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On the characterization of the integers: The 
hidden function problem revisited 

R. Berghammer* 

Abstract 
In this paper the hidden function problem studied so far only for equa-

tional (e.g., in [9] and [ l l ] ) or conditional equational (e.g., in [3]) algebraic 
specifications is considered for arbitrary first-order theories. It is shown that 
a unique characterization of the integers with zero, successor and predeces-
sor as term-generated model of a finite first-order theory needs at least one 
hidden function or relation. 
Keywords: Hidden function problem, algebraic specifications, first-order the-
ories. 

1 Introduction 
In mathematical logic, a structure for a first-order language is said to be a model for 
a set T of sentences over the same language, if each sentence of T holds in it. The 
algebraic specification approach of computer science uses a restricted definition. 
Here it is often additionally demanded that each element of the carrier sets can 
finitely be "described" by a closed term, i.e., that the model of the specification is 
term-generated (see e.g., [l], [12], [6], or [ 13]). The main reason for the restriction 
to term-generated models of specifications is the necessity of finite descriptions 
of algorithms. As an essential advantage one obtains the proof principle of term 
induction. Furthermore, by using only term-generated models one is able to extend 
the expressiveness of first-order theories (resp. algebraic specifications). 

In this paper we deal with the question, whether and how the structure Z := 
[ Z , 0, succ, pred) can - up to isomorphism - be characterized as the only term-
generated model of a set of first-order sentences over a first-order language with 
symbols foi°0, the successor function succ(u) := tt + 1 , and the predecessor function 
pred(u) := u — 1. First, we give a positive answer using an infinite set of sentences. 
Then we show, and this is the main result of the paper, that there is no finite set 
of first-order sentences with the same property. Finally, we extend the language by 
a symbol for the "usual" ordering relation on the integers 2Z and present a finite 
set of sentences, which has the structure Z := {22,0, succ, pred, < ) as - up to 
isomorphism - only term-generated model. 

The relation < simplifies the specification of the constant and operations of 
interest 0, succ, and pred. In the terminology of algebraic specifications it is called 
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a "hidden function", since the way to specify Z is structured by first specifying Z 
and then to forget or hide the auxiliary relation < . 

Strictly speaking, < is a hidden relation. The-term "hidden function" (which we 
will use in the remainder of the paper, too) results from the fact that the algebraic 
specification approach considers relations as functions to the truth values. 

Given a class C of first-order formulae and a semantic mechanism S which 
determines the meaning of a specification, the so-called hidden function problem 
for C and S asks whether the use of hidden functions extends the expressiveness of 
specifications. All the known examples deal with the following question: Is there a 
structure that fails to possess a unique characterization (this notion depends on S) 
using finite subsets of C only, but the same is not true if auxiliary functions may 
be used? In the case of C being the class of universally quantified equations and 
S being initial algebra semantics, a solution - the first example which requires the 
use of a hidden function - can be found in [9j. This paper contains no formal proof, 
but based on Majster's example in [ l l j a simple structure, called "toy stack", is 
constructed and carefully proved that it cannot be specified using initial algebra 
semantics and finitely many equations unless hidden functions are permitted. This 
proof is mainly based on regular sets and their properties. Independently of [11], 
in [2] another solution of the hidden function problem for equational specifications 
and initial algebra semantics is given. It is shown that the structure N := (IN, 0, 
succ, sqr), where succ is again the successor function and sqr(u) := u2, does not 
possess a finitary equational specification without the use of hidden machinery. 
The (rather complicated) proof can also be found in [3j. Obviously, N admits a 
very natural finite equational specification involving addition and multiplication as 
auxiliary functions. Using the so-called sparsity property of predicates on natural 
numbers, in the same paper [3] the hidden function problem is also solved for 
conditional equational specifications and initial algebra semantics. 

Our examples Z and Z solve also a hidden function problem for certain C and 
S. In comparison to the papers just mentioned, we do not restrict the class of 
formulae and consider all term-generated models. This means that C is the class 
of all first-order formulae and that a structure M is (uniquely) characterized by 
a set T of sentences under S if and only if M is a term-generated model of T 
and all these models are isomorphic. Furthermore, we use proof principles from 
"classical" model theory, viz. the use of the compactness theorem and elimination 
of quantifiers. 

2 Preliminaries 
Throughout this paper we use first-order logic with the equality symbol « as a 
logical symbol. In this section, we briefly recall some basic definitions of first-order 
logic. Further details can be found in, for instance, [7] or [10]. 

Assume L to be a first-order language. A structure M for L (also called L-
structure) consists of a non-empty carrier set \M\, an n-ary function /A/ : J-W|" —* 
\M\ for every n-place function symbol / , and an n-ary predicate PM : \M\n — IB 
for every n-place predicate symbol p, where IB denotes the set {0 ,1 } representing 
truth values. If n = 0, then JM is an element of \M\ and PM is a truth value. 

Assume M and N to be two structures for the same first-order language. A 
bijective function $ : |M| —• |iV| is said to be an isomorphism from M to N, if 
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* ( / « ( « ! , • • •, U„)) = / W ( * ( U l ) , . . . , * ( « „ ) ) 

for all n-place function symbols / and all u i , . . . , un G \M\ and 

PAi ( « i , . . . , u „ ) = 1 O p j v ( $ ( u i ) , . . . , $ ( u „ ) ) = 1 
\ 

for all n-place predicate symbols p and all u i , . . . , url G |M|. If there is an isomor-
phism from M to N, then we say that M and N art isomorphic. 

Let M be a structure for a first-order language L and ty : V —• \M\ be an 
assignment for the variables x G V with values from \M\. Furthermore, let t be a 
term and A be a formula built up over L. By t^ we denote the value of t in M 
under by M (= A[,ir] we denote that A holds in M under SP. Both notations are 
inductively defined as usual. In particular, we have M |= i j « if and only if 
'i® = ^f both t and A are closed, then tqf as well as M \= do not depend 
on the assignment 1ir. Therefore, in this case we use the notations tM and M \= A 
instead. The notation M [= A is also used to indicate that M -A['®r] for every 
assignment vf. 

Let L be a first-order language. A set T of sentences (i.e., closed formulae) built 
up over L is called a theory over L. A structure M for L is said to be a model of 
T, if M [= A for all sentences A G T. In addition, M is called term-generated, if 
for every element u G \M\ there exists a closed term t (also built up over L) such 
that u - t M . 

3 An infinite characterization of the integers 
without hidden functions 

In the following, we give a characterization of the integers with 0, succ, and pred as 
- up to isomorphism - only term-generated model of an infinite first-order theory. 
This result will also be used in the next section. 

Let Lz be the first-order language consisting of a 0-place function symbol (con-
stant symbol) z and two 1-place function symbols s,p, and let Tz denote the fol-
lowing infinite theory: 

(1) Vx(3(p(x)) « x) 
(2) Vx(p(s(x)) M x) 

(3.1) V x H s ( x ) . « x ) ) 
(3.2) Vx(->(s(s(x)) « x)) 

(3.n) Vx(-i(s(s(. . . s ( s ( x ) ) . . . ) ) » x) (exactly n occurrences of s). 

Obviously, we have: The structure Z := (Z,0, succ, pred) is a term-generated 
model of Tz- We call Z the standard model of the theory Tz- In the following, we 
show that it is - up to isomorphism - the only term-generated model of Tz • To this 
end, we assume for the rest of this Section 3 an arbitrarily chosen (but fixed) term-
generated model M :— (|M|, zm, sm,pm) of Tz and construct an isomorphism 
from M to the standard model. 
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Define s^f (resp. P^) as nth power of sm (resp. Pm)- Fundamental for the 
construction of the just mentioned isomorphism is the following representation of 
the elements of \M\. 

L e m m a 3.1 Let u G \M\. Then there exists exactly one natural number n € IN 
such that u = or u = PM{zM)-

P r o o f , a) In the first step we prove the existence of the number n. 
As the model M is term-generated, for all u £ \M\ there exists a closed term t 

built up over Lz such that tM = u. Thus, it suffices to show that for all closed terms 
t built up over Lz there exists a natural number n € IN such that tM = s^i^Af) 
or tM = PM{zM)- This can be done by term induction. 

Induction base: The case of t being the symbol z is trivial; choose n = 0. 

Induction step: By the induction hypothesis, tM = SM(zM) o r TM = PM(ZM)-

First, suppose tM = S ^ Z M ) - Then we have 

S(t)M = oU{tU) = sM(s"M(zM)) = s«M+i(zu). 

Furthermore, due to the validity of sentence (2) in M , 

p(t)M = PM(tM) = PM(snM(zM)) = PM(*M ( S ^ ' M ) ) = i 1 ^ ) , 

provided n > 0. Finally, in the case n = 0 we obtain 

p(t)M =PM{tM) = PMM-

This shows that also s(t)M and p(t)M have the stated representation. 
The remaining case tM = PM(ZM) is handled similarly using the validity of ( l ) 

in M. 

b) In a second step, now we prove the uniqueness of the representation. To this 
end, suppose u = s^(zm) = s ^ z * / ) and m ^ n. W.l.o.g, let m < n. Then there 
exists a positive natural number k fulfilling the equation m + k = n. Sentence (2) 
is true in M. Thus, 

sZM = >m{*m) = Sm('mM) ^zm = sku{zu). 

However, S^ (ZM) = ZM contradicts the validity of sentence (3.k) in M . In the 
same manner one deals with the remaining cases. • 

With the help of this lemma, we are able to define a function $ from the carrier 
set \M| to the integers by 

I - » if U = Pm(zM)-
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We then have the following property: 

Lemma 3.2 The function $ is an isomorphism from the fixed model M to the 
standard model Z. 

P r o o f . Bijectivity of $ is obvious; the inverse from the integers to \M\ is 
given as •".,.,:-{£<£} 
It remains to prove that $ preserves the interpretations of the three symbols z, s, 
and p. This is done in the following. Note, that we have zz = 0, sz = succ, and 
pz = pred. 

Obviously, 3>(zm) = 0 holds. Now, assume u 6 |M|. For a proof of $(sjii(u)) = 
succ($(tt)) we distinguish two cases. If u = s ^ (ZM), then we obtain 

$ M u ) l = = n + 1 = + 1 = * ( « ) + 1 - succ($(u)). 

In the case u — PM ( zM ) w e h a v e 

*(«A/(U)) = H P ^ M ) R=~N+L = *{PMM) + 1 = * ( " ) + 1 = succ($(u)), 

provided n > 0 (here we have used that sentence (1) is true in M), and 

$ ( s m H ) = $(sm(zm)) = 1 = + 1 = * ( « ) + 1 = succ($(u)), 

provided n = 0. Equation $(pw(u)) = pred($(u)) is proved analogously to the 
latter one. • 

Summing up, we have the desired result that the structure Z is characterized 
by the theory Tz: 

Theorem 3.3 The standard model Z is - up to isomorphism - the only term-
generated model of Tz • • 

4 There is no finite characterization of the inte-
gers without hidden functions 

In this section we show (Theorem 4.3 below) that there is no finite theory of ar-
bitrary sentences built up over the language Lz of Section 3 which has Z as - up 
to isomorphism - only term-generated model. The crucial point of this proof is the 
use of the compactness theorem of first-order logic which implies that a theory T 
has a model if every finite subset of T has a model. However, to conclude the proof 
it is additionally necessary to get a term-generated model for the chosen theory. 
Here elimination of quantifiers plays an important role. 

A theory T over a first-order language L admits elimination of quantifiers if 
and only if for every formula A built up over L there is a quantifier-free formula B 
built up over the same language such that M f= A «-» B for every model M of T. In 
model theory elimination of quantifiers is one of the methods for proving theories 
decidable. Some examples can e.g., be found in [10], Section 13. The next lemma 
shows that the theory Tz of Section 3 admits elimination of quantifiers, whereby 
no additional free variables are introduced. 
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Lemma 4.1 Assume A to be a formula built up over the language Lz• Then there 
exists a quantifier-free formula B, also built up over Lz, such that M \= A *-* B 
for every model M of Tz and, furthermore', the set of the free variables of B is 
contained in the set of the free variables of A. 

Proo f , a) In a first step we prove the existence of a quantifier-free formula B over 
Lz such that M t= A «-• B for every model M of Tz • 

We are allowed to assume the given formula A to be of the form 3x(Ai A.. .A A m ) , 
where each Ai, 1 < t < m, is an atomic formula or the negation of an atomic 
formula. A proof of this well-known fact can e.g., be found in [7], Section 3.1. 
Furthermore, we may suppose that the variable x occurs in each Ai. For. if x 
does not occur in some A,0 , then we use the equivalence of 3x(Ai A . . . A A m ) and 
Ai0 A 3x(Ai A . . . A Ai 0_i A A,0 + i A . . . A A m ) . 

Assume y,-, 1 < i < k, to denote the free variables of 3x(Ai A . . . A Am). For 
a being an element from { z , x , y i , . . . , y j c } , we abbreviate the term s ( . . . a ( a ) . . . ) 
(resp. p(. . -p(a) • •.)) with n > 0 occurrences of a (resp. p) by 3n(a) (resp. pn(a)). 
Particularly, we have s°(a) := p°(o) := a. 

Now, suppose M to be a model of the theory Tz- Each atomic sub-formula of 
A is an equation ii « t2, where the terms t,-, 1 < t < 2, are built up using the 
variables y,-, 1 < » < k, the variable x, and the function symbols z, s, and p. Since 

i the variable x occurs in at least one of the terms and the sentences ( l ) and (2) are 
true in M, there exist natural numbers m and n and o G {z, x, y i , . . . , y*} such 
that 11 « £2 is equivalent to one of the following equations: 

(i) a m (x ) « sn(a) (ii) s m ( x ) « p n ( a ) 
(iii) p m ( x ) « s " ( a ) (iv) p m ( x ) « pn(a). 

In the case m < n, the first equation is equivalent to x « s n - m ( o ) ; otherwise 
it is equivalent to s m _ n ( x ) « a, i.e., to i k p m - , 1 ( a ) . The proofs that also for 
the remaining equations there exist equivalent formulae of this specific form are 
identical and follow likewise from the validity of (1) and (2) in M. 

Hence, we may suppose that every atomic formula occurring in A is of the form 
x « ^ ( a ) or i « p"(a), where a G {z, x, y j , . . . , y/t}. However, we may further 
suppose that a is different from x. This is due to the fact that x m s"(x) as well 
as x « pn(x) can be replaced by z « z if n = 0, and by ->(z « z) if n 0, and that 
the latter closed formulae can again be moved out-side of quantification. 

Summing up, we may assume the given formula A to be of the form (1 < m, 1 < 
3 < m ) 3x(x « ti A . . . A x « A —i(x » ty) A . . . A ->(x « t m ) ) , 

where the terms tj, 1 < » < m, are of the form sn(a) or p"(a) and a G {zj y i , . . . , yjt}. 
Now, we distinguish three cases: 

Case 1: j = 1, i.e, the formula A has the form 3x(->(x » i i ) A . . . A ->(x » im))- It 
can easily be shown that the carrier set of each model of the theory Tz is infinite. 
Now 

M is a model of Tz => |M| is infinite 
=> M (= V y i . . . Vym(3x(-i(x « yi) A . . . A ->(x « y m ) ) ) 
=> M \= 3x(->(x » i i ) A . . . A ->(x » t m ) ) 

implies that A is true in M. Since M |= z « z holds, too, we may choose B as 
z « z and obtain, thuL, M f= A B. 
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Case £: j > 1 and m— 1, i.e., A has the form 3x(x « ti) . Then A is also valid in 
M and we may again choose B as formula z « z. 

Case S: j > 1 and m > 2, i.e., A contains an equation and there is at last a further 
equation and/or negation of an equation: 

3x(x » ti A . . . A X « ty_i A ->(a: « £y) A . . . A ->(x « tm)). 

In this case, first, we delete the equation x » ti from A and then replace in the 
resulting formula every occurrence of the variable x by the term Since x does 
not occur in the terms t,-, 1 < t < m, this leads to 

3x(i! « t2 A ... A tx » ty_! A ->(ti « ty) A ... A -^(tj « tm)), 

a formula, which is equivalent to the original one. (Note, that the matrix of the 
original formula A is quantifier-free.) We have now a formula in the matrix of 
which x no longer occurs, so the quantifier may be omitted. Now, we choose B as 
formula 

ii « i 2 A . . . A ti « fy_i A —i(fi w iy) A . . . A —i(ti « t m ) . 

With this choice, we have again that M |= A «-+ B holds. 
b) The additional property is an immediate consequence of the construction of B. 
Either B is closed (cases 1 and 2) or the sets of the free variables of A and B are 
identical (case 3). • 

Let L be a first-order language with at least one constant symbol. Furthermore, 
let T be a theory over L such that each sentence of T is a prenex universal formula, 
i.e., of the form Vxi . . . Vx„A, where n > 0 and A (the "matrix" of the formula) is 
quantifier-free. If T has a model, then it has also a term-generated one. For a logic 
without equality a proof of this well-known fact can e.g., be found in [8], p. 19; the 
generalization of this proof to a logic with equality is trivial. 

As an immediate consequence, we obtain: 

L e m m a 4.2 Assume A to be a sentence built up over the language L'z. If there is 
a model of the theory Tz U {A}, then there is also a term-generated one. 

P r o o f . We use Lemma 4.1 and obtain that for every sentence A over there 
exists a quantifier-free sentence B over the same language such that the class of all 
models of Tz U { A } equals the class of all models of Tz U {B}. Each sentence of 
Tz is a prenex universal formula. Since B is a prenex universal formula, too, the 
above mentioned property of the class of these formulae applies. • 

After these preparations, we are now able to prove the desired result. 

Theorem 4.3 There is no finite theory over the first-order language Lz which has 
the structure Z as - up to isomorphism - only term-generated model. 

P r o o f . Suppose, for a contradiction, that we are given a finite theory { j 4 i , . . . , A m } 
over the language Lz which Has - up to isomorphism - the structure Z as only term-
generated model. We define the sentence A by A := A\ A ... A Am. 
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Claim: Each finite subset S of the theory Tz U { - "A} has a model. 

Proof: If -iA £ S, then Z is a model. Otherwise, let k := max{n : (3.n) e S}. 
We define a structure M for the language Lz as a "loop of size k + 1", i.e., by 
\M\ := { 0 , . . . , * : } and 

n J u + 1 ifu Jik , , J u - 1 i f u ^ O 
zU:=0 »«(«):= | Q i f u = fc pw(«) := | fc jf u = q. 

It is obvious that the sentences ( l ) , (2) and (3,n), where 1 < n < k, are true in 
M. Also M f= -*A holds. Otherwise, we would have M (= A which implies (the 
structure M is term-generated) that M and Z were isomorphic. Thus, we have a 
contradiction. Summing up, M is a model of S. 

Now, we use the compactness theorem of first-order logic to deduce that the 
theory Tz U has a model. In combination with Lemma 4.2 this implies the 
existence of a term-generated model M of Tz U M is also a term-generated 
model of Tz- From this fact and Theorem 3.3 we obtain that the two models M 
and Z of Tz are isomorphic. As a consequence, M \= A holds. But this is a 
contradiction to M \= ->A. • 

Consider the sub-theory of Tz containing the two sentences (1) and (2) only. It 
can be shown that each term-generated model of this theory is either isomorphic to 
Z or to a "loop of size n". In the manner of speaking of algebraic specifications or 
universal algebra, Z is initial in the class of all term-generated models of {(1), (2)}. 
To obtain this model as - up to isomorphism - only term-generated model, one has 
to extend the theory in such a way that loops are prevented, i.e., infinitely many 
inequalities can be derived. Theorem 4.3 states that the language used so far is too 
"poor" to do this in a finite manner. 

5 A finite characterization of the integers using 
a hidden function 

As just mentioned, a finite extension of the theory {(1), (2)} which prevents loops 
requires an extension of the language Lz, i.e., the use of hidden machinery. In this 
section we show, that a symbol for the usual ordering on the integers suffices. To 
this end, we extend the language Lz to Lz Lz U { « c } , where < is a 2-place 
predicate symbol. Furthermore, we consider the three sentences (the symbol C is 
used in infix notation) 

(3) Vz(->(a(x) <C x)) (4) Vx(x <C x) (5) VsVy(s(x) < y - . K y ) . 

And, finally, we define the finite theory Tz over Lz to consist of the sentences (1) 
and (2) of Tz and the sentences (3), (4), and (5). 

Clearly, the structure Z := (Z,0, succ, pred, < ) for Lz is a term-generated 
model of Tz - In the rest of this section we prove that each other term-
generated model is isomorphic to this model. As in Section 3, therefore, we 
assume in the sequel an arbitrarily chosen (but fixed) term-generated model 
M := [ \ M \ , Z M o f Tz- In the following, we write tz <CM V (resp. 
u «) instead of C m (u, V) = 1 (resp: < w (u, u) = 0). As in the case of Tz 
we obtain:' 
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Lemma 5.1 Let u e \M\. Then there exists exactly one natural number n e IN 
such that u = or u = p£i(z.kr). 

P r o o f . As the existence of n follows from the validity of (1) and (2) in M (cf. the 
proof of Lemma 3.1), it remains to show uniqueness. 

If u = s j } ( z M ) = s^{zM) and m + k = n (where k > 0), then 

) M = sZ(skM{zM)) => skM(ZM) = ZM ^ skM{zM) Z M 

=> SM(ZM) < M Z M , 

since (2), (4), and (5) are true in M. However, SM(ZM) z m is a contradiction 
to the validity of formula (3) in M. 

The remaining cases are handled similarly. • 

The proof of the fact that the function $ of the third section is an isomorphism 
from M to Z, too, is prepared by a simple 

L e m m a 5.2 If u 6 \M\ and n e IN, then n > 0 implies s^ («) ^fM "«• 

We use induction on n. The induction base n = 1 holds since sentence (3) is true in 
M ; the induction step proceeds as follows: From the validity of (5) in M we obtain 

u »J, (u) < M « 

and, thus, contraposition in conjunction with the induction hypothesis applies. 
• 

Now, we are able to prove: 

L e m m a 5.S The function $ of Section S is also an isomorphism from the fixed 
model M to the model Z. 

P r o o f . Due to Lemma 3.2 of the third section, we have only to prove that 
preserves the two interpretations and < of the predicate symbol <C, i.e., that 
for all u, v £ \M| 

u C m v $(«) < $(v). 

Assume u = s ^ ( z j y ) and t; = «^ (z j^ ) . For a proof of direction "=>" we show that 
3>(u) ^ implies u u. FVom $(u) ^ $(u) we get m > n, hence m = k + n, 
where A; > 0. Thus, 

« = >kJnM = 'ui'TiM) = skM(v). 

Due to this result, u « is equivalent to aj i (v) and Lemma 5.2 applies. 
Now, we prove direction "<=". FVom $(u) < $(v) we obtain that m < n holds, i.e., 
k + m = n, where k > 0. This shows the equation 

& ( « ) = *M(°ZM) = skM+mM = 

In combination with the validity of (4) in M , this result yields s^r ( u ) ^ M v which 
in turn implies (since (5) is true in M) that u Cjif v. 
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Next, let u = and v - (z.w). For a proof of " =>" we distinguish 
between m + n = 0 and m + n > 0. The first case is trivial. In the second case we 
use that (1) is true in M and get 

PMM O *Z+n(PMM) « M PM(ZM). 

Now, Lemma 5.2 shows that the premise of the implication to be proven does not 
hold. A proof of is trivial. 

The remaining cases can be shown analogously. • 

We now have that the structure Z is characterized by the theory Tz-

Theorem 5.4 The model Z is - up to isomorphism - the only term-generated 
model of Tz- • 

It is obvious that the use of a predicate symbol for the ordering (in combination 
with an extension of the theory { ( l ) , ( 2 ) } ) is not the only way to prevent loops. 
E.g., one can also extend, the langauge Lz by a predicate symbol n and {(1) , (2)} 
by the four sentences 

(6) -m(z) (7) n(p(z)) 
(8) Vx(n(x) ^ n(P(x))) (9) Vx(n(s(x)) - n(x)) 

which specify the interpretation of n to test a given integer for being negative or 
not. Another possibility is to introduce inductively (using z,s, and p) a 2-place 
function symbol / that describes the repeated application of the symbols s and p, 
resp. A natural way to specify / is 

(10) V x ( / ( x , z ) « x ) 
(11) V x V y ( / ( x , S ( y ) ) « S ( / ( x , y ) ) ) 
(12) V x V y ( / ( x , p ( y ) ) « p ( / ( x , y ) ) ) . 

We may then substitute in the theory Tz the infinite set (3.n), n > 1, of sentences 
by a single one, viz. 

(13) VxVy(-i(y » z) - - ( / ( x , y) « z)). 

In both cases, the proof of isomorphism is mainly a consequence of (the validity 
of) Lemma 3.1. 

We finish this section with a remark concerning our proof method. Certain, 
our " model-oriented" approach is not the only way to solve the given problem. For 
instance, a proof which argues algebraically can proceed as follows: One shows 
that the initial term-generated model Z of the theory { ( l ) , ( 2 ) } can be extended 
by the ordering relation < in such a way that the resulting structure Z for Lz is 
initial wrt. Tz- Since the truth values 0 and 1 are different, the ordering relation 
cannot identify elements. Now, the desired isomorphism result is an immediate 
consequence of .the initiality of Z. This remark shows also: For a translation of 
the proof of this section into the notation of algebraic specifications a specification 
of the truth values is required which has T up to isomorphism - the two element 
Boolean algebra as only model.' 
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6 Concluding remarks 
FVom a theoretical point of view, hidding machinery is used to overcome the lack of 
expressive power. In the present paper we have shown its necessity even in the case 
of full first-order specifications. To this end, first, we have presented an infinite first-
order theory Tz whose term-generated models are exactly the structures isomorphic 
to Z = succ, pred). Then we have shown that there is no finite set of first-
order sentences which has the same property. And, finally, we have given unique 
characterizations of Z using hidding machinery. 

For the proof of the main result (Theorem 4.3) we have used the argument that 
the theory Tz U { - "A} has a term-generated model if every of its finite subsets has 
a model. It seems that this argument (an extension of the compactness theorem of 
first-order logic) can also be used to prove that there is no finite characterization 
of more complex data types without hidden functions. 

For the description of large structures and systems it is necessary to compose 
specifications in a modular way from smaller ones to master complexity. Hidding is 
one of these so-called specification-building operations and contained in almost all 
modern specification languages; see [13] for an overview. FVequently, its use makes 
specifications more readable and understandable. Furthermore, in various case 
studies it has proven advantageous to use hidding if specifications are transformed, 
e.g., into versions which provide algorithmic solutions. As two examples for this 
latter application we mention the papers [5] and [4]. In all these cases the decisive 
question is how to find suitable hidden functions and their defining formulae. This 
aspect of hidding was not addressed here, but some work can be found in the 
literature. However, it seems that a general methodology for the practical use of 
hidden machinery remains to be developed. 
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