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Radical Theory for Group Semiautomata 

Y. Fong* F.K. Huang* R. Wiegandt* 

Abstract 
A Kurosh-Amitsur radical theory is developed for group semiautomata. 

Radical theory stems from ring theory, it is apt for deriving structure the-
orems and for a comparative study of properties. Unlikely to conventional 
radical theories, the radical of a group semiautomaton need not be a sub-
semiautomaton, so the whole scene will take place in a suitably constructed 
category. The fundamental facts of the theory are described in § 2. A special 
feature of the theory, the existence of complementary radicals, is discussed 
in § 3. Restricting the theory to additive automata, which still comprise 
linear sequential machines, in § 4 stronger results will be achieved, and also 
a (sub)direct decomposition theorem for certain semisimple group semiau-
tomata will be proved. Examples are given at appropriate places. The paper 
may serve also as a framework for future structural investigations of group 
semiautomata. 
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0 Introduction 
The purpose of this paper is to develop a Kurosh-Amitsur radical theory for group 
semiautomata which may serve as a framework for future radical theoretical inves-
tigations and for describing the structure of semisimple group semiautomata. 

In the variety of group semiautomata there is a one to one correspondence 
between homomorphisms and kernels, so it is meaningful to designate a kernel of 
a group semiautomaton as its radical. Doing so, however, there is an obstacle : a 
kernel is not always a subsemiautomaton, but only a normal subgroup subject to 
some additional requirement. This shortcoming can be overcome, if we work in an 
appropriately constructed category comprising group semiautomata and groups as 
objects. In this way kernels can be considered as subobjects. 

The category suitable for a radical theory of group semiautomata will be con-
structed in § 1 analogously as done for semifields in [12]. Following the framework 
of [8], the fundamental notions of radical theory along with their characterizations, 
are given in § 2 in a self-contained way. A special feature of the radical theory 
of group semiautomata is the existence of complementary radical and semisimple 
classes which are discussed in § 3. Restricting the investigations to additive group 
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semiautomata introduced in [4], we can get more explicit results. We shall see in § 4 
that semisimple classes of additive group semiautomata are always hereditary, and 
we shall prove a subdirect 'decomposition theorem for additive "group semiautomata 
which are semisimple with respect to a certain radical. Examples are supplied at 
appropriate places. 

1 Preliminaries 
A group semiautomaton (for short, a GS-automaton) is a quadruple ( A , + , X, 5) 
consisting of an additive (not necessarily commutative) group (A, + ) as a set of 
states, of an input set X ^ 0 and a state transition function 8 : A X X —• A. The 
input set X, as usual, can be extended to the free monoid X* over X, and then it 
is required that the transition function 8 satisfies 

8(a,xy) = 5(£(a,x) ,y) 

for all x, y G X*. 
The notion of GS-automaton is a generalization of that of linear sequential ma-

chine [3] or linear sequential automaton [l], and has been investigated, for instance, 
in [5],[6] (cf. also [9]). 

In terms of universal algebra a GS-automaton is nothing but a universal algebra 
(A, Q) with underlying set A and a set of operations fl = { + } u 5 where + is a binary 
operation making (A, + ) a group and 8 consists of unary operations fx : a S(a, x), 
for all o £ A and x G X. Hence we know that GS-automata over a fixed input 
set X form a variety, and it is clear what a subsemiautomaton, a homomorphic 
image, an isomorphism, a direct or subdirect sum, a subdirectly irreducible GS-
automaton, etc. means. Also the meaning of the homomorphism theorem and of 
the isomorphism theorems is obvious. 

Throughout this paper the set X of inputs will be fixed, or equivalently, the set 
6 of unary operations will be a given one, and so a GS-automaton on the set A of 
states will be denoted by (A, + , 8), or sometimes briefly by A, if there is no fear of 
ambiguity. Moreover, for the clumsy notation 8(a, x) we shall write simply ax. 

A congruence relation K of a GS-automaton (A, + , 5) is a congruence on the 
group (A, +) , and therefore K determines uniquely the coset K containing 0, which 
is a normal subgroup of (A ,+ ) . Since K is a congruence of the GS-automaton 
(A, + ,5 ) , K is compatible with the unary "operations fx G 8, x G X, that is, fx(a + k) 
is congruent to fx(a) modulo K, that is, 

(*) (a + k)x - ax G K 

for every x G X, a G A and k G K. Conversely, if K is a normal subgroup of 
( A , + ) and satisfies condition (*), then the equivalence relation K defined by K on 
the set A is a congruence on (A, + , 5). Thus by the homomorphism theorem every 
homomorphism 

<p: (A ,+ ,S ) - ( B , + , 5 ) 

has a kernel K which is precisely a normal subgroup of (A, + ) subject to the re-
quirement (*). 

Let us observe a fact of importance for our investigations. A kernel of a GS-
automaton need not be a subsemiautomaton, and a subsemiautomaton (B, + , 8) of 
a GS-automaton (A, + , 8) with normal subgroup (B, + ) in (A, + ) , is not necessarily 
a kernel. 
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PROPOSITION 1.1. A kernel K is a subsemiautomaton if and only if OX C K. If 
K contains a subsemiautomaton, then K itself is a subsemiautomaton. 

PROOF: Since 
kx - Ox = (0 + k)x - Ox € K 

holds for arbitrary elements A: £ K and x £ X , the assertion follows. The second 
statement is now clear. • 

EXAMPLE 1.2. A subsemiautomaton (B, + , S) of a GS-automaton (A, + , 5) need 
not be a kernel even if (B, + ) is normal in ( A , + ) . Let us consider, namely, the 
Klein 4-group ( A , + ) = {0, a, b, c} as the set of states and X = { x } as the set of 
inputs. Define 6 by the following graph 

1 L x x a x n c —y b —• a —• 0 —• 0. 

It can be easily seen that {0, a}, forms a subsemiautomaton (which is trivially a 
normal subgroup in A with OX = 0 £ {0, a}) , but it is not a kernel, for 

(b -I- a)x — bx = cx — bx = b — a = c £ {0, a}. 

The fact that there is a one-to-one correspondence between kernels and homo-
morphisms of GS-automata, but kernels are, in general, not subsemiautomata, adds 
a special flavor to the radical theory of GS-automata. A similar situation occurs 
also in the case of semifields [7], for which a radical theory has been developed in 
a category (universal class) comprising semifields and groups as objects [12]. In 
setting the scene we shall employ ideas of [12] and follow the framework of the 
Kurosh-Amitsur radical theory as developed in [8]. Thus we shall work in a univer-
sal class of GS-automata and groups, and it is our purpose in this note to develop 
a Kurosh-Amitsur radical theory in f j yielding specific results for GS-automata. 
Due to the high level of generality in [8], the adaptation of the results of [8] to our 
case is not quite straightforward, therefore for the sake of understandability and 
clarity we shall present the Kurosh-Amitsur radical theory of GS-automata in a 
self-contained way, though following the pattern of [8] and using ideas of [12]. 

Our investigations will take place within a suitable category C, the objects 
thereof axe GS-automata and groups. Let 21 denote the class of all GS-automata 
over a fixed input set X and © the class of all groups, and we set Ob£ = 2i U © . 
For all A, B 6 21 U © we consider the following three types of morphisms ¡p: A —• B 

1) All GS-automaton homomorphisms <p: (A, + , 6) —• (B, + , S) for A, B £ 21. 
2) All group homomorphisms <p\ (A, + ) —» (B, + ) for A, B £ © . 
3) All group homomorphisms <p\ (A, + ) —• (B, -f , 6) for A S © and B £ 21 

where one does not care about the transition function S (or equivalently, 
about the unary operations fx S 5, x £ X) defined on B. 

The morphisms of types l ) , 2) and 3) will consititute the morphisms of C. It is 
clear that C has become a category. Designating the subclass 

E = {all surjective morphisms of types 1) and 2) in C } 

and 
M = {all injective morphisms in C } , 

both C and M, along with the objects of C, form obviously subcategories in C. 
Moreover, £ and M consist of epimorphisms and monomorphisms, respectively, 
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and £ fl At is the class of all isomorphisms in £ . Every morphism <p: A —» B in £ 
factors as 

where e € £ and y €E Ai. Thus £ is endowed with a bicategory structure. 
For developing a radical theory, it is sufficient and sometimes also useful to 

restrict the investigations to a certain subcategory of £ . A non-empty subcategory 
Sj of £ is called a universal class, if f) satisfies the following conditions : 

(i) f) is closed with respect to all surjective morphisms <p: A —• B of types 
1) and 2). 

(ii) f) is closed under taking kernels : for any morphisms <p: A —• B in fj 
also K = ker <p is in Sj, (or equivalently, if K is a kernel in A 6E Sj , then 
also K G 

(iii) (A, +,6) eSj implies (A, + ) £ Sj . 
Concerning the universal class f j we shall work with, we make some observa-

tions. 
1. The identical mapping i of the set of states A induces a bijection t: (A, + ) —• 

(A, + , S) which is not an isomorphism, for its inverse does not exist in £ (in fact, 
it is not defined). 

2. Sj contains an initial object (0 ,+) and a terminal object (0 ,+ ,5 ) whenever 
Sj n2l 0. We call (0, + ) and (0, + , 5) the trivial objects of 5} , and we shall write X 
for the class of trivial objects. Since (0, + ) and (0, + , 5) are not isomorphic, in view 
of [11] we can predict a peculiar feature of the radical theory of GS-automata, and 
that is the existence of non-trivial complementary radical and semisimple classes 
(cf. § 3). 

3. If (A, + ,5 ) € Sj and <p: A —• B is a morphism, then K = ker <p is either a 
subsemiautomaton (K, + ,£ ) (this is the case whenever K is a subsemiautomaton) 
or a normal subgroup (K, + ) (this is the case when K is not a subsemiautomaton). 
In the first case (K, + ) is a subobject of (A, +, 5) which is contained in the subobject 
( K , + , 5), but they are not equivalent subobjects. 

4. The image of a kernel need not be a kernel. For instance, let (K, + ) be a 
kernel of a group (A, + ) and 

t : ( A l + ) - ( A > + > i ) 

the identical embedding. Since (K, + ) is merely a normal subgroup of (A, + ) , 

iTT _ ) (K, + ) if K is not a subsemiautomaton, 
' ' (K, + ,5 ) if K is a subsemiautomaton, 

but t(K, + ) need not be a kernel of t (A, + ) = (A, + , S), regardless as whether it is 
a subsemiautomaton or not (cf. EXAMPLE 1.2). 

5. We have to be careful in applying the second isomorphism theorem in Sj. 
Let (L, + ) be a subgroup of (A, + ) in a GS-automaton (A, + ,5 ) . If K is a kernel of 
(A, + ,5 ) , then L / ( L n K ) is only a group, although L + K may be a subsemiautoma-
ton, for instance, if L is a kernel of (A, + , 6} and K is also a subsemiautomaton. In 
this case we have 

(L/(L n K), + ) s ((L + K) /K, + ) - U ((L + K) /K, + , 6) 

and the left hand side is not isomorphic to the right hand side. 



Radical Theory for Group Semiautomata 173 

6. In the category £ (and therefore also in ft) direct sums, in general, do not 
exist; more precisely, the (complete) direct sum A a of objects A a , a 6 A, exists 
in £ if and only if either all A a are GS-automata, or all of them are groups. 

Kernels of an object A of ft form clearly a complete lattice isomorphic to the 
lattice of congruences of A. Unions and intersections in the lattice of kernels will 
be denoted by V and A, respectively. As usual, V over the empty set and A over 
the empty set in the lattice of kernels of an object A, will mean the trivial kernel 
of A and A itself, respectively. 

PROPOSITION 1.3. If K and L are kernels of a GS-automaton ( A , + , 5 ) , then 
either K V L = (K + L , + ) or K V L = (K + L, + , 5 ) . In particular, if K is a 
subsemiautomaton, then K v L = (K + L , + , f ) . 

PROOF: K + L is obviously a normal subgroup in A. Let a £ A, H I s K + L and 
x £ X be arbitrary elements. Then 

(a + k + l)x - ax = (a + k + l)x - (a + k)x + (a + k)x - ax € K + L 

holds proving the first assertion. Hence in view of PROPOSITION 1.1 the second 
statement follows. • 

2 Radical operator, radical class, semisimple 
class 

In this section we fix a universal class ft. Whenever we consider a subclass C of 
objects of ft, we suppose that C is an abstract class (that is, C is closed under 
isomorphisms) and that I C G , Moreover, we introduce the following notation : 

A—>B means a nonzero surjective morphism of type 1) or 2), 
K <J A means that K is a nonzero kernel of A. 

In the sequel we are going to give the fundamental definitions and characteri-
zations of radical theory in a self-contained way for GS-automata. Further results 
can be proven in a similar way as in [12] or can be derived from [8]. 

An operator Q which assigns to each object A Gft a kernel £>A of A is called a 
radical operator, if Q satisfies the following set of conditions for all A,B Gft : 

iga) if <p: A —• B is a surjective morphism, then <p(eA) C gB holds, 

eb\ \e(A/eA]\ = l, gc) if gB = B < A, then B C QA, go) ggA = f>A. 

PROPOSITION 2.1. Let Q be a radical operator. The class 

R c = {A G ft | gA = A } 

fulfils the following conditions for all A, B 6 ft : 

(Ra) if A € R e , then for every A—>B there exists a K < B with K £ R c , 
(R6) if A S ft and for every A—>B there exists a K< B with K S R e , then 
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A e R j , 
(RA;) if (A, + , 6) € ft and there exists a K < (A, + ) such that K £ R c , then 

there exists an L <J (A, + ,5 ) with L £ R c . 

PROOF: Let A £ R e and <p: A—>B be arbitrarily chosen. By (ga) we have 

B - »'(A) = <p[qA) C Qip[A) = eB C B, 

and hence B € R c . Thus (Ro) is trivially satisfied. 
Let A £ ft be an object such that for each A—>B there exists a K < B with 

K € R c . If A £ R c , then gA ^ A, and so for B = A/QA we have |B| > 1. By the 
hypothesis there exists a K < B such that gK = K, and hence (gc) yields K C gB. 
Thus we have got 

l<\K\<\gB\ = \e(A/eA)\ 

contradicting (gb). Consequently A £ R c , proving (R6). 
Finally, let us suppose that (A, + , 5) € ft is a GS-automaton such that K<(A, + ) 

with some K £ R e . Then (gc) yields K C g(A, + ) . Further, for the morphism 
i: (A, + ) —• (A, + , 5) in view of (go) we get 

t (K) C t ( e ( A , + ) ) C e ( t ( A , + ) ) = e (A ,+ ,5 ) , 

and so 
1 < |K| = |i(K)|< |e(A,+,5)| 

holds. Since by igd) we have also g(A, + , 5) £ R c , the validity of condition (RA:) 
has been establisned. • 

PROPOSITION 2.2. If a subclass R o / f t satisfies conditions (Ra), (Ri) , (Rifc), then 
R fulfils also the following ones : 

(R/i) the class R is homomorphically closed : if A £ R and <p: A—>B, then 
B £ R , 

(Rc) if (A, + , 5) € ft and (A, + ) £ R , then (A, + , <5) £ R , 
(Re) the class R is closed under extensions : i f K < A £ f t , K £ R and 

A / K £ R , then A £ R , 
(Ri) the class R has the inductive property : if Ki C • • • C K a C • • • is any 

ascending chain of kernels of an object A € ft such that K a £ R for 
each index a, then VKtt £ R , 

(R<) I C R . 
PROOF: Let A £ R and <p: A—>B, and let us consider an arbitrary ip: B—>C. 
Then also V"PA—>C holds, and so by (Ra) there exists a K < C with K £ R . 
Hence (R6) is applicable on B yielding B £ R . This proves (R/i). 

Let (A, + ,£ ) be a GS-automaton in ft such that (A, + ) £ R , and K be an 
arbitrary kernel of (A, + , S) with K ^ (A, + , 5). Then we have 

( A / K , + ) - L + ( A / K , + , 5 ) 

and also ( A / K , + ) £ R\T in view of (R/i). Hence (RA;) infers the existence of a 
kernel L of (A/K, - f , 6) such that L £ R\X. Since the choice of K was arbitrary, 
by (R6) we conclude ( A , + , 5 ) € R , proving the validity of (Rc). 
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For proving (Re), let L be an arbitrary nonzero kernel of A. We wish to apply 
(R6) on A. If K C L, then the isomorphism 

and the already demonstrated condition (R/i) yield A /L G R . If K % L, then 
|K/(L n K)| > 1 and again by (Rh) also K / (L n K) £ R is valid. Further, by 
PROPOSITION 1.3 we have 

K/ (L n K) = (L + K) /L (L V K) /L < A /L 

and so by (Rc), if needed, also (L V K) /L G R holds. Thus A /L possesses always a 
nonzero kernel in R , and therefore (R6) infers A € R . This proves (Re). 

For demonstrating (Ri), put L = VK a . If L ^ R , then in view of (Rb) there 
exists an M < L such that |L/M| > 1 and L / M has no nonzero kernel in R . Further, 
by (Rh) we have K a / ( M n K a ) G R for each a. From PROPOSITION 1.3 we have 

K a / ( M n K a ) Si (Ka + M ) / M (Ka V M ) / M « L /M 

and so (Rc) infers (Ka V M ) / M G R for every a. Hence by the choice of M it follows 
K a C M for every a, and so also L = VKa C M, contradicting |L/M| > 1. 

(Ri) is a trivial consequence of (R6). • 

PROPOSITION 2.3. Let a subclass R of ft satisfy conditions (R/i), (Re), (Ri), (Ri), 
(Rk). If the operator Q is defined as 

QA = V ( K « A | K G R ) , V A e f i , 

then 
i) eA G R , VA G ft and R = {A € f) | ^A = A } , 
ii) Q is a radical operator. 

PROOF: First we prove that R fulfils (Rc). Suppose the contrary: there exists an 
automaton (A, + ,5 ) S ft \ R such that (A, + ) 6 R \ I . By (Ri) and Zorn's Lemma 
there exists a kernel I of (A, + , <5) such that I e R and I is maximal with respect to 
this property. Let us consider the automaton A / I = (A/I, + , 5). Since R has (R/i), 
we have (A/I, + ) e R . Take any kernel L/I of (A/I, +d) such that L/I e R . Then 
by I € R and (Re) we get L e R . Hence the maximality of I gives us L = I. Thus 
there is no 

kernel L /K of (A/I, + , <S) such that |L/K] > 1 and L /K e R . Applying 
(RA;) we conclude that there is no kernel K / I of (A/I, + ) such that |K/I| > 1 and 
K / I 6 R . This and (A/I, + ) e R imply A = I e R , contradicting A G ft \R . Thus 
(Tic) has been established. 

Now we prove QA G R . By (Rt) Zorn's Lemma is applicable yielding the 
existence of a kernel K of A being maximal with respect to K G R . Let L be any 
other kernel of A with L G R . By (Rh) we have L/(L D K) G R and so in view of 

L/(L n K) s (L + K ) / K - ^ ( L V K ) / K 

condition (Rc), if needed, yields (L V K ) / K G R . Hence by condition (Re) we get 
L V K G R which implies L C K by the choice of K. Thus K is the unique kernel of 
A such that K is maximal with respect to K G R . This means exactly QA = K G R . 

Now the assertion that R = {A G ft | QA. = A } is obviously true. 
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For proving that g is a radical operator, we notice that (gc) and (gd) are clearly 
satisfied, both by gA € R . 

Next we exhibit (gb). Let L / g A < A / g A and L/gA 6 R . As we have already 
seen, gA £ R , hence condition (Rel implies L € R . Thus by the definition of gA 
we conclude L C gA which implies |L/gA| = 1 as well as |g(A/gA)| = 1. 

For demonstrating (ga) it suffices to exhibit its validity for morphisms ip: A—>B 
and i: ( A , + ) —• (A ,+ ,5 ) Decause every surjective morphism <p is a composition of 
such morphisms or |Al = 1, and this latter case is covered by condition (Rf) . 
For any morphism y>: A—>B we have *1>(K) < B or = 1 whenever K < A, 
in particular for K = gA. Furthermore, also gA € R. holds as we have seen, 
and so condition (R/i) infers ip(ek) € R . Thus by definition ip(gA) C gB holds. 
In the case i: (A, + ) —• (A, + , 5), let us suppose that (ga) is not true, that is, 
t(e(A, + ) ) % e (A ,+ ,5 ) . Then we have 

l e ( A , + ) / ( g ( A , + ) n g ( A , + , S ) ) l > 1 

and 

e ( A , + ) / ( e ( A , + ) n e ( A , + , 5 ) ) - ( e (A ,+ ) + e ( A , + , , 5 ) ) / e ( A , + , 5 ) 

<1 ( A / e ( A , + , 5 ) , + ) . 

Moreover, condition (R/i) implies 

e (A , + ) / ( e ( A , + ) n g(A, + , S)) e R . 
Hence condition (Rk) applies to K = (g(A, + ) + g(A, + , £ ) ) / A , + , S) yielding the 
existence of an L < A / e ( A , + , 6 ) with L e R . This, by |L| > 1, contradicts the 
already demostrated condition (gc). Thus t(e(A, + ) ) C g(A, + , i ) holds. • 

A subclass R of ft is called a radical class if it satisfies condition (Ra), (R6), 
(Rk). PROPOSITION 2.1, 2.2 and 2.3 can be summarized as follows 

THEOREM 2.4. Let g be an operator assigning to each object A S ft a kernel gA 
of A, and let R be a subclass of objects in ft. Then the following three conditions 
are equivalent : 

1) g is a radical operator and Rt f = R , 
2) R is a radical class and gA = V(K< A|K e R ) , V A e f t , 
3) R satisfies conditions (R/i), (Re), (Ri), (Rfc), (Ri) and 

gA = V(K <i A | K e R) , VA 6 ft . • 

Let g be a radical operator. The class 

se = {A e ft | |eA| = 1} 
is called the semisimple class of g (or equivalently, of the radical class R e ) . Obvi-
ously R e n S c = I holds. It is useful introduce the semisimple operator S acting 
on subclasses C of objects of ft and defined by 

5C = {A 6E ft | K < j A = > K £ C } . 

If g is any radical operator and R c the corresponding radical class, then by THE-
OREM 2.4 we have 

SE - SRE 

which justifies the terminology. 
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PROPOSITION 2.5. If Q is a radical operator in ft, then the semisimple class Se 
satisfies the following conditions : 

(Sa) if AGS e, then for every К < A there exists а К—>B with В e S e , 
(Sfe) if A e ft and for every K< A there exists а К—>B with В e S c , then 

A e S e . 
(Sc) if (A, + , 6) € S „ then (A, + ) 6 S e . 

PROOF: For exhibiting (Sa), let us consider an object A (E Se = SRe and an 
arbitrary K<A. Now we have gK € R e , and so |K/gK| > 1. Also K/gK S S c holds 
in view of (gi>). Hence К—>B e S e is satisfied with В = K/gK. 

Next, let us suppose that for every K « A there exists а К—>B with В & Se, but 
A ^ S e . Then |gA| > 1. In particular, for К = QA there exists a QA—>C £ S e , and 
by (ea) (or (RA)) we conclude also gC = С (or С e R c ) . Thus С e S e П R c = 1 , 
contradicting QA—>C. This proves the validity of (Si). 

Finally, assume that (A ,+ ,5 ) £ ft and (A, + ) ^ S c , that is, £>(A,+) < (A, + ) 
and g (A,+) 6 R e . By THEOREM 2.4 condition (RA;) is applicable yielding the 
existence of an L < (A, + , S) with L € R e . Hence by (gb) it follows L С g(A, + , <5) 
implying (A, + , S) £ S e . This proves (Sc). • 

For any subclass С С ft we define an operator U as 

UC = {A 6 ft IA—t>B =>B £ C } . 
The operator U, which is defined dually to the semisimple operator 5, is called the 
upper radical operator. 

PROPOSITION 2.6. If a subclass S C i j satisfies conditions (Sa), (Si>), (Sc), then 
R = US is a radical class, and S = SR = S e where Q denotes the radical operator 
correponding to the radical class R . 

PROOF: Since the relation —> is transitive, the class R = US is homomorphically 
closed, that is, US satisfies (R/i) and hence also the weaker condition (Ro). 

For demonstrating (Rfc), let us consider and object A 6 ft \ X such that for 
every A—>B there exists а К < В with К 6 US. If A ^ US, then there exists an 
A—>B with В € S and by (Sa) to every K « B there exists а К—>C £ S, that is, 
К ^ US. This contradicts the assumption on A, and so (Rfc) is satisfied. Let us 
notice that an object A £ 1 trivially satisfies (R6). 

Let (A, + , 5) € ft be an object such that K< (A, + ) and К € R = US for some 
kernel of (A ,+ ) . To prove (RA;) we have to show that ( A , + , 5 ) ^ S, because then 
by (Sb) there exists an L< (A, + , 5) such that L £ US = R, and this means exactly 
the validity of (RA;). Suppose that (A ,+ ,5 ) € S. Then by (Sc) also (A, + ) € S 
is valid, and so by (Sa) we have К—>B 6 S for the kernel К of (A, + ) with an 
appropriate В G ft . This means К ^ US, contradicting К € US. Thus (RA;) has 
been established. 

Since R = US satisfies (Ra), (Rb) and (RA;), by THEOREM 2.4 we conclude that 
R is a radical class. 

As one readily checks, (Sa) is equivalent to S С SUS and (Sfc) is equivalent 
to SUS С S. Hence S = SR as well as S = S e hold by the remark proceding 
PROPOSITION 2.5. • 

PROPOSITIONS 2.5 and 2.6 infer immediately 

COROLLARY 2.7. A subclass S с ft is the semisimple class of a radical class (or 
equivalently, of a radical operator) if and only if S satisfies conditions (Sa),(S6) 
and (Sc). 
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For a subclass S of objects, let us define the operator r] as 
т)А = Л(К < A | A / K 6 S) 

which assigns to each A S ft a kernel of A. 
PROPOSITION 2.8. IfSis the semisimple class corresponding to a radical operator 
S, then 
(Ss) S is closed under subdirect sums : A = and A a 6 S for all a 

subdirect 
imply A G S, or equivalently : k/rjk 6 S, 

(Sg) r/A = gk for all A € ft , 

(Srj) r/f] A is a kernel of A for all A e ft , 

(Se) S is closed under extensions. 
PROOF: Firstly we prove (Ss). Let us consider an object A 6 ft such that A is a 
subdirect sum of objects Aa. a € A., each in S. Then there exists a set { K a | a 6 A} 
of kernels of A such that A / K a = A a £ S and | A K a | = 1. Let L < A be arbitrary. 
Now by |L| > 1 there exists an index a such that L £ K a , and hence 

(L V Ka)/Ka < A / K a £ S. 
Thus, condition (Sa) infers the existence of an 

(L V K a ) / K a — > B e S. 
Hence either 

L—>L/(L A K„) = ( L v K a ) / K a — o B e S 
or by (Sc) 

(L, +)—>(L/ (L A K a ) , + ) а ((L + K a ) / K a , +)—>(B, + ) e S 
yields L—t>C 6 S where С = (В, + , S) or (B, + ) . Hence by (S6) we conclude that 
A S S, proving (Ss). 

For demonstrating (Se), let us consider а К < A such that К G S and A / K 6 S. 
Further, let L < A be arbitrary. If L С К, then by L < К and K e S condition (So) 
implies the existence of an L—>B 6 S. if L 2 K> then we have 

( L v K ) / K < i A / K e S , 

and so by (Sa), (L VK) /K—>B 6 S with an appropriate В £ ft . The isomorphism 

L/(L Л K) = (L + K) /K ( L v K ) / K 
and condition (Sc), if necessary, infer L—>C 6 S where either С = ( В , + , 5) or 
С = (В, + ) . Thus by (Sb) we obtain A 6 S which proves (Sc). 

Next, we are going to prove (Sg). By condition (gb) we have |^(A/pA)| = 1, and 
therefore A/gA 6 S c = S. Hence r\А С gk holds by the definition of r\. Suppose 
that r/A ф gk. Then gk/rjki A is valid as |^А/г;А| > 1. Moreover, by (pa) and 
(gd) we obtain 

gk/r)k = ggk/qk С g(gk/r]k), 
yielding gk/r)k €E R e = US. Since k/t)k £ S by (Ss), condition (Sa) applied to 
gk/rjk < k/rjk yields the existence of a gk/rjk—>C G S, contradicting gk/rjk £ 
US. Thus r]k — gk has been proved. 

Finally, condition (Srj) is a trivial consequence of rjk = gk and condition (gd). 
• 
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PROPOSITION 2.9 . Let S be a subclass of Sj which fulfils conditions (Sa), 
(Se), (Se), (Ss), (Si),(Srj). Then S is a semisimple class. 

PROOF: In view of COROLLARY 2.7 all what we have to prove is the validity of 
condition (Si). So, let us consider an object A G Sj such that for every K< A there 
exists a K—>B with B G S. By way of contradiction, let us suppose that A ^ S. 
Then by (Ss) we have A/r/A G S, and so |r;A| > 1, that is, »7A < A. By (Sr?) also 
rçA/rjrçÀ < A/r/rjA holds, and by (Ss) we have r/A/rjfjA G S. Since 

A / ™ A - A/tjA 6 S, 
rçA/rjrçA 

condition (Se) yields A/rçrçA G S which implies T]A Ç rçr/A. Thus by the definition 
of rj, t]A has no non-zero isomorphic image in S, contradicting (Sa). • 

COROLLARY 2.10. A subclass S of f) is a semisimple class if and only if S satisfies 
conditions (Sa), (Se), (Se), (Ss), (Si) and (Sri). Moreover, the operator rj occuring 
in condition (Sr]) is just the radical operator corresponding to the semisimple class 
S. 

PROOF: Trivial by PROPOSITIONS 2.8 and 2.9. • 

THEOREM 2.11. The subclasses R and S are corresponding radical and 
semi-simple classes (that is, R = US and S = SR) if and only if 

a) А G R and A—t>B imply В £ S, that is, R С US, 
b) A G S and В < A imply В 0 R , that is, S С SR, 
c) for each A G Sj there exists a kernel К of A such that К € R and 

A / K G S . 
d) S fulfils (Sc) or R satisfies (Rk). 

PROOF: We already know that these properties hold true for a radical class R with 
semisimple class S = SR. 

Conversely, we apply c) to each A G SR. Since A G SR implies B ^ R for 
all B < A, necessarily |K| = 1 and hence A £ S, that is S R C S. This together 
with b) yields S = SR. Applying c) to each A 6 US, from A / B ^ S for all kernel 
B ^ A, we get A/K| = 1, and so A = K € R , that is, US C R. This and a) gives 
us R = US. Thus R = USR and S = SUS hold. As one easily sees, R = USR 
is equivalent to (Ra) and (Ri) and S — SUS is equivalent to (Sa) and (Si). This 
along with d) proves that R and S are corresponding radical and semisimple classes 
in view of COROLLARY 2.7 or by the definition of R . • 

Before giving explicit examples, let us notice that there are plenty of concrete 
radical classes, for instance, to every partition of simple GS-automata there is a 
radical class containing exactly one class of the partition (and the other class will 
be included in the corresponding semisimple class). 

EXAMPLE 2.12. We say that a GS-automaton (A, + ,6 ) has the relative 0-reset 
property, if to every element a G A there exists an x £ X* depending on a, such 
that ax = 0. The class 

R = {A G 21 | A has the relative 0-reset property} U {(0, + ) } 

is a radical class. Conditions (R/i), (Rt), (RA:), (Ri) are trivially fulfilled. In view 
of THEOREM 2.4 we still have to show the validity of (Re). Let K be a kernel of 
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A £ ft such that K e R and A / K £ R . If |K| = 1, then we are done. So let K < A. 
Since K e R and |K| > 1, K is a subsemiautomaton, and therefore A has to be 
GS-automaton. Let o £ A" be an~ arbitrary element. Since A / K £ R, there exists 
an x 6 X* such that (a + K)x C K, that is, 

(o + Jfc)x e K, Vfc e K. 

K is a kernel of A, so also 
(a + k)x - ax £ K 

holds. These together yield 
ax £ K £ R . 

Hence there exists a y £ X* such that (ax)y = 0, that is, a(xy) — 0 with xy £ X*, 
proving that A has the relative 0-reset property. Thus R satisfies also condition 
(Re), and consequently R is a radical class. 

EXAMPLE 2.13. In a GS-automaton A, 0 is a reset if there exists an x £ X* such 
that Ax = 0. Restricting the universal class to 

H = {all finite GS — automata} U {all finite groups}, 

the class 
R = {A £ 21 n ft 10 is a reset in A } U {(0, +)} 

is a radical class. Again, conditions (R/i), (Ri), (RA;), (Ri) are trivially satisfied. 
Notice that (Ri) would not be satisfied for infinite GS-automata. The same proof 
as in EXAMPLE 2.12 infers the validity of condition (Re), because there the element 
x £ X* may be chosen such that Ax C K and y £ X* such that Ky = 0, whence 
A(xy) = 0. 

EXAMPLE 2.14. A GS-automaton (A, + , 6) is said to be 0-connected, if for every 
a £ A there exists an x £ X such that Ox = a. Then 

R = {A £ 21 | A is 0-connected} U {(0, + ) } 

is a radical class. Conditions (R/i), (Rt), (RA:), (Ri) are trivially satisfied, only (Re) 
needs verification. So, let K < A such that K £ R and A / K £ R . Now K has to 
be a subsemiautomaton, and therefore KX C K. Since A / K £ R , for each a £ A 
there exists an x £ X such that Kx C o + K. Hence KX C K implies a £ K, and 
by K £ R there exists a y £ X with 0y = a. Clearly, we have also 

R = {A £ 21 | A = OX} U {(0, + ) } . 

3 Complementary radical and semisimple classes 
We start this section with 

E X A M P L E 3 . 1 . The class 

R = {A £ 21 | (0, + , 5) is a subsemiautomaton in A } U {(0, + ) } 

is a radical class and 

S = SR = {A £ 21 | 0 is not a subsemiautomaton in A } U 0 
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is the corresponding semisimple class in the universal class £ , as one readily checks. 
Moreover, R U S = £ , though R ^ £ and S ^ £ . 

Motivated by this EXAMPLE we introduce the following definition. 
Let g be a radical operator in Sj with corresponding radical class R and semisim-

ple class S. We say that g is complementary, or that ( R and S) are complementary, 
if 

gA = A or |gA| = 1, for all A £ Sj , 
or equivalently, 

R u S = i . 
The existence of non-trivial complementary radical operators (here non-trivial 
means R ^ T ^ S) is a consequence of the fact that in the category Sj the 
initial object (0 ,+ ) is not equivalent to the terminal object (0, + ,£ ) (cf. [ l l ] ) . 

THEOREM 3. 2. Let Q be a radical operator in Sj with radical class R and semisim-
ple class S. If 

1) R contains at least one nonzero GS-automaton and all GS-automata of 
Sj with one-element subsemiautomaton, 

and 
2) S contains all groups of Sj, 

then g is a non-trivial complementary radical operator. 
If Sj is closed under forming finite direct sums ( in the sense of 6 of §i) and g 

is a non-trivial complementary radical operator in Sj, then R fulfils 1) and S fulfils 
2)-

PROOF: Assume that 1) and 2) are satisfied, and let A £ Sj be an arbitrary nonzero 
object. If lgA| = 1, then A S S . Suppose that |gA| > 1. Since all groups are in S, 
we conclude by gA = ggA £ R that gA is a GS-automaton with subsemiautomaton 
(0, + ,5 ) , and hence so is A. Thus A £ R , proving that g is complementary. 

Next, suppose that Sj has finite direct sums and g is a non-trivial complementary 
radical operator. In virtue of (Sc) the semisimple class S contains at least one 
group (A, + ) £ T . Let (B, + ) £ Sj \1 be arbitrary. By the assumption on Sj we 
have (A, + ) © (B, + ) £ Sj . Now (A, + ) © (B, + ) £ R is not possible because then 
(A, + ) © (B, + ) —>(A, + ) and (R/ij would imply (A, + ) £ R . Thus (A, + ) © (B, + ) £ 
S, as g is complementary. Since S n 0 is a semisimple class of groups, S n © is 
hereditary, and hence 

(B , + ) < ( A , + ) © ( B , + ) e s n e 

yields (B, + ) £ S n © C S, proving that S contains all groups of Sj. 
Since S contains all groups and g is non-trivial, R has to contain at least one 

nonzero GS-automaton. Assume that R does not contain all GS-automata of Sj 
with one-element subsemiautomaton. Then there exists an (A, +,5A) £ Sj such 
that (0,+,5A) is a subsemiautomaton of (A,+,<SA) and (A ,+ , 5A) ^ R| that is, 
( A , + , 5 A ) £ S by g complementary. Let (B, +,<5B) be an arbitrary GS-automaton 
in Sj . By the assumption on Sj the direct sum ( A , + , ¿ A ) © ( B , + , 6b) is in Sj . By (Rh) 
and (A, + , I A ) © ( J 3 , + , < S B ) — > ( A , 5 A ) 6 S the relation ( A , + , <5A )® (B, + , M £ R 
is not possible whence by g complementary it follows (A, + , 5a) ® (B, + ,5b) 6 S. 
Thus by 8& (0, x) = 0, (B ,+ ,S B ) < (A,+,<5a) © ( B , + . 5 B ) and hence by (Sah there 
exists a (B, + , 5B)—>(C, + , 5C) 6 S. Thus by (R/i) we get (B, + ,5 B ) g R , and 
since g is complementary, we conclude (B, + , 5B) S S. Hence S = Sj and R = T 
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follows, contradicting the assumption that g is non-trivial. Thus R contains all 
GS-automata of ft with one-element subsemiautomaton. • 

COROLLARY 3.3. The class 

R 0 = {A G ft n a | (0 , + , 5 ) is a subsemiautomaton o / A } u { ( 0 , + ) } 

is a complementary radical class in ft . If ft has finite direct sums and R ^ 1 is a 
complementary radical class, then Ro C R . 

PROOF: The first statement follows from EXAMPLE 3.1 and the second one from 
T H E O R E M 3 . 2 . • 

THEOREM 3.4. R is a complementary radical class in ft if and only t / R satisfies 
(R/i), (Rc), (Rf) and 

(C) B G R and B < A G ft imply A G R . 
S is a complementary semisimple class in ft if and only if S satisfies (Sc), 

(St) I C S , 
(S/i) A G S and B 4 A imply B G S, 
(D) B G S ; A G ft and A—>B imply A G S. 

PROOF: Let R be a complementary radical class. If A G ft \R , then A G 5 R and 
hence B £ R for any B 4 A, which implies (C). 

Conversely, let us assume that R satisfies (R/i), (Rc), (Rt) and (C). Condition 
(C) readily implies (Re) and (Rt). To show (RA:), let us consider a GS-automaton 
(A,+,(5) such that K < (A, + ) and K G R for some K G ft. Now condition (C) 
implies (A, +) G R and condition (Rc) infers (A, + , S) G R , proving (Rfc). Thus by 
THEOREM 2.4 R is a radical class. Suppose that A £ R for some A G ft. Then 
(C) yields A G S, and hence R is complementary. 

Assume that S is a complementary semisimple class. (St) is always satisfied by 
(So) and (S6) or (Sr)). If B 4 A and B g S, then B G R and hence A g S. This 
proves (Sh). If A G ft \ S, then A G R and hence A—>B implies B G R by (Rh). 
This means that (D) is satisfied. 

Conversely, let us suppose that S satisfies (Sc), (St), (Sh) and (D). Condition 
(Sh) implies trivially (So). We want to see the validity of (Sfc). Assume that A G ft 
is such an object that for every B 4 A there exists a B—>C G S. From B—>C G S 
and (D) we get B G S for every B 4 A, in particular for B = A. If there is no B 4 A, 
then |A| = 1, and (St) infers A G S. Thus (Sb) holds and so by COROLLARY 2.7 S 
is a semisimple class. We still have to see that S is complementary. If A G ft \ US, 
then there exists an A—>B G S and so (D) yields A G S. Thus S is complementary. 

• 

4 Additive automata 
An element io £ X is called a zero-input, if Oxo = 0. A GS-automaton (A, + , 5) is 
said to be additive, if there exists a zero-input xo G X with the following properties 

i) decomposition property : ox = oxo + Ox, Va G A, Vx G X, 
ii) zero-input additivity : (a + fc)x0 = ax0 -f bx0, Va, b G A. 

Obviously on every additive group (A, + ) of at least two elements one can define 
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at least two non-isomorphic GS-automata. Concerning additive GS-automata the 
reader is refered to [4]. 

In the sequel we suppose that all the GS-automata in the universal class ft 
considered, are additive ones. 

PROPOSITION 4.1. Let A be an additive GS-automaton and C<i(B, 
U (C, +) ts 0 normal subgroup of (A, + ) , then C is a kernel of A. 

PROOF: We have to show that 

(a + J t ) i - a i 6 C 

holds for all a e A, k € C and x S X. Since A is additive, we have 

(a + k)x — ax = (a + k)xo + 0x — Ox — axo = axo + kx o — OXQ. 

Taking into account that C is a kernel of (B, + , 6), it follows 

bxo + kxo — bxo = (b + k)xo + Ox — Ox — bxo — (b + k)xo — bxo 6 C 
for all b € B. Since (C ,+ ) is a normal subgroup of (A ,+ ) , we may conjugate by 
(axo — bxo) 6 A obtaining 

axo + kx0 — axo = (axo — bxo) + (bxo + kx0 — bxo) — (axo — bx0) S C, 

regardless as whether kxo is in C or not. Thus also 

(a + i t ) i - a i e C 

holds proving the assertion. • 

PROPOSITION 4.2. Let g be an operator assigning to each A € ft a kernel gA of 
A and satisfying condition (ga). If (B, + ,5 ) <3 (A ,+ ,5 ) e ft, the n g(B, + , S) is a 
kernel of A. 

PROOF: In virtue of PROPOSITION 4.1 we have to prove that (gB, + ) is a normal 
subgroup of (A, + ) . Since (B, + ) is normal in (A, +) , for every element a £ A the 
mapping 

<pa(b) = a + 6 - a, V6 e B, 
is an isomorphism of (B, + ) onto itself. Hence condition (ga) yields 

<Pa(eB) C g<pa(B) = fiB, 

proving that (gB, + ) is a normal subgroup in (A, + ) . • 

THEOREM 4.3. Every semisimple class S in ft is hereditary, that is, S satisfies 
(S h). 

PROOF: Let g be the radical operator corresponding to S. If (B, + , <5)<iA, + , 5) G S, 
then by PROPOSITION 4.2 e(B, + , 5) is a kernel of (A, + , 6) and by (gc) and (gd) 
we have 

g(B,+,S) C g(A,+,6) 6 l 
Thus also (B, + , 5) € S holds. 

If (B, + ) < (A, + , 5), then also (B, + ) < (A, + ) is valid. Moreover, condition (Sc) 
infers (A, + ) S S. As is well-known, semisimple classes of groups are hereditary. 
Hence we conclude (B, + ) e S, and the Theorem is proved. • 

From THEOREMS 2.11 and 4.3 we obtain immediately. 
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COROLLARY 4.4. Subclasses R and S of Sj are corresponding radical and 
semisimple classes if and only if 

a) R n S e T , 
bj R is homomorphically closed, that is, (R/i) is fulfilled, 
c) S is strongly hereditary, that is, S satisfies (Sc) and (S/i), 
d) for each A (E Sj there exists a kernel К of A such that K g R and 

A / K e S . • 

In order to get more explicit results and derive a structure theorem (COROL-
LARY 4.7) for semisimple objects, we shall restrict our investigations to a universal 
class Sj in which all the groups are commutative. This class still includes linear 
sequential machines. 

PROPOSITION 4.5. Let us suppose that L < К < (A, + , 5) E Sj. If x0 is a 0-input 
for A then L < (A, + , 6) if and only if Lx0 С L. If L < (K, + , 5) < (A, + , 5), then 
L < ( A , + , 5 ) . 

PROOF: 

L < (A, + , 5) (a -I- l)x - ax £ L for all a € A, I S L and i g X , 
Ixо 6 L for all I e L, 

•O- Lx0 С L. 

For the second assertion, note that by L < (K, + , 6) it follows (к + l)x — kx G L 
for all к G K, I £ L and x e X, and hence Ix о £ L for all I €E L. Thus the first 
statement yields L < (A, + , 5). • 

A kernel К of an object A € Sj is said to be essential in A, if for any other 
kernel L < A it follows К Л L Т . This fact will be denoted by K< oA. A subclass 
M of Sj is said to be closed under essential extensions, if K < o A and К 6 M imply 
A e M . 

THEOREM 4.6. Let M be a subclass of Sj П 2t such that M is hereditary, closed 
under essential extensions and satisfies condition 

(F) L < К < A 6 Sj and K /L e M imply L < A. 
If M denotes the subdirect closure o / M that is 

M = {A 6 Sj | A is a subdirect sum of objects from M } 

then the class S = M U (55 П 0 ) is a semisimple class. 

PROOF: First, we show that every kernel К of a GS-automaton A € M is a 
subsemiautomaton. For this end it suffices to prove that OX = 0. Since A G M , 
there are kernels I a , a € A, of A such that A / I a € M for each a S A and л(1а | a £ 
A) 6 X . The class M consists of GS-automata, so by the hereditariness of M every 
kernel, in particular the trivial kernel of A / I a is a subsemiautomaton, and therefore 
1 а Х С Ia for each a €E A. This implies 

OX = (л1„ )ХС Л1а = 0 . 

Next, we are going to prove that M is hereditary. Let us consider an arbitrary 
kernel К of a GS-automaton A € M . If К £ T , then by the previous statement 
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К = (0, + , 5) holds, and so К 6 M С M. So, let us assume that К < A. Since К is 
a subsemiautomaton, we have 

K/(K A Ia) = (K V Ia) /Ia < A/I a £ M 

for all а £ A. Thus the hereditariness of M yields K/(K A Ia) £ M. Moreover, 
by A (K A Ia ) = (A Ia) А К = 0 We conclude К £ M, proving that M is, in fact, 

а а 
hereditary. 

The hereditariness of M readily yields that of the class S = M U (ft Л © ), and 
therefore S satisfies (Sa) trivially. 

To prove the validity of (Si>), let us consider an object A £ ft such that every 
K<A has a nonzero homomorphic image K/L in S = M u ( f t U 6 ) . If A = (A, + ) £ 
ft Л 0 , then A s S . Hence we shall consider the case A = (A, + , 5). Let us suppose 
that A ^ S. Since A is a GS-automaton, we get A M. Hence 

К = л(К/з < A I A/Kp £ M) / 0. 

Since M is hereditary and consists of GS-automata, the trivial kernel of A/K^ is a 
subsemiautomaton, which implies K^X С K ĵ, and so each K^ is a subsemiautoma-
ton. Hence so is К as well. By the hypothesis on А, К has a nonzero homomorphic 
image K/L in S and also K/L £ M holds, for К is a subsemiautomaton. Hence 
there exists a kernel J/L of K/L such that 

K / J ^ 6 M \ T . 

Using condition (F) we conclude that J is a kernel of A. Let us choose a kernel M 
of A being maximal with respect to the property M А К = J. By Zorn's Lemma 
such a kernel M does exist. Now we have 

K/J = K/(M ЛК) = (K + M)/M < A/M. 

For any Q/M < A/M the choice of M yields J С Q A K, and therefore 

( Q A K ) / J < K / J £ M . 

Thus the hereditariness of M infers that (Q A K)/J is a GS-automaton, and so 

0 / ( Q A K ) / J = ( ( Q A K ) V M ) / M С ( ( К v M ) / M ) A ( Q / M ) , 

proving that (К V M)/M is essential in A/M. Hence by 

( K V M ) / M = * K / J E M 

and by M being closed under essential extensions, we conclude A/M £ M. This 
implies by the definition К that К С M, and soJ = M A K = K holds, yielding 
K/J £ T , contradicting K/J ^ X. Thus A 6 S has been proved, establishing the 
validity of condition (S6). 

Since (В Л ft С S by definition, the class S fulfils condition (Sc), too. Thus in 
view of C O R O L L A R Y 2 . 7 S is a semisimple class. • 
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COROLLARY 4.7. Let M be a subclass of f) nst such thafM. is hereditary, closed 
under essential extensions and satisfies condition (F). Then 

R = { A e s n a |A—>B =» B ^ M } u { ( o , + ) } 

is a radical class. Denoting by Q the corressponding radical operator, QA = 0 for a 
GS-automaton A EE Sj D 21 if and only if A = ( A a | A A 6 E M ) . In particular 

subdirect 
if A satisfies also the descending chain condition on kernels, then A is a finite 
direct sum of GS-automata from the class M . 

PROOF: The assertions are immediate consequences of THEOREM 4.6, because 
R = US. The last assertions can be proved by standard reasoning (cf. [2] Corollary 
5). • 

PROPOSITION 4.8. The radical class R of COROLLARY 4.7 has the following hered-
itary property : 

if (K, + , 5) < (A, + , 5) e R, then (K, + , 5) e R . 

P R O O F : Suppose that (K, + , S) & R . Then there exists a kernel L of K such that 
K/L € S \ X . Since K is a GS-automaton, necessarily K /L £ M holds. Thus also 
K /J 6 M holds with an appropriate L C J < K. Applying condition (F) on M , 
it follows J < A. Let M be a kernel of A being maximal relative to the property 
K A M = J. As we have seen in the proof of T H E O R E M 4.6, 

K /J = K / ( K A M ) ^ ( K v M ) / M « o A / M . 

Since K / J € M and M is closed under essential extensions, we get A / M € M C S. 
Thus A / M C S n R = 1 , which yields A = M, and also J = K AM = K, as well as 
K / J £ 1 , a contradiction. Thus K = (K, + , i ) e R has been proved. • 

Recall that an object A € Sj is said to be subdirectly irreducible, if H = A (K< 
A) ^ T . The kernel H of A is referred to as the heart of A. 

In the sequel we give a concrete class M of GS-automata which satisfies the 
conditions required in THEOREM 4.6, COROLLARY 4.7 and PROPOSITION 4.8. 

THEOREM 4.9. The class 

M = {A = (A, + , 5) e Sj | A is subdirectly irreducible and OX = 0} 

is hereditdary, closed under essential extensions and satisfies condition (F). 
Furthermore, for the radical class 

R = {A € Sj n 21 | A—>B =>• B £ M } U {(0, + ) } 

the following two conditions are equivalent : 
(i) A e R \ T 
(ii) A 6 Sj n2l and i / K < A and K—>L, then L is not a simple GS-automaton 

with subsemiautomaton 0. 

In analogy with ring theory we may call this radical R the antisimple radical 
of commutative additive GS-automata. 
PROOF: Since OX = 0, every kernel K of any A £ M is a subsemiautomaton. Hence 
by PROPOSITION 4.5 every kernel L of K is also a kernel of A. Thus the heart of A 
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is contained in every L<K, and therefore K is subdirectly irreducible, proving that 
M is hereditary. 

For proving that M is closed under essential extensions, let us consider a K G M 
and K<oA. We have to show that A is subdirectly irreducible. Let I<jA be arbitrary. 
Since K < oA, it follows K A l ^ I , and so the heart H of K is contained in K A I 
and also in I. Since I was arbitrary, also H C A (I < A) holds, proving that A is 
subdirectly irreducible. 

In order to show the validity of condition (F), let us suppose that L < K < 
A e f) and that K/L £ M. Since K/L 6 M, we have LX C L. Thus L is a 
subsemiautomaton of A, and consequently K as well as A are GS-automata. Hence 
P R O P O S I T I O N 4 . 5 yields L < A. 

By C O R O L L A R Y 4 . 7 R is a radical class. Assume that K< A € R and K—C>L. 
If K is merely a group, then so is L too, and condition (ii) is trivially fulfilled. So 
we may suppose that K is a subsemiautomaton. By P R O P O S I T I O N 4 .8 it follows 
that K e R which implies L ^ M. Since simple GS-automata are subdirectly 
irreducible, by the definition of M we conclude that either L is not simple or 0 is 
not a subsemiautomaton of L or both, proving the validity of (ii). 

Suppose that A £ R . Then either A is a group or A / J € M with a suitable 
kernel J of A . In the second case, since the class M is hereditary, also the heart L of 
A / J is in M and in view of PROPOSITION 4.5 L has to be a simple GS-automaton . 
Since L = K/J with an appropriate kernel K of A, we see that (ii) is not satisfied. 

• 
As is well known [10] the subdirectly irreducible abelian groups are precisely the 

(quasi)-cyclic groups C(pn), n = l , 2 , . . . , o o for all primes p. Obviously, on every 
subdirectly irreducible abelian group we may define an additive GS-automaton 
by assigning a homomorphism xo: C(pn) —* C(pn), which will be a 0-input, and by 
defining OX = 0. There are, however, subdirectly irreducible additive GS-automata 
the additive group thereof is not subdirectly irreducible. Consider, for instance, the 
direct sum C(p) ©C(p) of two copies of a simple cyclic group, the automorphism XQ 
interchanging the components of C(p) © C(p). xo can be regarded as a 0-input of 
C(p)©C(p), further define OX = 0. Thus we have got a simple and hence subdirectly 
irreducible additive GS-automaton (C(p) © C(p), + , 5), though (C(p) © C(p), + ) is 
not a subdirectly irreducible group. Moreover, there are subdirectly irreducible 
additive GS-automata, which are not in M, for instance (C(p), ¿) where the 
0-input xo may be any homomorphism xo:C(p) —+ C(p), but OX ^ 0 for some 
x S X. These observations demonstrate that C O R O L L A R Y 4.7 applied to the class 
M of T H E O R E M 4.9 provides a subdirect decomposition for some additive GS-
automata only, and that the subdirectly irreducible components are not necessarily 
subdirectly irreducible groups. 
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