation of Value Representation Types
We want to address the more general case where cyclic references may occur in
the schema S = { C i , . . . , C„ } . In this case a simple induction argument as in
the proof of Proposition 13 is not applicable. So we take another approach. We
define algorithms to compute types Vc and I c that turn out to be proper value
types under certain conditions. In the next subsection we then show that these
types are the value representation type and the value identification type required
by Definition 10.

Algor i thm 15 Let F(Ci) = T; provided there exists a uniqueness constraint on Ci
defined by c; : Tc, —* Ti, otherwise let F(Ci) be undefined. If ID occurs in some
F{Ci) corresponding to ry : Cy (j i), we write IDj.

Then iterate as long as possible using the following rules:

1. If F(Cj) is a proper value type and IDj occurs in some F(Ci) (j ^ i), then
replace this corresponding IDj in F(Ci) by F(Cj).

2. If IDi occurs in some F(Ci), then let F(Ci) be recursively defined by
F[Ci) == Si, where 5,- is the result of replacing IDi in F(Ci) by the type
name F(Ci).

This iteration terminates, since there exists only a finite collection of classes. If
these rules are no longer applicable, replace each, remaining occurrence of IDj in
F(Ci) by the type name F(Cj) provided F(Cj) is defined. •

Note that the the algorithm computes (mutually) recursive types. Now we give a
sufficient condition for the result of Algorithm 15 to be a proper value type.

Lemma 16 Let C be a class in a schema S such that there exists a uniqueness
constraint for all classes Ci occurring as a label in some identification graph Gid °f
C. Let Ic be the type F(C) computed by Algorithm 15 with respect to the uniqueness
constraints used in the definition of Gid• Then Ic is a proper value type.

66 K.-D. Schewe, B. Thalheim

Proo f . Suppose Ic were not a proper value type. Then there exists at least
one occurrence of ID in Ic- This corresponds to a class C,- without uniqueness
constraint occurring as a label in G,<j, hence contradicts the assumption of the
lemma. •

4.4 The Finiteness Property
Let us now address the general case. The basic idea is that there is always only
a finite number of objects in a database. Assuming the database being consistent
with respect to inclusion and referential constraints yields that there can not exist
infinite cyclic references. This will be expressed by the finiteness property. We
show that this property allows the computation of value representation types.

Definition 17 Let C be a class in a schema S and let denote a path in GTej
from vck to i>c, provided there is a reference ri : Ci in the structure expression of
Cfc. Then a cycle in Grej is a sequence go,i•'' 9n-i,n with Cq = Cn and Cf. ^ C/
otherwise.

Note that we use paths instead of edges, because the edges in G r e / do not always
correspond to references. According to our definition of a class there exists a
referential constraint on Cfc, Ct defined by Ok,i : Tck X ID —> BOOL corresponding
to pfc j. Therefore, to each cycle there exists a corresponding sequence of functions
oo,i ' ' -On-i.n- This can be used as follows to define a function eye : ID X ID —•
BOOL corresponding to a cycle in Gref.

Definition 18 Let C be a class in a schema S and let <70,i ' " 9n-i,n be a cycle
in Grej. The corresponding cycle relation eye : ID x ID —+ BOOL is defined by
cyc{itj) = true iff there exists a sequence i = t 'o ,t i , . . . , i n = j (n ^ 0) such that
(ii,vi)€Ci and 0/^+1(11+1, vi) = true for all I = 0 , . . . , n — 1.

Given a cycle relation eye, let cycm the m-th power of eye.

Lemma 19 Let C be a class in a schema S. Then C satisfies the finiteness
property, i.e. for each instance V of S and for each cycle in Grej the corresponding
cycle relation eye satisfies

Vi S dom(C). 3n. Vj € dom[C).3m < n. (cycn(i,j) = true =>• cycm(i,j) = true) .

Proo f . Suppose the finiteness property were not satisfied. Then there exist an
instance D, a cycle relation eye and an object identifier »o such that

Vn. 3j & dom(C).Vm < n. (cycn(i0,j) = true A cycm(i0,j) — false)

holds. Let such a j corresponding to n > 0 be tn . Then the elements to, »1, *2> • • • are
pairwise distinct. Hence there would be infinitely many objects in P contradicting
the finiteness of a database. •

Lemma 20 Let P be an instance of schema S = {Cy,... ,Cn}. Then P satisfies
at each stage of Algorithm 15 uniqueness constraints for all i = 1,..., n defined by
some ¿¡-.TatF(Ci).

Fundamenta.] Concepts of Object Oriented Databases 67

Proo f . It is sufficient to show that whenever a rule is applied replacing F(Ci) by
F(Ci)', then F[Ci)' also defines a uniqueness constraint on G,-.

Suppose that (z, u) e G, holds in P. Since it is possible to apply a rule to F(Ci),
there exists at least one value j :: ID occurring in c,-(u). Replacing ID, in F(Ci)
corresponds to replacing j by some value t)y :: F(C}). Because of the finiteness
property such a value must exist. Moreover, due to the uniqueness constraint
defined by cy the function / : F(Ci) —• F(Ci)' representing this replacement must
be injective on Ci(codo(P(Ci))). Hence, cj- = / o c< defines a uniqueness constraint
on G,-. •
Now assume that we use only trivial uniqueness constraints in Algorithm 15. In
order to distinguish this situation from the general case we write G(C,) instead of
F(C{) to refer to this special case.

L e m m a 21 Let P be an instance of schema S = {Ci,... ,Cn). Then at each stage
of Algorithm 15 (applied with arbitrary uniqueness constraints and in parallel with
trivial ones) there exists for all i = l , . . . , n a function Ci : G(Ci) —+ F(C{) that is
unique on Ci(codom(P[Ci))) with c(- = c,- o c,-.

P r o o f . As in the proof of Lemma 20 it is sufficient to show that the required
property is preserved by the application of a rule from any of the two versions of
Algorithm 15. Therefore, let c,- satisfy the required property and let g : G(C,) —>
G(G,)' and / : F(Ci) —• F[Ci)' be functions corresponding to the application of
a rule to G[Ci) and F(C{) respectively. Such functions were constructed in the
proofs of Lemma 20 and Lemma 20 respectively.

Then f o c{ satisfies the required property with respect to the application of
/ . In the case of applying g we know that g is injective on Ci(codom(P(Ci))). Let
h : G(G,)' G(G,) be any continuation of g~l : g[ci(codom(P(Ci)))) — G(G,).
Then c,- o h satisfies the required property. •

Theorem 22 Let C be a class in a schema S such that there exists a uniqueness
constraint for all classes Ci occurring as a label in the reference graph Grej of
C. Let Vc be the type G(C) computed by Algorithm 15 with respect to trivial
uniqueness constraints and let Ic be the type F(C) computed by Algorithm 15 with
respect to arbitrary uniqueness constraints. Then G is value-representable with value
representation type VQ and each such IQ is a value identification type.

Proo f . Vc is a proper value type by Lemma 16. From Lemma 20 it follows that
if P. is an instance of S, then there exists a function c : Tc —* Vc such that the
uniqueness constraint defined by c holds for P. The same applies to Ic-

If Vc is another proper value type and P satisfies a uniqueness constraint defined
by c' : Tc VQ, then V'c is some value-identification type Ic- Hence by Lemma
21 there exists a function c" : Vc —» V'c that is unique on c[codom(P(C))) with
c' = c" o c. This proves the Theorem. •

Corol lary 23 Let S be a schema such that all classes C in S are value-identifiable.
Then all classes C in S are also value-representable.

•

4.5 Weak Value-Representability
Let us now ask whether there exist also weaker identification mechanisms other than
value-represent ability. In several papers, e.g. [42] a navigational approach on the

68 K.-D. Schewe, B. Thalheim

basis of the reference structure has been favoured. This leads to dependent classes
similar to "weak entities" -in the entity-relationship model_[62]. We shall.show that
such an approach requires at least a value-identifiable "entrance" of some path and
the hard restriction on references to be representable by surjective functions.

Definition 24 Let S be some schema.

1. If r is a reference from class C to D in S and o : Tc x ID —• BOOL is the
function of Definition 4 expressing the corresponding referential constraint,
then r satisfies the (SF)-condition iff

(a) o(v,i) A o(v,j) => i = j and
(b) j € dom(xD) =$> 3t> :: Tc-v G codom(xc) Ao(v,j)

hold for all i, j :: ID, v::Tc.

2. An (SF)-chain from class D to C in S is a sequence of classes D =
C o , . . . , Cn = C such that for all i (t = 1 , . . . , n) either Cj is a subclass of Ci-i
or there exists a reference r,- from C,_i to C,- satisfying the (SF)-condition.

3. A class C in S is called weakly value-identifiable iff there exists a value-
identifiable class D and an (SF)-chain from D to C.

The notation (SF)-condition has been chosen to emphasize that such a reference
represents a surjective function. It is easy to see taking n = 0 that each value-
identifiable class is also weakly value-identifiable.

Lemma 25 If C is a weakly value-identifiable class in a schema S, then there
exists a proper value type IQ such that for each instance D of S there exists a
function c : ID —• Ic such that c is infective on dom(D(C)).

Call Ic a weak value-identification type of the class C.

Proo f . Let D = Cq, ... ,Cn = C be an (SF)-chain from the value-identifiable
class D to C with corresponding references r,- (i = 1, . . . , n) . If r̂ satisfies the
fSF)-condition, there exists a function Ci : ID —• ID such that j G <iom(P(Ct)) =>
(c, (y),ti) G xci_! for some v with Oi(v,j) (just take some inverse image of j under
the surjective reference function). Since r,- defines a function, c,- is clearly injective.
If Ci is a subclass of Cj_i , then take Cj = id.

If c' : ID —• ID is the function defined by the uniqueness constraint on D and
c" -. ID — ID is the concatenation C io . . . o c n , then c — c ' o c " satisfies the required
property. •

Definition 26 A class C in a schema S is called weakly value-representable iff
there exists a proper value type Vc such that for each instance D of S the following
properties hold.

1. There is a function c : ID —* Vc that is infective on dom(P(C)).

2. For each proper value type V'c and each function c' : ID —> V'c that is injec-
tive on dom(D(C)) there exists a function c" : Vc —* V'G that is unique on
c(dom(D{C))) with c' = c" o c.

We call Vc the weak v ilue-representation type of the class C.

Fundamenta.] Concepts of Object Oriented Databases 69

Note that the weak value-representation type is unique provided it exists. Again it
is easy to see that value-representability implies weak value-representability. More-
over, due to Lemma 25 each weakly value-representable class is also weakly value-
identifiable. We shall see that also the converse of this fact is true.

We want to compute weak value representation types. This can be done using a
slight modification of Algorithm 15 that completely ignores uniqueness constraints.
We refer to this algorithm as the blind version of Algorithm 15 and to emphasize
this, we write H(CA instead of F(Ci). Analogous to Lemmata 16 and 20 the
following results holds.

Lemma 27 Let C be a class in a schema S and let IQ be the type H(C) computed
by the blind version of Algorithm 15. Then Ic is a proper value type.

Lemma 28 Let P be an instance of the schema S = { C i , . . . , Cn}. Let C, D be
classes such that C is weakly value-identifiable, D is value-identifiable and there
exists some (SF)-chain from D to C. Let c : ID —* Ic be the function of Lemma
25 corresponding to this chain. Let c' : ID —• H(D) be a function corresponding
to the uniqueness constraint on D and the instance P. Then at each stage of the
blind version of Algorithm 15 there exists a function c : H(D) —• Ic that is unique
on c'(domp(C)) with c = c o c'.

Based on these two lemmata we can now state the main result on weak value
representability.

Theorem 29 Let C be a weakly value-identifiable class in a schema S andlet Vc
be the product of all types H(D), where D is the leading value-identifiable class in
some maximal (SF)-chain corresponding to C and H(D) is the result of the blind
version of Algorithm 15. Then C is weakly value-representable with weak value-
representation type Vc.

Proo f . Vc is a proper value type by Lemma 27. From Lemmata 20 and 25 it
follows that there exists a function c' : ID —• Vc that is injective on domp(C).

From Lemma 28 it follows that there exists a function c : Vc —• Ic that is
unique on c'(dom(P(C))) with c = c o c'. This proves the Theorem. •

5 The Genericity Problem
The preservation of advantages of relational databases requires generic operations
for querying and for the insertion, deletion and update of single objects. While
querying [1,12,30,55] is per se a set-oriented operation, i.e. it is not necessary to
select just one single object, and hence does not raise any specific problems with
object identifiers, things change completely in case of updates. If an object with
a given value is to be updated (or deleted), this is only defined unambigously, if
there does not" exist another object with the same value. If more than one object
exists with the same value or more generally with the same value and the same
references to other objects, then the user has to decide, whether an update- or
delete-operation is applied to all these objects, to only one of these objects selected
non-deterministically or to none of them, i.e. to reject the operation. However, it
is not possible to specify a priori such an operation that works in the same way
for all objects in all situations. The same applies to insert-operations. Hence the
problem, in which cases operations for the insertion, deletion and update of objects
can be defined generically.

70 K.-D. Schewe, B. Thalheim

Some authors [43] have chosen the solution to abandon generic operations. Oth-
ers [6,7,9] use "identifying values to represent object identity, thus embody a strict
concept of surrogate keys to avoid the problem. Our approach is different from-both
solutions in that we use the concept of hidden abstract identifiers, but at the same
time formally characterize those classes for which unique generic methods for the
insertion, deletion and update of single objects exist. At the same time inclusion
and referential integrity have to be enforced. We show that these classes are the
value-representable ones.

5.1 Generic Update Methods
The requirement that object-identifiers have to be hidden from the user imposes
the restriction on canonical update operations to be value-defined in the sense that
the identifier of a new object has to be chosen by the system whereas all input- and
output-data have to be values of proper value types.

We now formally define what we mean by generic update methods. For this
purpose regard an instance P of a schema S as a set of objects. For each recursively
defined type T let T denote by replacing each occurrence of a recursive type T ' in
T by UNION(T', ID).

Definition 30 Let C be a class in a schema S. Generic update methods on C are
insertc, deletec and updatec satisfying the following properties:

1. Their input types are proper value types; their output type is the trivial type
1.

2. In the case of insert applied to an instance P there exists some o :: Uc such
that

(a) the result is an instance P' with o <E P' and P C P' hold and

(b) if P is any instance with P C P and o 6 P, then P' C P.

3. In the case of delete applied to an instance P there exists some o :: UQ such
that

(a) the result is an instance P' with o £ P' and P' C P hold and

(b) if P is any instance with P C P and o P, then P C P'.

4- In the case of update applied to an instance P = Pi LI P2, where P2 — {o}
if o £ of and P2 — 0 otherwise there exist o,o' :: Uc with o = (t, v) and
o' = (i,v') such that

(a) the result is on instance P' = Pi U P2 with P2C\ P2 = 0,
(b) oeP.o' S P',

(c) if D is any instance with Pi C P and o' £ P, then P' C P.

Canonical update methods on C are insert'c, delete'c and update'c defined anal-
ogously with the only difference of their output type being ID and their input-type
being T for some value-type T.

Fundamenta.] Concepts of Object Oriented Databases 71

Note that this definition of genericity includes the consistency with respect to the
implicit constraints on S. We show that value-representability is necessary and
sufficient for the existence and uniqueness of such operations.

Lemma 31 Let C be a class in a schema S such that there exist canonical update
methods on C. Then also generic update methods exist on C.

Proo f . In the case of inserí define insertc^V :: Vg) == I <— insert'c(V), i.e. call
the corresponding canonical operation and ignore its output. The same argument
applies to delete and update. •

T h e o r e m 32 Let C be a class in a schema S such that there exist generic update
methods on C. Then C is value-representable. Moreover, all super- and subclasses
of C are also value-representable.

Proo f . First consider the delete method with input type Ic which is by definition
a proper value type. We show that it is already a value identification type.

If not, then for all instances P and all functions c : Tc —* Ic there exist i, j :: ID
and v, w :: Tc with

i ± jA (i >) 6 P(C) A (; » S P(C) Ac(u) = c(ty) . (12)

Now take o = [i,v) and o' = (j ,w) . Then there exist two distinct instances
9' and P" satisfying the conditions of Definition 30(iii) with respect to o and o'
respectively, hence contradict the assumption of a unique generic delete-method on
C.

The same argument applies to the input-type Vc- Moreover, since insertion
requires all values of referenced object to be provided, we derive from Algorithm
15 and Theorem 22 that Vc is a value representation type. Therefore, C is value-
representable.

The value-representability on superclasses is implied, since insert (and update)
on C involve the corresponding method on each superclass. The value-
representability of subclasses follows from the propagation of update through them.
We omit the technical details. •

5.2 Generic Updates in the Case of Value-Representability
Our next goal is to reduce the existence problem of canonical update operations to
schemata without IsA relations.

Lemma 33 Let C, D be value-representable classes in a schema S such that C is
a subclass of D with subtype function g : Tc —> Tp. Then there exists a function
h : Vc —• Vx? such that for each instance D of S with corresponding functions
c :Tc Vc and d : Tp VD we have /i(c(v)) = cf(sr(t;)) for all v € codom(P(C)).

Proo f . By Definition 10 c is injective on codom(P(C)), hence any continuation h
of d o g o c - 1 satisfies the required property.

It remains to show that h does not depend on P. Suppose Pi, P2 are two
instances such that to = ci(t>i) = c2(v2) € Vc, where c\,d\,hi correspond to P\
and C2, d2, h.2 correspond to P2. Then there exists a permutation ir on I D such
that V2 = T(I>I). We may extend ir to a permutation on any type. Since I D has no
non-trivial supertype. g permutes with tt, hence g(v2) = 7r(p(t;i)). From Definition
10 it follows d2{g(v2)j = di(g(vi)), i.e. h2(w) = hi(w). •
In the following let 5o be a schema derived from a schema S by omitting all IsA
relations.

72 K.-D. Schewe, B. Thalheim

Lemma 34 Let C be a value-representable class in S such that all its superclasses
and subclasses Di ... Dn are also value-representable. Then canonical update oper-
ations exist on C in S iff they exist on C and all Di in So.

P r o o f . By Theorem 22 the value-representation type Vc is the result of Algorithm
15, hence Vc does not depend on the inclusion constraints of S. Then we have

I :: ID «- insert'c{V :: Vc) ==
I - insert'Dl (M^));insert'DJhn(V))-1 - insert°c(V)

where hi : Vc —* Vp. is the function of Lemma 33 and insertdenotes a canonical
insert on C in S0- ftence in this case the result for the insert follows by structural
induction on the IsA-hierarchy.

If the subtype function g required in Lemma 33 does not exist for some su-
perclass D then simply add VJJ to the input type. We omit the details for this
case.

The arguments for delete and update are analogous. The value-representability
of subclasses is required for the update case. •
Prom now on we use a global operation Newld that produces a fresh identifier
I :: ID. This can be represented as a method using projection.

Lemma 35 Let C be a value-representable class in SQ. Then there exist unique
quasi-canonical update operations on C.

P r o o f . Let r¿ : C{ (i = 1 . . . n) denote the references in the structure expression of
C. If V be a value of type VQ, then there' exist values V¿y :: Vci (i = 1.. . n, j =
1 . . . ki) occurring in V. Let V = { V ¿ y / | i = 1 . . . n,j = 1 . . . ki}.V denote the
value of type Tc that results from replacing each V,' j by some J,- y :: ID. Moreover,
for I:: ID let

v(n = ({V/J}-ViJ ^ y o c c u r s Vi,j
•'•> \ V i j else

Then the canonical insert operation can be defined as follows:
I:: ID <— insert'dV :: Vc) ==

3 T-.-.ID, V' :: Tc..{Pair{I',V') eC A c{V') = V) —/:=/'

B 3V' :: TC.V = V — I *— Newld-, xc := xc U { (/ , V) }
B I«— Newld ; Jhl — insert'Ci);...; J„,fc„ ^ insert'Cn () ;

xc~xcU {(I,V)}
It remains to show that this operation is indeed canonical. Apply the method to
some instance P. If there already exists some o = (I',V') in C with c(V') — V,
the result is P' = P and the requirements of Definition 30 are trivially satisfied.
Otherwise let o = (I, V). If P is an instance with P C P and o & P, we have J{¿ e
dom(Ci) for all i = 1... n, j = I. ..ki, since P satisfies the referential constraints.
Hence P contains the distinguished objects corresponding to the involved quasi-
canonical operations insert'c_. By induction on the length of call-sequences Pij C P

for all t = 1 n, j = 1 ...ki, where Pit]- is the result of J,-y «— insert'Ci(V¿ '.
Hence P' — (J PÍJ U {o } C P. The uniqueness follows from the uniqueness of Vc-

The definitions and proofs for delete and update are analogous. •

Fundamenta.] Concepts of Object Oriented Databases 73

Theorem 36 Let C be a value-representable class in a schema S such that all its
super- and subclasses are also value-representable. Then there exist unique generic
update operations on C.

Proo f . By Lemma 31 and Lemma 34 it is sufficient to show the existence of
canonical update operations on C and all its super- and subclasses in the schema
So- This follows from Lemma 35. •
In ¡50] it has been shown, how linguistic reflection [56] can be exploited to generate
the generic update operations for value-representable classes in an OODM schema.

6 The Consistency Problem
In general a database may be considered as a triplet (S , 0 , C) , where S defines
a structure, 0 denotes a collection of state changing operations and C is a set
of constraints. Then the consistency problem is to guarantee that each specified
operation o € 0 will never violate any constraint I S C. Integrity enforcement
aims at the derivation of a new set 0' with | O' |=| O | of operations such that
(5, 0',C) satisfies this property.

Suppose we are given a database schema S and a static integrity constraint
I on that schema. Regard I as a logical formula defined on S. Consistency
requires that only those instances P of S are allowed that satisfy I. Call the set
of such instances sat(S, J). Each transaction is a database transformation. Such a
database transformation T takes an arbitrary instance P and possibly some input
values « ! , . . . , « „ and produces a new instance P' and possibly some output values
Uj,..., v'm. T is consistent with respect to I iff for each P €= sat(S, I) we also have
P' € sat{S, I).

Classically consistency is maintained at run-time by transaction monitors.
Whenever an inconsistent instance is produced the transaction that caused the
inconsistency will be rolled back. This "everything or nothing" approach has been
critized, since it causes enormous run-time overhead for consistency checking and
rollback. Moreover, it leaves the burden of writing consistent transactions to the
user. In principle the first problem vanishes, if verification techniques are used at
design time [44,57,58], whereas the second one still'remains.

As an alternative a lot of attention has been paid to integrity enforcement.
In most cases the envisioned solution is an active database [18,27,59,64,65], where
production rules are used to repair inconsistencies instead of rolling back. Although
this is sometimes coupled with design time (or even run-time) analysis of the rules
[18,27,33,63], the approach is not always successfull. Moreover, a satisfying theory
for rule triggering systems with respect to the integrity enforcement problem is still
missing. Therefore, we favour an operational approach [51,48,52,53], which aims at
replacing inconsistent database transactions by consistent specializations.

6.1 Greatest Consistent Specializations
In general non-deterministic partial state transitions S as used in our method lan-
guage can be described by a subset of P X where P denotes the set of possible
states and P± = P U {-L}, where _L is a special symbol used to indicate non-
termination. It can be shown [20,41,46,44] that this is equivalent to defining two
predicate transformers wp(S) and wlp(S) associated with 5 satisfying the pairing
condition wp(S)(Z) •<=> wlp[S)(R) Awp(S)(true) and the universal conjunctivity of
wlp(S),i.e.

u>lp(S)(Vi e I. Zi) o V» e I. wlp(S)(Zi) .

74 K.-D. Schewe, B. Thalheim

The predicate transformers assign to some postcondition R the weakest (liberal)
precondition of 5 to establish R. Clearly, pre- and postconditions are X-constraints.
Informally these conditions can be characterized as follows:

• wlp(S)(R) characterizes those initial states such that all terminating execu-
tions of S will reach a final state characterized by R provided 5 is defined in
that initial state, and

• wp(S)(R) characterizes those initial states such that all executions of S ter-
minate and will reach a final state characterized by R provided 5 is defined.

The use of these predicate transformers for the definition of language semantics is
usually called "axiomatic semantics". Based on this consistency and specialization
can be formally defined and used for the formal description of the consistency
problem. For this purpose we define "extended operations" and therefore need to
know for each operation S the set of classes S' such that S does neither read nor
change the class variables xc with C ^ 5 ' . In this case we call S a S'-operation.
We omit the formal definition [41,51].

Definition 37 Let S be a schema, I a constraint and S, T methods defined on
Si C S and £ S respectively with Si C

1. S is consistent with respect to I iff I => tvlp(S)(J) holds.

2. T specializes S iff wp(S)(true) => wp(T)(true) and wlp(S){R) =>
wlp(T)(R) hold for ail constraints R with free variables XQ such that C 6 Si
(denoted T C S).

Hence the following definition of a greatest consistent specialization:

Definition 38 Let S be a schema, I a constraint and S a method defined on
Si C S. A method Sj is a Greatest Consistent Specialization (GCS) of S with
respect to J iff

1. Sj Q S ,

2. Sj is consistent with respect to I and

S. for each method T satisfying properties (i) and (ii) (instead of Sj) we have
T Q Sj .

If only properties (i) and (ii) are satisfied, we simply talk of a consistent special-
ization.

Let us first state the main results from [48].

Theorem 39 Let S be a schema, I, J constraints and S a method defined on
SXCS.

1. There exists a greatest consistent specialization Sj of S with respect to I.
Moreover, Sj is uniquely determined (up to semantic equivalence) by S and

2. The GCSs (Sj)j and S^JAJ) coincide on initial states satisfying I A J.

Fundamenta.] Concepts of Object Oriented Databases 75

The proof of these results heavily uses predicate transformers and is therefore omit-
ted here.

In [51] it has been shown that a GCS—that is in general non-deterministic—
can be written as a finite choice of maximal quasi-deterministic specializations
(MQCSs), where quasi-determinism means determinism up to the selection of some
values. In most cases this value selection can be shifted to the input, but the se-
lection of object identifiers should be left to the system.

Next, we formally define quasi-determinism and then present the main result
from [51], an algorithm for the computation of MQCSs.

Definition 40 A method S is called quasi-deterministic iff there exist types
Ti,...,Tn such that S is semantically equivalent to

Vl ::2\ | ...y„::Tn | S' ,

where S' is a deterministic method.

Algorithm 41 In: An X-operation S and constraints Ii,...,In defined on exten-
sions Yi,..., Yn of X.

Let I be the list of the constraints. As long as t ^ nil proceed as follows:

1. Set S'j = S.

2. Choose and remove one constraint Ii from t.

S. Check whether S'j is Ii-reduced. If not, stop with no result, otherwise con-
tinue.

4- Make S'j B -free by replacing each occurring S1B.S2 by S1 Dwlp[Si)(f alse)

5. Replace each basic assignment in S'j by some fsubsumption-free) MQCS with
respect to

6. Compute P{Sj) as

P{Sl) = izi/xi,. •• ,zn/xn}.wlp({x1/zl!...
...,xn/zn}.^j)(-^wlp(S)(z1 ^ X l V... VZN ± *„)) ,

where the Xi are the class variables occurring in J or in S and the Zi are used
as a disjoint copy of these.

7. SetS - P{Sj) S'j.

Set S'j = S.

Out: An operation I S'j, where J3'j is a (subsumption-free) MQCS of the
original S with respect to the conjunction I of the constraints.

•
An extension of the GCS algorithm to compute all (subsumption-free) MQCSs is
easy.

It has been shown in [51] that Algorithm 41 is correct. However, it depends on
checking a very technical condition, J-reducedness. We omit this condition liere.

76 K.-D. Schewe, B. Thalheim

6.2 Enforcing Integrity in the O O D M
Since Algorithm 41 allows integrity enforcement to be reduced to the-case-of-as-
signments, we may restrict ourselves to the case of a single explicit constraint in
addition to the trivial uniqueness constraints that are required to assure value-
representability and that are used to construct generic update operations. In the
following we describe MQCSs with respect to the constraints introduced in Defini-
tion 5.

6.2.1 Inclusion Constraints.

Let I be an inclusion constraint on Ci, C2 defined via c,- : Tc, —• T (t = 1, 2). Then
each insertion into requires an additional insertion into C 2 whereas a deletion
on C2 requires a deletion on C\. Update on one of the Ci requires an additional
update on the other class.

Let us first concentrate on the insert-operation on Cj (for an insert on C2
there is nothing to do). Insertion into C\ requires an input-value of type Vc,," an
additional insert on C2 then requires an input-value of type Vc , . However, these
input-values are not independent, because the corresponding values of type Tcl
and Tc , must satisfy the general inclusion constraint. Therefore we first show that
the constraint can be "lifted" to a constraint on the value-representation types.
Note that this is similar to the handling of IsA-constraints in Lemma 33.

L e m m a 42 Let Cx, C2 be classes, ct- : Tc, —* T functions and let Vc, be the
value-representation type of Ci (i = 1,2). Then there exist functions fi : Vc, —* T
such that for all database instances D

/ i (d ? (« 0) = / 2 (4 M) o C1(«1) = c2(u2) (13)
for all Vi G codom(P(xCi)) (i = l , 2 j holds. Here df : TC{ —> VQ. denotes the
function used in the uniqueness constraint on Ci with respect to P.

P r o o f . Due to Definition 10 we may define fi = c , o (d ?) _ 1 on c,(co<iom(i ,(xc1)))
(¿ = 1 . 2) .

Then we have to show that this definition is independent of the instance P.
Suppose PI, P2 are two different instances. Then there exists a permutation IT on
ID such that d?3 = df1 o n, where n is extended to Tc, . Then

ao(d^)-1 = CiOK-toid?*)-1 = TT^OC-O (dfl)-l ,

since Ci permutes with TT-1. Then the stated equality follows. •
Now let Vci,Oi — VCl X Vci and define the new insert-operation on Ci by
[insertCl)j({vi,v2) ::VCuCi) ==

/i(«Ji) = /2(^2) -+ insertCl{vi) ; insertc,(v2) , (14)

where the /,• are the functions of Lemma 42. Note there there is no need to require
C2. Delete- and update-operations can be defined analogously.

Fundamenta.] Concepts of Object Oriented Databases 77

6.2.2 Functional and Uniqueness Constraints.

Now let J be a functional constraint on C defined via c1 : Tc Ti and c2 : Tc
T?. In this case nothing is required for the delete operation whereas for inserts (and
updates) we have to add a postcondition. Moreover, let c p : Tc —* Vc denote the
function associated with the value-representability of C and the database instance
D and let all other notations be as before. Let us again concentrate on the insert-
operation. Let insert'c denote the canonical insert on C. Then we define

(insertc)j(V ::VC) ==
I:: ID | I <— insert'ci
V' ::TC | {I,V')exc -

(VJ:: ID,W ::TC. ({J,W) € xc

Ac1{W) = c1{V') => c2(W) = c2(V')) — skip . (15)

Note that in this case there is no change of input-type. For delete- and update-
operations we have analogous definitions.

A uniqueness constraint defined via c1 : Tc —* T\ is equivalent to a functional
constraint defined via c1 and c2 = id : Tc —+ Tc plus the trivial uniqueness con-
straint. Since trivial uniqueness constraints are already enforced by the canonical
update operations, there is no need to handle separately arbitrary uniqueness con-
straints.

6.2.3 Exclusion Constraints.

The handling of exclusion constraints is analogous to the handling of inclusion
constraints. This means that an insert (update) on one class may cause a delete
on the other, whereas delete-operations remain unchanged.

We concentrate again on the insert-operation. Let I be an exclusion constraint
on Ci and C 2 defined via c< : TCi —• T (t = 1, 2). Let / , : Vc, T denote the
functions from Lemma 42. Then we define a new insert-operation on Cj by

[insertCl)j{V :: V C l) = =
insertc1 (V) ;

US. ((I :: ID | V' ::TC, | (I,V')exc,

Ac2{V') = friV) deletecAV) i S) 81 skiP) • (16)
For delete- and update-operations an analogous result holds.

Theorem 43 The methods Sj in (14), (15) and (16) are MQCSs of generic
insert-methods with respect to inclusion, functional and exclusion constraints re-
spectively.

The proof involves detailed use of predicate transformers and is therefore omitted
here [48,49]. Analogous results hold for delete and update.

7 Conclusion
In this paper we describe first results concerning the formal foundations of object
oriented database concepts. For this purpose we introduced a formal object oriented
datamodel (OODM) with the following characteristics.

78 K.-D. Schewe, B. Thalheim

• Objects are considered to be abstractions of real world entities, hence they
have an immutable identity. This identity is encoded by abstract identifiers
that are assumed to form some type ID. This identifier concept eases the
modelling of shared data and cyclic references, however, it does not relieve us
from the problem to provide unique identification mechanisms for objects in
a database.

• In our approach there is not only one value of a given type that is associated
with an object. In contrast we allow several values of possibly different types
to belong to an object, and even this collection of types may change.

• Classes are used to structure objects. At each time a class corresponds to a
collection of objects with values of the same type and references to objects in
a fixed set of classes. Inheritance is based on IsA relations that express an
inclusion at each time of the sets of objects. Moreover, referential integrity is
supported.

• We associate with each class a collection of methods. Methods are specified by
guarded commands, hence the method language is computationally complete.
In order to allow the handling of identifiers that are always hidden from the
user as well as user-accessible transactions a hiding operator on methods is
introduced. Generic update operations, i.e. insert, delete and update on a
class are assumed to be automatically derived whenever this is possible.

• We associate integrity constraints to schemata. Certain kinds of such con-
straints can be obtained by generalizing corresponding constraints in the re-
lational model. We assume that methods are automatically changed in order
to enforce integrity.

On this basis of this formal OODM we study the problems of identification, gener-
icity and integrity. We show that the unique identification of objects in a class
requires the class to be value-representable.

An advantage of database systems is to provide generic update operations.
We show that the unique existence of such generic methods requires also value-
representability. However, in this case referential and inclusion integrity can be en-
forced automatically. This result can be generalized with respect to distinguished
classes of user-defined integrity constraints. Given some arbitrary method S and
some constraint I there exists a greatest consistent specialization (GCS) Sj of S
with respect to I . Such a GCS behaves nice in that it is compatible with the
conjunction of constraints. For the GCS construction of a user-defined transaction
we apply the GCS algorithm developped in [48,51,52,53].

This work on mathematical foundations of OODB concepts is not yet completed.
A lot of problems are still left open and are the matter of current investigations
and future research.

• In our approach classes are sets. What are other bulk types? Does it make
sense to abstract from classes in this way?

• The problem of updatable views is still open.

• Our approach to genericity only handles the worst case expressed by the value
representation type. We assume that polymorphism will help to generalize
our results to the general case.. Moreover, we must integrate communication
aspects at least with respect to the user.

Fundamenta.] Concepts of Object Oriented Databases 79

• The usual axiomatic semantics for guarded commands abstracts from an exe-
cution model. All results are true for semantic equivalence classes. However,
we also need optimization, especially with respect to the derived GCSs.

• We only presented a formal OODM without looking into methodological as-
pects such as the characterization of good designs.

We express the hope that others will also contribute to solve open problems in
OODB foundation or in the implementation of more sophisticated object oriented
database languages on a sound mathematical basis.

Acknowledgement
We would like to thank Catriel Beeri, Joachim W. Schmidt, and Ingrid Wetzel for
many stimulating discussions especially concerning object identification. We also
want to thank David Stemple and Kasimierz Subieta for questioning the theme
from an engineering point of view.

References
[1] S. Abiteboul: Towards a deductive object-oriented database language, Data &:

Knowledge Engineering, vol. 5, 1990, pp. 263 - 287

[2] S. Abiteboul, R. Hull: IFO: A Formal Semantic Database Model, ACM ToDS,
vol. 12 (4), December 1987, pp. 525 - 565

[3j S. Abiteboul, P. Kanellakis: Object Identity as a Query Language Primitive,
in Proc. SIGMOD, Portland Oregon, 1989, pp. 159 - 173

[4] A. Albano, G. Ghelli, R. Orsini: Types for Databases: The Galileo Experience,
in Type Systems and Datahase Programming Languages, University of St. An-
drews, Dept. of Mathematical and Computational Sciences, Research Report
CS/90/3, 27 - 37

[5] A. Albano, A. Dearie, G. Ghelli, C. Marlin, R. Morrison, R. Orsini, D. Stemple:
A Framework for Comparing Type Systems for Database Programming Lan-
guages, in Type Systems and Database Programming Languages, University
of St. Andrews, Dept. of Mathematical and Computational Sciences, Research
Report CS/90/3, 1990

[6] A. Albano, G. Ghelli, R. Orsini: Objects and Classes for a Database Program-
ming Language, FIDE technical report 91/16, 1991

[7] A. Albano, G. Ghelli, R. Orsini: A Relationship Mechanism for a Strongly
Typed Object-Oriented Database Programming Language, in A. Sernadas (Ed.):
Proc. VLDB 91, Barcelona 1991

[8] M. Atkinson, F. Bancilhon, D. De Witt, K. Dittrich, D. Maier, S. Zdonik: The
Object-Oriented Database. System Manifesto,' Proc. 1st DOOD, Kyoto 1989

[9] F. Bancilhon, G. Barbedette, V. Benzaken, C. Delobel, S. Gamerman,
C. Lecluse, P.: Pfeffer, P. Richard, F. Velez: The Design and Implementation
of 02, an Object-Oriented Database System, Proc. of the ooDBS II workshop,
Bad Münster, FRG, September 1988

80 K.-D. Schewe, B. Thalheim

[10] C. Beeri: Formal Models for Object-Oriented Databases, Proc. 1st D O O D 1989,
pp. 370 - 395

[11] C. Beeri: A formal approach to object-oriented databases, Data and Knowledge
Engineering, vol. 5 (4), 1990, pp. 353 - 382

[12] C. Beeri, Y. Kornatzky: Algebraic Optimization of Object-Oriented Query Lan-
guages, in S. Abiteboul, P. C. Kanellakis (Eds.): Proc. ICDT '90, Springer
LNCS 470, pp. 72 - 88

[13] C. Beeri: New Data Models and Languages - the Challange in Proc. PODS '92

[14] L. Cardelli, P. Wegner: On Understanding Types, Data Abstraction and Poly-
morphism, ACM Computing Suerveys 17,4, pp 471 - 522

[15] L. Cardelli: Typeful Programming, Digital Systems Research Center Reports
45, DEC SRC Palo Alto, May 1989

[16] M. Carey, D. DeWitt, S. Vandenberg: A Data Model and Query Language for
EXODUS, Proc. ACM SIGMOD 88

[17] M. Caruso, E. Sciore: The VISION Object-Oriented Database Management
System, Proc. of the Workshop on Database Programming Languages, Roscoff,
FVance, September 1987

[18] S. Ceri, J. Widom: Deriving Production Rules for Constraint Maintenance,
Proc. 16th Conf. on VLDB, Brisbane (Australia), August 1990, pp. 566 - 577

[19] A. Dearie, R. Connor, F. Brown, R. Morrison: Napier88 - A Database Pro-
gramming Language?, in Type Systems and Database Programming Lan-
guages, University of St. Andrews, Dept. of Mathematical and Computational
Sciences, Research Report CS/90 /3 , 10 - 26

[20] E. W. Dijkstra, C. S. Schölten: Predicate Calculus and Program Semantics,
Springer-Verlag, 1989

[21] H.-D. Ehrich, M. Gogolla, U. Lipeck: Algebraische Spezifikation abstrakter
Datentypen, Teubner-Verlag, 1989

[22] H.-D. Ehrich, A. Sernadas: Fundamental Object Concepts and Constructors,
in G. Saake, A. Sernadas (Eds.): Information Systems - Correctness and
Reusability, TU Braunschweig, Informatik Berichte 91-03, 1991

[23] H. Ehrig, B. Mahr: Fundamentals of Algebraic Specification, vol.1, Springer
1985

[24] L. Fegaras, T . Sheard, D. Stemple: The ADABTPL Type System, in Type Sys-
tems and Database Programming Languages, University of St. Andrews, Dept.
of Mathematical and Computational Sciences, Research Report C S / 9 0 / 3 , 45
- 56

[25] L. Fegaras, T . Sheard, D. Stemple: Uniform Traversal Combinators: Defini-
tion, Use and Properties, University of Massachusetts, 1992

[26] D. FishJnan, D. Beech, H. Cate, E. Chow et al.: IRIS: An Object-Oriented
Database Management System, ACM ToIS, vol. 5(1), January 1987

Fundamenta.] Concepts of Object Oriented Databases 81

P. Fraternali, S. Paraboschi, L. Tanca: Automatic Rule Generation for Con-
straint Enforcement in Active Databases, in U. Lipeck (Ed.): Proc. 4th Int.
Workshop on Foundations of Models and Languages for Data and Objects
"MODELLING DATABASE DYNAMICS", Volkse (Germany), October 19-
22, 1992

G. Gottlob, G. Kappel, M. Schrefl: Semantics of Object-Oriented Data Models
- The Evolving Algebra Approach, in J. W. Schmidt, A. A. Stognij (Eds.):
Proc. Next Generation Information Systems Technology, Springer LNCS, vol.
504, 1991

M. Hammer, D. McLeod: Database Description with SDM: A Semantic
Database Model, J. ACM, vol. 31 (3), 1984, pp. 351 - 386

A. Heuer, P. Sander: Classifying Object-Oriented Results in a Class/Type Lat-
tice, in B. Thalheim et al. (Ed.): Proceedings MFDBS 91, Springer LNCS 495,
pp. 1 4 - 2 8

R. Hull, R. King: Semantic Database Modeling: Survey, Applications and
Research Issues, ACM Computing Surveys, vol. 19(3), September 1987

R. Hull, M. Yoshikawa: ILOG: Declarative Creation and Manipulation of Ob-
ject Identifiers, in Proc. 16th VLDB, Brisbane (Australia), 1990, pp. 455 -
467

A. P. Karadimce, S. D. Urban, Diagnosing Anomalous Rule Behaviour in
Databases with Integrity Maintenance Production Rules, in Proc. 3rd Int.
Workshop on Foundations of Models and Languages for Data and Objects,
Aigen (Austria), September 1991, pp. 77 - 102

S. Khoshafian, G. Copeland: Object Identity, Proc. 1st Int. Conf. on OOPSLA,
Portland, Oregon, 1986 •

M. Kifer, J. Wu: A Logic for Object-Oriented Logic Programming (Maier's
O-Logic Revisited), in PODS'89, pp. 379 - 393

W. Kim, N. Ballou, J. Banerjee, H. T. Chou, J. Garza, D. Woelk: Integrating
an Object-Oriented Programming System with a Database System, in Proc.
OOPSLA 1988

D. Maier, J. Stein, A. Ottis, A. Purdy: Development of an Object-Oriented
DBMS, OOPSLA, September 1986

F. Matthes, J. W. Schmidt: Bulk Types - Add-On or Built-in?, in Proc. DBPL
III, Nafplion 1991

J. Mylopoulos, P. A. Bernstein, H. K. T. Wong: A Language Facility for
Designing Interactive Database-Intensive Applications, ACM ToDS, vol. 5 (2),
April 1980, pp. 185 - 207

J. Mylopoulos, A. Borgida, M. Jarke, M. Koubarakis: Telos: Representing
Knowledge About Information Systems, ACM ToIS, vol. 8 (4), October 1990
pp. 325 - 362

G. Nelson: A Generalization of Dijkstra's Calculus, ACM TOPLAS, vol. 11
(4), October 1989, pp. 517 - 561

82 K.-D. Schewe, B. Thalheim

¡42] A. Ohori: Representing Object Identity in a Pure Functional Language, Proc.
ICDT 90, Springer LNCS, pp. 41 - 55

[43] G. Saake, R. Jungclaus: Specification of Database Applications in the TROLL
Language, in Proc. Int. Workshop on the Specification of Database Systems,
Glasgow, 1991

[44] K.-D. Schewe, I. Wetzel, J. W . Schmidt: Towards a Structured Specification
Language for Database Applications, in D. Harper, M. Norrie (Eds.): Proc. Int.
Workshop on the Specification of Database Systems, Springer WICS, 1991, pp.
255 - 274 (an extended version appeared as FIDE technical report 1991/30,
October 1991)

[45] K.-D. Schewe, B. Thalheim, I. Wetzel, J. W. Schmidt: Extensible Safe Object-
Oriented Design of Database Applications, University of Rostock, Preprint
CS-09-91, September 1991

[46] K.-D. Schewe: Spezifikation datenintensiver Anwendungssysteme (in German),
lecture manuscript, University of Hamburg, Winter 1991/92

[47] K.-D. Schewe, J. W. Schmidt, I. Wetzel: Identification, Genericity and Consis-
tency in Object-Oriented Databases, in J. Biskup, R. Hull (Elds.): Proc. ICDT
'92, Springer LNCS 646, pp. 341-356

[48] K.-D. Schewe, B. Thalheim, J! W . Schmidt, I. Wetzel: Integrity Enforcement
in Object-Oriented Databases, in U. Lipeck, B. Thalheim (Eds.): Proc. 4th
Int. Workshop on Foundations of Models and Languages for Data and Objects
"MODELLING DATABASE DYNAMICS" , Volkse (Germany), October 19-
22, 1992

[49] K.-D. Schewe, B. Thalheim, I. Wetzel: Foundations of Object Oriented
Database Concepts, University of Hamburg, Report FBI-HH-B-157/92, Oc-
tober 1992

[50] K.-D. Schewe, J. W. Schmidt, D. Stemple, B. Thalheim, I. Wetzel: A Reflective
Approach to Method Generation in Object Oriented Databases, University of
Rostock, Rostocker Informatik Berichte, no. 14, 1992

[51] K.-D. Schewe, B. Thalheim: Computing Consistent Transactions, University
of Rostock, Preprint CS-08-92, December 1992

[52] K.-D. Schewe, B. Thalheim, I. Wetzel: Integrity Preserving Updates in Object
Oriented Databases, in M. Orlowska, M. Papazoglou (Eds.) : Proc. 4th Aus-
tralian Database Conference, Brisbane, February 1993, World Scientific, pp.
171-185

[53] K.-D. Schewe, B. Thalheim: Exceeding the Limits of Rule Triggering Systems
to Achieve Consistent Transactions, submitted for publication

[54] M. H. Scholl, H.-J. Schek: A Relational Object Model, in Proc. ICDT 90,
Springer LNCS, pp. 89 - 105

[55] G. M. Shaw, S. B. Zdonik: An Object-Oriented Query-Algebra, IEEE Data
Engineering, vol. 12 (3), 1989, pp. 2 9 - 3 6

[56] D. Stemple, T. Sheard, L. Fegaras: Reflection: A Bridge from Programming
to Database Languages, in Proc. HICSS '92

Fundamenta.] Concepts of Object Oriented Databases 83

D. Stemple, S. Mazumdar, T. Sheard: On the Modes and Meaning of Feedback
to Transaction Designer, in Proc. SIGMOD 1987, pp. 375 - 386

D. Stemple, T. Sheard: Automatic Verification of Database Transaction
Safety, ACM ToDS vol. 14 (3), September 1989

M. Stonebraker, A. Juin gran, J. Goh, S. Potaminos: On Rules, Procedures,
Caching and Views in Database Systems, in Proc. SIDMOD 1990, pp. 281 -
290

S. Y. W. Su: SAM*: A Semantic Association Model for Corporate and
Scientific-Statistical Databases, Inf. Sei., vol. 29, 1983, pp. 151 - 199

B. Thalheim: Dependencies in Relational Databases, Teubner Leipzig, 1991

B. Thalheim: The Higher-Order Entity-Relationship Model, in J. W. Schmidt,
A. A. Stognij (Eds.): Proc. Next Generation Information Systems Technology,
Springer LNCS, vol. 504, 1991

S. D. Urban, L. Delcambre: Constraint Analysis: a Design Process for Specify-
ing Operations on Objects, IEEE Trans, on Knowledge and Data Engineering,
vol. 2 (4), December 1990

J. Widom, S. J. Finkelstein: Set-oriented Production Rules in Relational
Database Systems, in Proc. SIGMOD 1990, pp. 259 - 270

Y. Zhou, M. Hsu: A Theory for Rule Triggering Systems, in Proc. EDBT '90,
Springer LNCS 416, pp. 407 - 421

(Received April 7, 199S)

