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Measure of Infinitary Codes 

Nguyen Huong Lam * Do Long Van * 

Abstract 

An attempt to define a measure on the set AN of infinite words over an 
alphabet A starting from any Bernoulli distribution on A is proposed. With 
respect to this measure, any recognizable (in the sense of Buchi-McNaughton) 
language is measurable and the Kraft-McMillan inequality holds for measur-
able infinitary codes. Nevertheless, we face some "anomalies" in contrast with 
ordinary codes. 

1 Introduction 
In this paper we need only very basic concepts and facts from the formal language 
theory and the theory of codes, for which we always refer to [Ei] and [Be-Pel. Let 
A be a finite or countable alphabet and A* be the set of (finite) words on A (that is 
A* is the free monoid with base A) with the empty word (the unit of A*) denoted 
by e. The set of nonempty words is denoted by A + = A* — e. The product of two 
words u and v is the concatenation uv of them. 

A factorization of a word w on a given subset X of A* is a sequence U i , . . . , u„ 
of words of X such that to = t<i.. . un. A subset X of A* is a code if every word of 
A* has at most one factorization on X. 

Intuitively, a code may not contain too many words and this idea has been stated 
mathematically in the remarkable Kraft-McMillan inequality. Let us mention it 
now. 

A Bernoulli distribution on A is a function 

P-.A-+R+ 

associating with each letter a nonnegative real number such that 

E ? ( « ) = 1-
aS A 

A distribution p is positive if p(a) > 0 for all a G A. We extend p in a natural way 
to a word u = o i . . . o „ of A* ( o i , . . . , an are letters) by 

n 
p(u) = J J p ( a 0 

»=1 
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and then to a subset X of A* by 

p(X) = £ p(u). 
u £ X 

The value p (X) is called the measure of X, which may be finite or infinite. If finite, 
the measure is the sum of an absolutely convergent numerical series, so the order 
of summation is not important and the definition is correct. 

The well-known in the information theory Kraft-McMillan inequality ([Mc] or 
[Be-Pe]) says that: 

For any Bernoulli distribution, the measure of any code does not exceed 
1. 

The presentation that follows is an attempt to resolve a question, quite natural, in 
the mainstream of extensive studies on infinite words: how can one define a measure 
(in some sense) on the set of infinite words AN so that this measure should be well 
compatible with the measure structure and properties of languages in A*7 Besides, 
we want this measure to satisfy our own demand: to prove something like the 
Kraft-McMillan inequality for infinitary codes, introduced in [Va]. To do this we 
come to the theory of measure, making use of its very basic concepts (Lebesgue 
extension of measures, infinite product of probability spaces) and we also exploit 
some techniques suggested by [Sm]. 

2 Measure Theory 

2.1 Basic 
We give a brief survey of facts for furthergoing treatment. For more details the 
reader is referred to [Ha]. Let X be any fixed set; we always deal with subsets of X, 
so in the sequel sets always mean subsets of this "base" set. Also we use the Euler 
fraktur alphabet to indicate classes (collections) of sets, for example, i)3 ( X ) is the 
class of all subsets of X (the power set). A class is called a (Boolean) ring of sets 
provided for any E,F e the set-theoretic difference E — F and union E U F are 
also in $K . A ring is called o-ring if iH is closed under the formation of countable 
unions, i.e., ^Ei is in fR for any countable sequence of sets Ei, E 2 , . . . of <R . A 
ring (a-ring) containing the base set X , is said to be an algebra (a cr-algebra resp.). 
Since E n / = E U F - ({E - F) U (F - E)) and n f l . E i = X - U ,^ x (X - Eq, 
we see that a ring is also closed under the formation of finite, and moreover if it 
is a cr-algebra, of countable intersections. Since the intersection of any number of 
rings (cr-rings) is also a ring (cr-ring), for any class <£ there exists the smallest ring 
(a-ring) containing it, which is called the ring (a-ring) generated by <E and denoted 
by i i f i ) (S(<£ ) resp.). We say that e is a hereditary class if for every E € <E , 
F C E implies f £ £ . Clearly, the hereditarity of classes is preserved under any 
intersection therefore we can say of the smallest hereditary class H(<£ ) containing 
a given class £ . 

Let £ be any class of sets. A set function on <£ is a mapping 

f :<£ -» R+ U 00 

defined on £ , taking real nonnegative values including infinity. A set function / is 
called 
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— additive, if for any disjoint sets E\, E2 of <E such that E\ U E2 6 <£ 

f{E1uE2) = f(E1) + f(E2)] 

— countably additive, or a-additive, if for any countable sequence of mutually 
disjioint sets EI,E2,... of <£ such that U^-E,- e <E 

»=1 ¿=1 

A <7-additive set function p on a ring £R is said to be a measure (on Si ). The 
value n(E) is the measure of E. A measure fi is finite if every E of iR has finite 
measure and is cr-finite if every E of iR is a countable union of sets of St , all of 
them having finite measure. 

2.2 Lebesgue Extension of Measures 
Let be measures respectively on the rings St 1 and 5R 2 with iR 1 C Si 2 , 
then /¿2 is an extension of /¿i if restricted to iR 1, p,2 is equal to Hi. 

Provided the cr-additivity of the measure fi on some ring SR , we can extend it 
considerably further to a cr-ring which is in some sense maximal as follows. 

Let i f (iR ) be the smallest hereditary cr-ring containing iR . For any set E € 
H(SR ), we define the outer measure of E 

00 00 
y." ( £ ) = inf ( X ) ^ l i i c U ^ ^ e « } . 

»=1 »=i 

Indeed, p.*{E) = ¡x{E) for E e iR . Following [Ko-Fol, a set E e H(iR ) is called 
measurable if for any e > 0 there exist Eq € £R such tnat 

fi*{EAE0)<e, 

where EAE0 = (E - E0) U [E - E0) is the symmetric difference of E and F. 
It is proved that the class OT of all measurable sets is a cr-ring and the function 

¡j,* is cr-additive on it and S(9\ ) c OT [Ko-Fo]. 
Thus the measure /i on iR has been extended to the measure n* on the cr-ring 

S(iR ) generated by iR and certainly FI*(E) = FI(E) when E e 5R . Usually, the 
triple (X , Wl , /j,) consisting of the base set X, a cr-ring JOT of subsets of X and 
a measure /1 on St is called a measure space-, when X e n and n{X) = 1 the 
measure space is called a probability space. 

We now make a remark that will be useful in the sequel. Sometimes, the starting 
point is not the ring iR itself, but some subclass S such that it can generates !R and 
the latter is easily constructed from S . An example of such classes are semirings, 
considered in [Ko-Fo]: a class 6 is a semiring provided, first, it is closed under the 
formation of finite intersections and, second, if E,F E & ,E Q F then F splits into 
a finite number of mutually disjoint subsets EO, EI,...,EN of 6 such that E = EQ: 
F = Ur= 0 -^- If ® is a semiring, R{&) is then the class of all finite unions of 
subsets of 6 . It is easy to see also that if /i is cr-additive on 6 , so is in i2(S) . 
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2.3 Infinite Product Measure 
Another fundamental construction we need here is the infinite product measure. 
More specifically, we treate only the countable product. 

Let (X,-, OT m), i — 1 ,2 , . . . be a countable collection of probability spaces, i.e. 
measure spaces with XI € 2JI and p , (X , ) = 1. Further, let X = n ^ i be 
set-theoretic Cartesian product of the sets X i , X? A subset A of A of the form 

oo 
A = JJ AIT AIEM I 

«=i 
and Ai = Xi for almost all », is called a measurable rectangle. The class of mea-
surable rectangles is'obviously a semiring and is denoted by a . Let us denote 
OT = 5 ( a ) the a-ring generated by the measurable rectangles. Theorem 2 of [Ha, 
Chapter VII, §38 ] states, in fact, that there exists uniquely a measure p on an 
such that if 

A = AI x ... x AN x XN+I x X„+ 2 x • • • 
is a measurable rectangle then 

H{A) = M{AI)... FIN(AN). 

Since HilXi) = 1 for all t, /i is well-defined on 21 and n(X) = 1. Therefore, the 
triple (X, an , y.) is a probability space that is called the product measure space of 
spaces (X,-, an ¿,/ij) and the measure ¿t on an is then called the product measure 
of measures p,-. 

This construction ensures the existence of a measure on the set of infinite words, 
which we shall consider in the next section. 

3 Measure on AN 

An infinite word a on the alphabet A is an infinite sequense of letters indexed by 
natural numbers 

a = Oja2 . . . . 
The set of all infinite words on A is denoted by AN. We consider also the set A°° = 
A* U AN, on which we define the monoid structure as follows [Va]: for a,/? e A°°, 
if a S A* then the product a • ¡3 is the concatenation ap of a and /3; otherwise, if 
A E AN , A • ¡3 is defined to be A. Naturally, the product of words can be extended 
for languages, i.e. subsets of A°°: XY = { a • 0\a € X C A°°,/3 e Y C A 0 0 } . Not 
to be too strict, in the folowing, we omit the dot in the product of words ana when 
a set is a singleton we frequently identify it with its element. 

Let now p be any Bernoulli distribution on A, as before extended to A*; then 
(A, ip (A),p) actually forms a probability space, where (p (A) is the set of all 
subsets of A. Next, we can view AN as the Cartesian product of W (the cardinality 
of N) copies of A 

A » = l [ A 
i&N 

and we can say of the class a of measurable rectangles R 
oo 

R = J J Ai, Ai e an < 
>=i 
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with A{ = A for almost all t, which is, needless to say, a semiring. We define a set 
function n on 21 by 

CO 
/*(*) = I I 

i 

Clearly, by consideration of product measure in 2.3, fi is a-additive on 91 and thus 
is so on iR = R{<& ). Now we can extend /i further to a a-algebra OT = S(iR ) = 
5 ( d ) by measure extension procedure. 

Beside measurable rectangles we also consider a subclass 6 of measurable rect-
angles S of the special form 

S = (oi , . . . , o„, A, A,...), Oj G A, n > 1 

which are nothing but the subset wAN of AN, where w = aj . . . a„ G A*. Clearly, 
each measurable rectangle of a is a union no more than countable of sets from 6 , 
and consequently 5 ( 6 ) = 5 ( a ) = tot . 

As an immediate consequence of the existence of the product measure on AN, 
we have 

T h e o r e m 1 If X C A* is a code of A* such that AN = XAN, then X is a prefix 
code and for any Bernoulli distribution p on A, p(X) = 1, so X is a maximal code. 

Proof. Set X' = X - XA+. Then X' is a prefix code and AN = XAN = X'AN = 
Uwex'U>AN. The union is certainly countable and disjoint, therefore 

1 = » ( A n ) = M ( [ J = ¿2 H(WAn) = £ p(w) = p(X') < p(X). 
w€X> w€X' wex' 

But X is a code, by the Kraft-McMillan inequality, p(X) < 1, which implies p(X') = 
p(X) = 1 and X = X' is a maximal prefix code. • 

For any subset X C AN, a cover of X is a finite or countable collection € of 
sets from such that X C U^g« E. Since every set of iR is a finite or countable 
union of sets of 6 , so we can assume that a cover is always a countable collection of 
sets from S and we write C = {tUfA'" : i €E / } , where I C N. FVom <t we discard 
the redundant subsets, that is, the subsets having no intersection with X = 0 or 
containing another subset £ to obtain a subclass C ' = {u> : w' G J C 1} 
which, evidently, is still a cover of X and besides {to' : w'AN 6 £ ' } is a prefix 
subset of A*. From now on, speaking of covers, we always mean covers with these 
properties. Obviously, the outer measure of X is 

M*(X) = inf £ M M " ) = i n f £ P M . 
® wANet ' toANet 

We prove now one simple property of the measure fi". 

Propos i t i on 2 For any set X C AN and w G A*,n*{wX) — p{w)fi*[X). 

Proof. For any e > 0 let C = {tUiA7' : t G 1} be a cover of X such that 

/i*(x) < = < H*(X) + e 
iei iei 
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then € ' = {totU{An : t € / } is a cover of wX and 

/i*(twX) < uu)iAN) = p(wwj) 
»€/ . e / 

that means < p(u>)/i*(X). 
For the reverse inequality, suppose that C = {to ,Aw : t € / } is a cover of ujX, 

t o X C (1) 
»6/ 

such that 
< ^ / . K - A " ) < + e. (2) 

<6/ 

If w = for some t and to' E A+, then, in fact, C must be a singleton class, 
I = { t } , hence 

H*(wX) + e > p ( ^ ) > p(to) > p H m * ( X ) . 
If now for all t, to is a prefix of tm, = v)w'it from (1) we have 

X C ( J wlAN 

that means ff' = {uiJA^ : t E / } is a cover, for which from (2) we get 

p M m * ( X ) < P M X > k a " ) = J " ! » ^ " ) 
i€i iei 

= ^n[wiAlf) < n*(wX) + e. 
i€I 

That is, in both cases, e abitrarily small, we have p (w)n* (X ) < (j,*{tvX) that 
concludes the proof. • 

For any word to E A°° and any subset E C A°° we define 

to~ lE = {PEAco:(wpEE)k(wEAN)^p = e}-, 
Ew'1 = { a e A°° : (ato e E)k{a E AN) => w = e}. 

The fisrt set is clear; the last one has the following meaning: empty word is the 
only one to be allowed to cut on the right of an infinite word in E. For any subset 
F C we write 

F~1E= (J W~XE, EF~* — (J ETI)-1. 

w€F W€F 

Further on, p is assumed to be positive. 

Propos i t i on 3 Let X be a subset of AN 
and to a finite word of A*. Then X is 

measurable if and only if wX is measurable and n(wX) = p(to)/x(X). 



Measure of Infinitary Codes 133 

Proof. It is easy to check that 

w(XAE) = (wXAwE) 

for any subset EC AN. Set EX = W E, we have 

(3) 

wX - wEi = wX-E, 
wEi -wX Ç E - wX. 

Hence 
to(XA£i) = (wX&wEx) Ç {wXAE). (4) 

Proposition 2, monotonicity of p.*, (3) and (4) imply that 

p(w)n*(XAE) = f (wXAwE), 
p(w)n*(XAEi) < n*{wXAE). 

Note that if E € iR then wE, w~lE € iR , so X is measurable iff wX is measurable. 
The second claim immediately follows from Proposition 2. • 

Any language X Ç A°° is a disjoint union of its finitary part = X D A* 
and its infinitaty part X-ln{ = X fl AN : 

For a langague of finite words X C A*, commonly, X* denotes its Kleene closure, 
that is X* = {e} ( J ^ i x'> o r other words, X* is the smallest submonoid of A* 
(thus of A°°) containing X. We can extend this notion for any language X of A°°, 
namely, X* by definition is the smallest submonoid of A°° containing X, which, as 
one can easily verify, is X£ a U XgnX;n f . 

We recall now the concept of codes on A°° [Va]. Given any language X of 
A°° and a word w € A°°, a factorization of w on X is a finite sequence of words 
xi,..., x„-i,xn such that x\,..., xn—i S xn G X and w = x\ ... xn—\xn. X 
is said to be an infinitary code, or code for short, if every word of A°° has at most 
one factorization on X. Clearly, if restricted to A*, the infinitary codes are just the 
ordinary ones. 

Naturally, we say that a subset X C A°° is measurable if its infinitary part X;nf 
is measurable, and the measure y(X) is defined to be 

Now we are in a position to prove the Kraft-McMillan inequality for infinitary 
codes. 

T h e o r e m 4 (Kra f t -McMi l lan Inequality) For any measurable code X of A°°, 
mPO < i . 

Proof. Set / = p(-Xfi„),t = /i(Xinf). We have / < 1 by Kraft-McMillan Inequality 
for ordinary codes. Since X is an infinitary code, the union 

X = Xzn U .Xinf. 

ß i X ) = p(*fin) + AXint)-

xLxini = ( J w i l n I 
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is disjoint. Therefore, by Proposition 2 

= p(x*Mxint) < l = H{AN). 

If / < 1, then 

P ( * a J = 1 + / + / 2 + • • = Y^Tf-

Consequently, j^y < 1, i.e., fi(X) = » + / < 1. In the case / = 1, we show 
that t = 0. In fact, for all n, p[X&u U • • • U Xgn)/j(Xinf) = m - Hence, if t > 0, 
p(Xg n Xi n f ) = lim„_oo ni = oo, a contradiction. • 

Example 5 A prefix of a word a € A°° is a finite word w such that a = wfi for 
some fi CE A°° — e; a subset X Ç A°° is called prefix if for any two words in X none 
of them is a prefix of the other i.e. Xfln(A0° — e) PI X = 0; X is prefix-maximal 
if for any prefix subset Y,XCY implies Y — X. Evidently, a prefix subset is a 
code. Every prefix-maximal subset P is measurable and fi{P) — Indeed, since 
P is prefix-maximal, every word not in Pi„f has a prefix in Pfini therefore 

AN = PM (J wA» 
»ePfin 

is a disjoint union. Consequently 

i = » ( A N ) = n ( p i a t ) + Y l / i M " ) = P ( p i n f ) + ] r P (p f i n ) = M ( p ) . • 
«"epfin »effïn 

When A is a finite alphabet, any recognizable language is measurable, thus we 
have got a large class of measurable languages, which, by the way, are algorith-
mically constructible by finite means. Recall that a language X Ç AN is said to 
be recognizable if it is recognized by a finite Buchi automaton [Ei]. It has been 
well-known that the family Rec AN of recognizable languages of AN is the Boolean 
closure of the family Det AN of deterministic recognizable ones (Biichi-McNaughton 
Theorem), i.e. the languages recognized by finite deterministic Buchi automata, 
which are the finite unions (J"=1 Bi C", where B{, C,- are (regular) prefix subsets of 
A* and Cf stands for the set of infinite words obtained by infinite concatenation 
of nonempty words of C,- : C = {xi^a • • • : xi> x2, • • • G Ci). 

Propos i t i on 6 Every recognizable language X of AN is measurable, i.e. Rec AN Ç 
OT . 

Proof. For any subset BiC? with , C,- prefix subsets of A* we have 
oo 

BiC? = Pi BiCiAN. 
n= 1 

By proposition 2, B i C ? A N is measurable for all n. Since the tr-algebra 9JI of 
measurable subsets is closed under the formation of Boolean operations, moreover, 
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of countable unions and intersections, B iC" is measurable, hence DetA^ С ОТ 
and thus RecAw С ОТ . • 

We now resume the assumption that A is finite or countable. A code is said to 
be maximal if it cannot be included properly in another code. The existence of a 
maximal code containing a given code X is easily verified by mean of the Zorn's 
lemma. A maximal code must has a "nonnegligible" fraction of words in AN. More 
precisely, we have 

Propos i t ion 7 For every maximal code X, the outer measure of X¡„f is positive: 
y*(Xin{)>0. 

Proof. Let 
FD (X l n f ) = { a € AN : 3w € A* : WA 6 X i n f } . 

be the subset of suffixes of X,af. Suppose that р*(Хш) = 0, hence /i*(FD (Xi„f)) = 
0. For any w e A + , tu(iu - 1X;nf) С Xinf, we have 

0 < м ' И и Г 1 ^ , ) ) = p H M * ^ " 1 ^ , ) < ц*(Хш) = 0, 

hence p{w)n*(w~1Xint) = 0 and so ¿z*(to -1X;nf) = 0. Consequently 

0 < A«*(FD (Xi„{)) = /•»*( ( J w _ 1 Xi „ f ) < £ n*(w~1Xin f ) = 0 
шел* тел* 

(subadditivity of /x*). 
On the other hand, being a maximal code, X is complete [Va], i.e., AN = 

F D ( X £ n X i n f ) . By M*(*inf) = 0 

0 < / i* (Xj? n X i n f ) < Y1 M * № f ) = £ PMSiX.inf)=0, 
" е х Я п 

that is / i*(XgnX;nf) = 0, therefore 

" е Х Яп " 6 *f in 

M*(FD (Xj|nX in {)) = 0 = p{AN) = 1, 

a contradiction. • 

Example 8 (a non-measurable subset of A^) A suffix of a word a 6 A°° is a 
word such that a = wp for some w €E A + ; X C A°° is called a suffix subset 
if there are no words in X one of which is a suffix of the other, i.e. for every 
w € A + : X n wX = 0. A suffix set of AN is called suffix-maximal if it is not 
contained properly in any other suffix subset of AN. Let S be any suffix-maximal 
subset of AN. Suppose that S is measurable; it is easy to see that 5 U A is a code, 
so we have p.{S) = 0. On the other hand, since S U A is even a maximal code, the 
previous proposition shows that p(S) = / i*(5) > 0. This contradition means that 
S is not measurable. 

In the propositions that follow we prove some properties of codes imposed with 
special conditions. 

Propos i t i on 9 Let X be a measurable code of A°° with /¿(X) = 1 and /¿(Xinf) > 0, 
then X f i n is a prefix code. 
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Proof. We show that Xgn is left unitary, i.e., X|n = ( X J n ) _ 1 X J n , whose base Xfi„ 
is then a prefix code. Always, XgQ C ( X g n ) _ 1 X g n . For the converse^ inclusion, 
we take any nonempty word w G (•^an)-1-^fin> s o th e r e exist u, u G Xgn such that 
uto = v. Since p ( X ) = 1, / i (XgnX i n f ) = j r y = \ = 1. we have wXinf n X g n X i n ( ^ 0 
otherwise 

n{wXint U X| n X i n { ) = fi(u>Xiaf) + /x(XgnXin {) = p(tw)i + 1 > 1 

that is an obvious contradiction. So there exist x G X| n ,a , / ? G Xiuj such that 
wa = xp. Hence va = ttx/?, that implies v — uz, as X is a code. Thus to = x G Xg n . • 

T h e o r e m 10 If X is a measurable maximal code with fi(X) = 1 then Xfin is a 
prefix code. 

Proof. By Proposition 7, n{Xinf) > 0 and by the previous proposition the result 
immediately follows. • 

A language X C A°° is called finite-state provided the collection { t o _ 1 X : to G 
A*} is finite. It is not difficult to prove that the family of finite-state languages is 
closed under the formation of finite unions, of finite intersections and the w-product. 
It is noteworthy that Rec AN is a subfamily of finite-state languages. 

Propos i t i on 11 If X is a maximal code over A satisfying ( X g n ) - 1 X g n = A*, then 
X;n f is not a finite-state language if A consists of at least two elements. 

Proof. Under the assumption ( X g n ) - 1 X g n = A*, X is a (maximal) code iff Xi„f is 
a suffix(-maximal) set. We show that a suffix-maximal language is not finite-state 
(the fact that it is not recognizable is shown in Example 8). 

Fix x G A*, for any r G A + we take a word 

a = (A*{rx)u U FD (rxw)) n X i n f ± 0. 

This can be done, as X;nf is suffix-maximal. We write a = a{rx)u, where o G A*, 
hence a — arx(rx)" and (rx ) u G (arx ) - 1 Xj n f . Thus for any x, there exists u G A* 
such that (uz) _ 1 Xi n f ^ 0. Consequently, there exists an infinite sequence vi, v ? , . . . 
such that t>{ is a suffix of and vt~1 Xinf 0 for all t. As X m f is a suffix set, 
V^XINF ^ VJ1Xinf for i j i j . O 

Propos i t i on 12 If X is a maximal code with Xfi„ a nonsingleton prefix code, then 
Xinf is not finite-state. 

Proof. Suppose on the contrary that X is finite-state. Consider the subset 

y i n f = X i n f n X £ n C X £ n (5) 

which is nonempty, since X is a maximal code. For every to G Xgn it is clear that 

w - ^ t o t = u»-1 JTinf n X£ n C X£ n . (6) 
Let now c be a coding morphism for Xfin 

c : B —• Xgn , 
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where B is an alphabet of the same cardinality as Xsn. As X is a prefix code, we 
may correctly extend c to an injective morphism of monoids . 

c : B°° — XI CO 
fin I 

where denotes X£n UX£ n . Therefore (5) and (6) and the fact that X is finite-
state maximal code imply that B U c - 1 (y|n f ) is also a finite-state maximal code on 
B°° with CardB > 2 that contradicts Proposition 11. Thus X is not finite-state. • 

Putting the propositions 6, 10 and 12 all together, we are lead to a situation 
quite opposite to the case of ordinary codes 

T h e o r e m 13 Let X be a code on the finite alphabet A with Xinf a recognizable 
language of AN, then the following two assertions are incompatible 

1. n(X) = 1 

2. X is a maximal code. 
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