
Acta Cybernetica, Vol. 11, No. 3, Szeged, 1994

Structuring grammar systems by priorities and
hierarchies*

Victor Mitrana * Gheorghe Pilun* Grzegorz Rozenberg s

Abstrac t

A grammar system is a finite set of grammars that cooperate to gener-
ate a language. We consider two generalizations of grammar systems: (l)
adding a priority relation between single grammar components, and (2) con-
sidering hierarchical components which by themselves are grammar systems.
The generative power of these generalized grammar systems is investigated,
and compared with the generative power of ordinary grammar systems and of
some well-known types of grammars with regulated rewriting (such as matrix
grammars). We prove that for many cooperating strategies the use of priority
relation increases the generative capacity, however this is not the case for the
maximal mode of derivation (an important case, because it gives a charac-
terization of the ETOL languages). We also demonstrate that in many cases
the use of hierarchical components does not increase the generative power.

1 Introduction
A cooperating grammar system (introduced in J 7], and motivated by considerations
related to two level grammars), is a set of usual Chomsky grammars which cooper-
ate in rewriting sentential forms. In [7] a component that is currently rewriting a
sentential form cannot quit until it introduces a symbol which it cannot rewrite (the
current sentential form is not a sentential form of this component) . Only one com-
ponent at a time rewrites a sentential form. The set of terminal strings obtained in

'Research supported by project 11281 of the Academy of Finland, the Basic Research
ASMICS II Working Group, and, in the case of the second author, also by the Alexander
von Humboldt Foundation.

^University of Bucharest, Department of Mathematics Str. Academiei 14, 70109 Bu-
cure§ti, Romania

'institute of Mathematics of the Romanian Academy of Sciences P.O.Box 1 - 764,
70700 Bucure§ti, Romania

* University of Leiden, Department of Computer Science Niels Bohrweg 1, 2333 CA
Leiden, The Netherlands and Department of Computer Science, University of Colorado
at Boulder Boulder, CO 80309, USA

190 Victor Mi trail a, Gheorghe Pâun, Grzegorz Rozenberg

this way is the language generated by the system. It is shown in [7] that this type
of cooperating grammar systems (equiped with a control over the sequencing of the
individual components) generates the-family of-programmed languages (which is
equal to the family of languages generated by matrix grammars).

The cooperating grammar systems were rediscovered in [l], under the name
of modular grammars (a term related to the time varying grammars). A rather
intensive study of cooperating grammar systems has been initiated in [2], where the
grammar systems were related to the notions from artificial intelligence, such as the
blackboard model in problem solving [9]. (See also Chapter 1 of [3] for further links
between grammar systems and topics in artificial intelligence, computer science,
and cognitive psychology.) Within this framework, more conditions on enabling and
disabling of individual components were considered. Two, quite basic, examples of
this type are: the step limitations (a component must work exactly, or at least, or
at most a given prescribed number of steps), and the maximal competence strategy
(a component must work as long as it can) - this is similar in some extent to the
stoping condition from [7]. The latter strategy is particularly interesting, because
it yields a characterization of the family of ETOL languages.

A number of novel cooperating strategies has been considered recently — forming
the teams of components, as in [6] and [9], is one of such strategies.

In this paper we consider two quite natural modifications of the basic model.
The first of these is adding a priority relation between the components of a system.
A component can become active only when no other component with a greater
priority can rewrite the current string. The other modification consists of allowing
components which by themselves are grammar systems, or systems of grammar
systems, etc.

We demonstrate that neither of the two modifications increases the generative
capacity when maximal competence strategy is used. For the other strategies,
adding the priority relation strictly increases the generative power.

We end this section by pointing out that both modifications of grammar systems
we consider in this paper, viz. priorities and hierarchies, are very natural. Adding
priorities in rewriting systems in order to ensure the deterministic applicability
of rules is a rather standard mechanism - e.g. it is used in regulated rewriting
in context-free grammars and in term rewriting systems. Also, the way that a
computation in a grammar system is defined on the base of computations of basic
units (grammars) may be seen as just a specific cooperation mechanism. In order to
understand its power, it is natural to consider the bootstrapping of this mechanism

- take grammar systems as basic units and obtain "grammar systems of depth
2" by organizing their work together by a given cooperation mechanism,

and proceeding inductively

- take grammar systems of depth % > 2 and organize their work together by a
given cooperation mechanism obtaining "grammar systems of depth t + 1".

Then a way to understand a given cooperation mechanism as defined in grammar
systems is to investigate the relationship between the generative power of grammar
systems of different depth. This leads one then to hierarchical grammar systems.

Structuring grammar systems by priorities and hierarchies 191

2 Basic definitions
For an alphabet V, V* denotes the free monoid generated by V; the empty string
is denoted by A, and |z| denotes the length of x £ V*. The families of context-free,
context-sensitive and recursively enumerable languages are denoted by CF, CS, and
RE, respectively; ETOL denotes the family of ETOL languages.

A matrix grammar is a construct G = (N, T, S, M, F), where N, T are disjoint al-
phabets, S £ N,M is a finite set of sequences, called matrices, (Ai —> xi,..., An
xn),n > 1, of context-free rules over N U T, and F is a set of occurrences of rules
in matrices of M .

For m = (Ai xi,...,An -* xn) £ M, and w,w' £ [N U T)*, we define
w =>m w' iff there are w2, • • •, t^n+i in (JVuT)* such that w = wlt w' = wn+i,
and for each i, 1 < i < n, either io; = w^Aiw", to,+i = or Ai does not occur
in Wi, Wi+i = Wi and Ai —* x; appears in F.

If F = 0, then the grammar is said to be without appearance checking (and the
component F is omitted from the specification of G).

We denote by MATac (respectively, MAT^.) the family of languages generated
by A-free (arbitrary) matrix grammars; when the appearance checking feature is
not present we remove the subscript ac.

A (context-free) ordered grammar is a construct G = (N,T, S, P,>~), where
N, T, S, P are as in a context-free grammar, and >- is a partial order relation over
P. A rule A —• x in P can be used for rewriting a string w only if no rule B y
in P with B —* y >• A —* x can rewrite the string to. The family of languages
generated by A-free ordered grammars is denoted by ORD, and ORDx is used for
the case when A-rules are allowed.

It is known that

CF c MAT c MATac c CS,
MAT c MATX c MATXC = RE,
CF c ETOL c ORD c MATac.

For the basic elements of formal language theory the reader is referred to [11]; for
Lindenmayer systems we refer to [10] and for regulated rewriting to [4].

Definit ion 1 A cooperating distributed (cd, for short) grammar system is a con-
struct

T = (N,T,S,PuP2,...,Pn),

where N,T are disjoint alphabets, S £ N, and < t < n, are finite sets of
context-free rules over N UT.

The sets P,- are called the components of T; we also say that T is a cd grammar
system of degree n.

For a component Pi from a grammar system T as above, dom(Pi) = {A £ N
I A —• x £ Pi}, and we define the derivation relation =>pi in the usual way.
Then we can consider derivations in P, of exactly k successive steps, of at least k
steps, at most k steps, and of an arbitrary number of steps; they are denoted by
= > p f , =>p i k , and , respectively. Another important relation is

x =>tpi y iff x =>•/>,. y and there is no z £ (N U T)* such that y =>pi z

(the derivation is maximal in the component Pi).

192 Victor Mi trail a, Gheorghe Pâun, Grzegorz Rozenberg

In this way we have specified stop conditions for the components, i.e. conditions
under which an active component must/can become inactive.

For / S { * , t } U { < k,= k, > Jfc | Jfc > 1} the language generated by T in the /
mode is defined by

Lf(T) = {xeT*\S Xl =>fPi; »a ... =>'Pir xr = X,

r > 1,1 < ty < n, 1 < J < r } .

The family of such languages, generated by systems with at most n components
(all of them without A-rules) is denoted by CDn(f) (if A-rules are allowed, then we
write CD^(f)). The union of the families CDn(f) for all n is denoted by CD 00(f).

In [2] and [3] it is proved that:

CF = CDoo(= 1) = CD0„(> 1) = CD^i*) = CDoo(< k), k > 1,
CF c CDn{= k) n CDn(> it), n > 2, Jfc > 2,
C D 0 0 (= Jb) C MAT, CKooi^ Jfc) C MAT, Jfc > 1,
CF = CDx (t) = CD2 (t) c CDn (i) = ETOL

(hence also CD^(t) = ETOL), n > 3.

3 Introducing orderings and hierarchies into
grammar systems

We introduce now new classes of grammar systems which will be investigated in
this paper.

Def init ion 2 A grammar system with priorities (pcd grammar system) is a con-
struct T = (N , T, S, Pi, ..., Pn, >-), where N,T, S, Px,..., Pn are as in a cd gram-
mar system, and >- is a partial order relation over the set of components. For a
derivation mode f , two strings x,y 6 (NUT)*, and a component Pi ofT we write
x y if and only if x ==>pi y and for no component Pj with Pj >- Pi and
no string z € (NUT)*, x =>pj z holds.

Note that if x ^ ^ ^ y, then no Py with Pj >- Pi can rewrite x in the / mode
- but there may be Py with Py >- P,- that can rewrite x in some way (e.g. Py can
make only one rewriting step on x while / = " > 2").

We denote by PCDn(f) the family of languages generated by (A-free) pcd
grammar systems of degree at most n in the derivation mode / . Again, we add the
superscript A when also A-rules may be used, and we replace n with oo when the
degree is not bounded.

Structuring grammar systems by priorities and hierarchies 193

Here is an example of a pcd gramar system. Let

r = ({S,A,B,A',B',A",B"}l{a,b,c}lS,Pi,P2,P3lP4,P5,>),
px = {A aA'b, B -* cB'},
P2 = {A-* A", B - B"},
p3 = [A' —» A, B' —• B, A" — ab, B" — c} ,
Pi = {A' - A', B' - B', A" - A", B" -» B"},
P5 = {A A, B - 5 , S -» A S } ,

and P 4 >- P i , P i >- P2, Ps >- -Pa-

Then
L/(r) = {anbncn | n > 1},

for all / e {*, > 1} U { < A: | k > 2} (and also for / € { = 2, > 2}).
Indeed, take a string an Abncn B ,n > 0; after using P5, the component in which

we must start any derivation, we have n = 0. We can apply either Pi or P2, using
only one or both rules from each of these components. If we use only one rule, then
we obtain either a " + 1 A'bn+1cnB or anAbncn+1B' when using Plt and we obtain
either anA"bncnB or anAbncnB" when using P2 . In all cases, both P4 and P5 can
be used afterwards (and one of them has to be used, because they have the priority
over Pi, P2, P3). However, nothing changes then in the current string, and so the
derivation is blocked. Consequently, when using Pi, P2 we must use both rules from
each of them, thus obtaining either a n + 1 A'bn+1cn+1B'or anA"bncnB". Now P4 is
applicable and it changes nothing, but it does not forbid the use of P3 (P5 is not
applicable). If, using P3 , only one of A',B' in o n + 1 A'bn+1cn+1B' is replaced by
A, B, respectively, then again the derivation is blocked in the components Pi,P^,
hence we must produce an+1 Abn+1cn~*~1 B - this is a string of the form that we have
started with, hence the derivation can be iterated. If from anA"bncnB" we produce
either an+1bn+1cnB" or anA"bncn+1, then the only applicable components are P3
and P4 ; P4 changes nothing, hence we eventually will use P3 again, and get in this
way a terminal string o " + 1 t n + 1 c r l + 1 .

Definition 3 A hierarchical grammar system (hcd grammar system) of depth
h, h > 0, is

1. a context-free grammar T = [N, T, S, P) if h = 0,

2. a construct T = (N, T, S, 71,721 ••• ,1m)) m ^ I, if h > 1, where T,- =
(N, T, S, 7i), 1 < i < m, are grammar systems of depth h — 1.

Thus, at the bottom level of a hcd grammar system we have sets of context-free
rules, on the next level it contains sets of such sets, then sets of sets of sets and
so on. The systems 7 1 , . . . , 7m from the specification of T in point 2 of the above
definition are called components or subsystems of T of depth h — 1.

Here is an example of a hcd grammar system of depth 2:

level two : T = ({5 , A, B, A', B'}, {a, b, e}, S, 7L> 72),
level one : 71 = { 7 1 , 1 , 7 1 , 2 } ,

72 = {72,1},

194 Victor Mi trail a, Gheorghe Pâun, Grzegorz Rozenberg

level zero : 71,1 = {A —• aA'b, B —» cB'},
71,2 = {A' —• A, B'^B},
72,1 = {S -» AB, A A, A ab, B - » c} .

We known how to define a derivation step in a system of depth 0 (this is a
usual derivation step in a context-free grammar), and we know how to define the
derivation modes = > > , for / S {* ,t }U { < k, = k, > k \ k > 1} in a set P of rules.
Then, for a system of depth h > 2, T = (N,T,S, 7 i , . . . , 7 m) we define, for the
component 7y, 1 < j < m,

y iff h.n
l],i, 1 1 —

X! =•=* .
r < k, are

. =fc _ _
, •••=>fi.tk Xk~
components of 7y; 1

1

y iff x=>f. Tj.'i
. <fc

7j,ir > 1 < r < 3, are components of 7y, r < k,

y iff ij.-i
._>fc
">}•' 2 =>-fc x — V • ^n.i. x> y>

r < 3, are components of 7y, r > k,

y iff . * • = y.

7 / , . „ 1 < r < 3, are components of 7y, r > o,
y iff * y and there is no z S [N U T)"

such that y z.

Continuing the previous example, let us consider the = 2 derivation mode.
Starting from S, we must use 72, which contains only one subsystem, hence

S =>=2 x means S xx x.

Hence after using S —» AB and A —• A (three times) we obtain x = AB. Now 71
must be applied, that is we must find a derivation

A B ^ i m f i

for i,j S {1, 2}. The only possibility is t = 1, j = 2, hence we get

AB =>=2 aAbcB, because AB =>=21 aA'bcB' = > = 2 , aAfccB.

This step can be iterated, obtaining anAbncnB,n > 0, and then 72 can be used
for replacing A, B with ab, c, respectively. If the current string contains only one
nonterminal, then 71 cannot be applied, hence after using 72 either a nonterminal
string as above is produced or a terminal string must be obtained. It is easy to see
that the generated language is

L=2[r) = {anbnen I n > 1}.

We denote by H h C D (f) the family of languages generated by grammar systems
of depth at most h,h> 1, in the derivation mode / ; we also set HoCD(f) = CF,
for all / .

Structuring grammar systems by priorities and hierarchies 195

4 The generative power of grammar systems
with priorities

In this section we will consider the effect of adding a priority relation on the gen-
erative power of grammar systems.

The next results follow directly from the definitions.

Lemma 1 CDn(f) C PCDn(f),PCDn(f) C PCDn+1{f),n > 1, for all f e
{M}U {< k,= k,> k | k > 1}.

The example from the end of the previous section implies that PCDn(f)—CF ^
0, for n > 5 , / E { * , > 1} U { < k | k > 2}. Since CDn(f) = CF, for all n > 1,
and / as above (see the end of Section 2), this demonstrate that adding priorities
strictly increases the generative power. This result can be extended also to modes
of derivation other than t.

T h e o r e m 1 PCDn(f) - CD^f) ^ 0, n > 10, / € {*} U { < k, = k, > k \ k > 1}.

P r o o f . Consider the system

r = ({5, A, A', B, B', B"), {a}, S, Pu P2,..., P10, v),

with the components and the priority relations given in the following figure, where
the components Pi, Pi are in relation Pi > P}- iff Pi is placed above Pj in one of
the "composite boxes below:

B' —• B'
Pi B" — B"

A -» A
P2 A - A'A'

P3 : B — B

Pa :
A!
A'

ÎÎ

Ps S —> AB
A — A

B —> B
B —* B'

Ps = B" — B"
B" a

Pj : A' — A'

B' —* B'

co B' B
B' -*B"

P . B - + B Pq • B' — B'

P • A - A rio .

Notice first that the components Pi, P3, P-j, Pq consist of rules of the form X —»
X only, hence their application does not change the current string. The same
is true for P5, except for the first step of a derivation, because S never appears
later in a sentential form. Therefore, all components Pi, P3, Pj, Pg (as well as P5
after the first step) check the appearance of the corresponding nonterminals and
block the components P2, P4, P%, P10 (and P&), respectively. For this reason we will
call Pi, P3, P5, P7, Pg the control components and P2, Pi, P&, P%, Pio the rewriting
components.

196 Victor Mi trail a, Gheorghe Pâun, Grzegorz Rozenberg

The derivation starts in P5 by producing the string AB (if we have a derivation
mode = k or > k for k >2, then we can use k — 1 times the rule A —• A; this is true
for all rewriting components, because they contain rules of the form X —* X, which
do not modify the current string). Assume then that we have already generated
a string AnB,n > 1. The presence of the rules A —• A and B —* B in P 5 and
P9 forbides the use of components PS and PJO; P4 and P& are not applicable to
A and B. Thus P2 is the only component which changes the current string. The
obtained string will contain occurrences of both A and A' (and of B). Due to the
presence of A we cannot use PQ, and due to the presence of B we cannot use P4
and P10; PB is not applicable. Therefore we must again use P2 until all occurrences
of A are replaced by A!. The so obtained string is of the form A'2nB. Now the
only applicable component which changes the string is P 6 , and its use leads to a
string of the form A'2nB', which allows the use of P4 (and only of P 4 , with the
exception of control components like P7 and P9 which do not change the string
under rewriting) which replaces occurrences of A! by A. As long as A, A' and B'
are present, the only possibility is to continue to apply P4 until each A' is replaced
by A, obtaining in this way A2nB'. Now one can apply Pg (and only Pg with the
exception of Pj, P5, P9 which do not change the string under rewriting). If A2nB,
is obtained, then the above process can be iterated. If A2nB" "is obtained, then the
only applicable component (which changes the string) is P10; it must be then used
until each A is replaced by a. When A is not present anymore, one can use PQ,
finishing the derivation by replacing B" with a.

Consequently,
Lffi) = { a 2 " + 1 | n > 1}.

Since Lf(T) is not context-free, it is not in CDoo(f), for / G {*>= 1> > 1}U
{< k | k > 1}. Moreover, it is proved in [5] that the length set of every infinite
language in C'£)0 0(/) , for / G { = k, > k | k > 1), contains an infinite arithmetical
progression. This implies that L/(T) is not in CDoo(f) , for / G { = k, > A: | k > l } ,
which concludes the proof.

•
Our proof of the above theorem holds for n > 10. The question: "what is the

smallest n for which Theorem 1 holds ?" remains open. Of course, the equalities
PCDxif) = CI>i (/) = C F a r e true for all / . Moreover, PCD2{= 1) C CF.
Indeed, for T = [N, T, S, Pi, P2, >-) with Pi >- P2 (the same argument holds for
P2 >- Pi) we may assume that dom(Pi) ndom{P2) = 0 (the rules A —• x G P2 with
A G dom(Pi) can never be used, hence they can be eliminated). Thus L = i (r) =
L(G) for G = (N , T, 5, Pi U P2) (the derivations in G and in T are the same up to
a change of the order of using the rules).

The above language {a2 + 1 | n > 1} is probably not in the family MAT (it is
conjectured already in [l l] that the one-letter matrix languages are regular). Since
CDoo(f) C MAT for all / as in Theorem 1 (and in some cases, CDoo(f) = CF),
the increase in generative power by adding priorities is quite considerable for those
derivation modes. Hence it is somewhat surprising that for the t mode of derivation
adding a priority relation does not increase the generative power.

T h e o r e m 2 P C D ^ t) = C D ^ l t) .

P r o o f . We have to prove only the inclusion C.
For a pcd grammar system T = (N, T, S, PI,..., PN, >-), we construct the cd

grammar system T' as follows.

T' = (N',T,S',P0,P'1,P",P2,P2,...,P'n,Pll,Pn+i),

Structuring grammar systems by priorities and hierarchies 197

N' = N U {S, X , # } u {X,- | 1 < * < n} ,
pQ = {S' — S X } U {Xi — X | 1 < t < n } (

P! = Pi U {X - # } U {Xy - # | 1 < j < n,j ? »}, 1 < t < n,
P>' = {X — X , } U { A - # | B £ dom(Py), Py >- P,-, 1 < j < n} , 1 < i < n,

-Pfi+1 = { I - t A } u { A - » # | i 4 e N).

Once introduced in a sentential form, the symbol # cannot be removed (it is a
"trap-symbol"). The symbols X j , . . . , Xn identify the components P i , . . . , Pn of T.
In the presence of Xi the component Pi will be simulated by P{ and X,- can appear
(introduced by P ") only when no component Py with Py > Pi is applicable to the
current string.

Let us see how these principles work in V by examining in some detail a deriva-
tion. Consider a sentential form wX (initially we have w = S, obtained after using
Po, which is the only component which can be applied to S1). The component
P n + i can be used only if w £ T* - hence only as the final step of the derivation. A
component P/ introduces the trap-symbol If Pj is maximal with respect to the
relation >- among the components which can be applied to w, then P " can be used
without blocking the derivation; it changes X into X,-, thus leading to wXi. Now to
a string wXi we can apply either Po, replacing again Xi with X (hence not achiev-
ing anything) or the component P¿, which will simulate the application of Pi to to.
The string tu'Xi obtained in this way can be rewritten only by Po, which leads to
w'X, and so the process can be iterated. In the presence of X,-, every component
P'.,j t, will introduce the trap-symbol. Consequently, L t (r) = ¿ t (r ') . (Note
that the A-rule in P„-t-i causes no problem, because CDoo(t) = CD^ft) = ETOL.)

•
Let us return to families PCD00(f) for / / t. It is quite natural to compare

these families with ORD, the family of languages generated by ordered grammars.
Given an ordered grammar G = (N,T, S, P, >-), it is obvious that we have L(G) =
L = i (T) = L<i(T) where T is a pcd grammar system obtained by considering each
rule of P as a separate component and the relation >- defined as in G. Therefore
ORD C PCD00(= 1) = PCDni^. 1). This implies that the families PCD^if),
f £ { = 1, < 1}, strictly include ETOL (and hence CD^t)).

A similar result is obtained for the = k and < k modes of derivation for all
k > 1.

Theorem 3 ORD C PCD(/),/£{< k, = k \ k > 1).

P r o o f . For k = 1 the statement follows by the argument as above. Consider k > 2.
Let G — (TV, T, S, P, >-) be an ordered grammar with

P = { r i , . . . r „ } , r{ : Ai x{, 1 < t < n, n > 1.

We construct the pcd grammar system

T = (JV'i T,S,P0, P i , P2, • • •, Pn, >-)i

where

N' = N U [Aij | 1 < i < n, 1 < j < k - 1),

Po = - Aij \ l < i < n , l < j < k - l } ,
Pi = {M -* Aiti,Aitl ..., A i j f c_2 Ai,k-i, Ai,k-i Xi}, 1 < »' < n,

198 Victor Mi trail a, Gheorghe Pâun, Grzegorz Rozenberg

and

P 0 X Pf for all 1 < i < n,
Pi > Py iff T{ >- ry in G.

Then L{G) = L=k(T) = L<k(T).
Indeed, if we have a sentential form w to which PQ can be applied, then on the

one hand no other component of T can be used for rewriting w, while on the other
hand the use of PQ does not change the string W. Consequently, the derivation is
blocked, and Po is a trap-component. As Po can be applied whenever any of the
symbols in N' — N is present, it follows that the components Pi, 1 < t < n, upon
completing their derivations cannot produce strings containing symbols in N' — N.
This implies that using a component P,-, 1 < t < n, in < k or in = k mode of
derivation, means to use all the rules from P,- exactly once, hence to replace an
occurrence of A,- first by A,-,i, then by A,-,2,..., then by A.-^-i , and finally by x,-.
This is exactly the effect of using the rule A,- —» x,-. As the priority relation among
the components P< of T corresponds to the order relation among the rules of G, the
equalities L(G) = L=k[T) = L< f c(r) follow.

•
It is an open question whether or not Theorem 3 holds also for the > k mode

of derivation.
We will now demonstrate that all the families P C D o o (f) with / 7 i t , are in-

cluded in MATac. In view of the strong generative power of matrix grammars with
appearance checking this inclusion is somewhat expected, however is really cumber-
some to write the detailed proof of this result. This is due to the fact that we have
to check whether or not all the components greater than a given component (in
the sense of the >- relation) are applicable to a given string in a specified mode of
derivation. This is easy for modes *, = 1, > 1, < k, for all k, but much more difficult
for the cases = k,> k, for k > 2, when all combinations of k rules in a component
must be checked. For this reason the proof of the following theorem will be rather
sketchy, but certainly containing enough information so that the interested reader
may complete it to a detalied proof.

Theorem 4 PCD^f) C MATac, f G { * } U { < A:, = A;, > k \ k > 1}.

P r o o f . (1) For / G { * } U { < A: | A: > 1}, consider a system T = (N, T,
S, P i , . . . , P„ , >-), and construct the matrix grammar

G = (N',Tu{c},S',M,F),
N' = NU { X , S ' , # } U { [» , /] | 1 < »• < n,0 < 3 < k},
M = {(S' ^ SX)} U

u{(X —»[t,0], Ai -+#,..., A, —• #) | {Ai,..., A„} =
{A G dom(Pj) | Py V Pu 1 < j < n} , 1 < i < n} U

U { (M [i,j+l],A - x) I A ^ x G Pi, 1 < i < n,
0 < j < k - 1} U

U{[\i,j] -* X) | 1 < » < n,0 < j < k} U
u { (X - . c) } ,

F contains all rules A —• # (# is a trap — symbol).

Structuring grammar systems by priorities and hierarchies 199

We have L(G) = L<k(r) { c } . The first component of nonterminals [t, j] specifies
the simulated component, while the second one counts the used rules. The symbol
X is replaced by [i, 0], starting the simulation of P,-, only when no component Py
with Pj >- Pi can use at least one of its rules for rewriting the current sentential
form. After using j rules of P,-, for some 0 < j < k, the symbol [t, j] can be replaced
by X and another component of T can be simulated.

If all symbols [*, j] are replaced by [¿1, and no reference is made to the number of
used rules, then we obtain L(G) = L „ (r) { c } . As MATac is closed under restricted
morphisms, the new symbol c can be erased, and so Lf(T) e MATac> for / e
{ * } U { < k | k > 1}.

(2) In the case of the derivation mode = k, starting from T = (N, T, S, P j , . . .
...,Pn,>~) with N = { A i , . . . , A (} , we shall use again the closure of the family
MATac under restricted morphisms. We construct a matrix grammar G with ap-
pearance checking working as follows. The new axiom S' introduces a string SX,
where S is the axiom of T and X a control symbol; X or its variants will be present
during all derivation steps. Moreover, for each symbol A e TV we have its copy Ac.
In order to be able to check whether a component Py can be applied to the current
string to, we introduce a copy of each nonterminal appearing in to, obtaining in this
way a string toc scattered among the symbols of w; we try to use the rules of Pj on
wc so that the original string to is not destroyed.

Here is a "sub-routine" for such a copying, called for by the control symbol Xc
(here and in the matrices below, # is a trap-symbol):

(Xc —• Xc, A —» A'Ac), for each AeN,
(X . - X ' . A : A. - #) ,
(X ' X', A' A), for each AeN,
(X' -^X",^^ #,..., A', -*#).

(In the presence of Xc, each symbol A e N is replaced by A'AC; when all symbols
AeN have been so replaced, Xc can be replaced by X', and then in the presence
of X' each A' is rewritten back to A; when this has been completed, X' is removed
and the symbol X" is introduced.)

Then, the control symbol X" will guess a component, say Pi, to be used, by
changing to Xi . Now all the components Py >- Pi must be tested and if any of
them can be used, then the derivation is blocked. This can be done as follows.

Having an ordered list GiZ(Pt) = (P } 1 , . . . ,Py (), of components that are
"greater" than P,-, we inspect them in this order P y l f . . . , Py,.. If some Pyr is ap-
plicable, then the derivation is blocked; if Pyr is not applicable, then we pass to
Pyr+1. Finally when also Pyt is not applicable, the control symbol is changed to
some Yi, which leads to the simulation of P<. This is done as in the < k mode,
introducing a counter which terminates the simulation of Pi when exactly k rules
were used; then again the "general controller" X is introduced in order to start the
simulation of another component. The derivation terminates (the control symbol,
the copy symbols and their variants are replaced by the new terminal c) when no
nonterminal from N is present in the current string.

Hence to complete the proof of the theorem for the = k mode we have to show
how to test whether or not a given component Py is applicable in the = k mode to
the current string to (hence to the corresponding nonterminal string toc containing
copies of the nonterminals in w).

200 Victor Mi trail a, Gheorghe Pâun, Grzegorz Rozenberg

Consider the set P* of all sequences of k rules in Pj,

Pf = {m1,m2,...,mq},q = (card{Pj))k,
mi = (Atl -* xi Alk -* xtk), Air -» xtr e Pj, 1 < r < k.

We have to check all these sequences - if at least one of them is applicable, then
Pj is applicable. By appropriately modifying the control symbol, we check, one by
one all the sequences m ^ m j , . . . , mq . If some mj is applicable, then the derivation
is blocked by introducing the trap-symbol if mj is not applicable, then we pass
to mj+i. Finally, when mq is not applicable, then we conclude that Pj is not
applicable.

We explain now the basic idea behind the checking whether or not some mj =
(A;, —• i j , , ,Aik —• xik) is applicable. Assume that the current string
contains the control symbol [*, jt2} (meaning: "for using P,-, we must be sure that
Pj >- P{ is not applicable, and we will try the sequence mj in P / ") . Consider the
set of all sequences C(mj) associated with mj as follows

C[m,) = { (A (l -> ah,..., A,k a,k) | a,r e {x , r , # } ,
1 < r < k, and at least for one r we have air = # } .

If mi is applicable, then each sequence in C(m/), considered as a matrix with the
rules A —• # used in the appearance checking manner, will introduce at least one
occurrence of Conversely, if mj is not applicable, then there is exactly one
sequence in C(m/) which can be used without introducing the trap-symbol. '

Indeed, take a rule Air —• xir. If it is applicable in mi to the current string w,
then it is also applicable in all sequences of C(mj), whether or not it is replaced
by Air —i> If it is applicable in mi to a symbol not in w, but introduced by
a previous rule Ajp —• xip, with xip containing Aj r , then we examine this rule,
Aip —i• x/p. If it remains unchanged in a sequence of C(m[), then it introduces
Air, hence also Air —• ajr is applicable, introducing # when ajr = If it is
replaced by Aip —• then the above argument can be iterated again, considering
two possible cases for A[p: either it appears in w or it is introduced by a previous
rule. Since each sequence in C[mi) contains at least one rule Ais —* jf whenever mj
is applicable, at least one # is introduced. When m/ is not applicable, at least one
of its rules is not applicable. If we replace all not applicable rules by A|a —• then
we obtain a sequence in C(mj) which can be applied in the appearance checking
mode without introducing the trap-symbol.

Consequently, for checking whether or not mi is applicable it suffices to guess
which sequence in C[mi) is applicable in the appearance checking mode (if the
guessing is incorrect, then the derivation is blocked).

To this aim, the current control symbol [i, j , Z] is non-deterministicaly replaced
by [t, j , I; /i], where h is the label of a sequence (A/, —• a/l,..., Aik —• a/fc) in C(mi).
Here is the "sub-routine" for this step:

([{,;, /; h] - [M , i; OK), (A,JC - » (a , J c , . . . , (A,JC - » (a , J c) ,

where (a; r) c = # if a i r = # and it.is obtained by replacing in xir (whenever
a;r = xir) all nonterminals B € N by their copies Bc and removing all the terminals;
the terminal rules B —* x are replaced by Bc —* D, where D is a special nonterminal
(we do not introduce A-rules).

Structuring grammar systems by priorities and hierarchies 201

Then, because the copy symbols have been altered, we replace all of them by D
and for checking the next sequence in P* (namely mj + 1) we produce a new series
of copy symbols, using the following matrices:

([t,/, f; OK) (,-, j, I, OK], Ac —» D), Ae N,
([i,3,1-, OK] - [i^ JlcopyKAxU # (A.)c ^ #) ,

([*> j, i; copy] - » [t', j, l; copy], A—* A' ,D —* Ac), Ae. N,
([»• 3, copy] -» [», j, h copy], A A'Ac), Ae N,
([{, j, /; copy] [i, j, l\ copy'], Ax—*#,..., A, —• #),
([*,3, copy'] -+ [i, j, l, copy'], A' A), AeN,
([»•, j, /; copy'] [», j, I + 1], A[^ # a: - #).

In this way the new copies of nonterminals in the current string of T as simulated
in G use "the places" of the old copies (the order is not relevant if matrices are
used only for testing their applicability); new places for copies of nonterminals are
introduced only when we do not have enough occurrences of the "place holder"
symbol D (this is important when we pass from the simulation of P,-, which can
introduce new nonterminals, to the simulation of another component). Therefore
the length of the string is not increased more than by a factor of three (more exactly,
for a string x £ L= fc(r) we can obtain in L[G) a string with the length less than
2|z| + l) .

We believe that the description of G given above allows one to give a formal
(quite tedious) construction of a matrix grammar G with appearance checking such
that L = F C (R) = h(L(G)), where h : (T U {c})* —• T * is a 3-bounded morphism
defined by h(a) = a for a e T, and h\c) = A. Consequently, L=k(T) 6 MATac.

The modifications for the > k mode of derivation concern only the counting of
rules used in P< whenever the use of Pi is permitted. (A component Pj >• Pi is
applicable in the > k mode if and only if it is applicable in the = k mode, hence
the "checking part" of the construction from the above proof remains unchanged.)

•

5 The power of hierarchical grammar systems
We begin by pointing out the relations which follow directly from definitions:

L e m m a 2 CF = H0CD[f) C HxCDU) = CD^f) C H2CD(f) C H3CD(f)
C...,fe{*,t}u{<k,= k,>k\k >1}.

For many derivation modes, this hierarchy is finite.

T h e o r e m 5 HhCD(t) = HxCD{t), for each h>l.

Proo f . We only have to prove the inclusion HhCD(t) C HiCD(t), and to this aim
it suffices to show that H2CD(t) C H\CD(t) (by induction: having a system of
arbitrary depth h > 2, if its subsystems of depth h— 1 can be reduced to systems of
depth 1, then we replace them by such systems and obtain in this way a system of
depth 2 equivalent with the initial one; then again using the reduction from depth
2 to depth 1, we prove the theorem).

202 Victor Mi trail a, Gheorghe Pâun, Grzegorz Rozenberg

Hence consider a system T = (N, T, S, 7 1 , . . . , 7 m) of depth 2, with 7; = {7,- , i , . . .
• • • 17i,r, } j U > 1, 1 < t < m, where 7^y are sets of context-free rules over JVl lT .
We construct the system I", of depth 1, with the nonterminal alphabet

If = {S ,# } u {[A,i] I A € N, 1 < i < m),

the terminal alphabet T, the axiom S', and the following components:

Pr = {S'-+[S, 1],
PiJ = (K » '] ^hi{x)\A-*xe 1 < »' < m, 1 < j < r<,

Ki = { M ^ \A,j\ \AeN- (U ^ d o m f o , .)) U
U{[A,i] - » # | i l e U ^ d o m f o .) } , 1 < i,j <m,iji 3,

where, for each 1 < »' < m, h{ : (N U T) * —• (N'uT)* is the morphism defined by
hi (A) = [A,t] for all A e N, and hi (a) = a for all a e T.

Each derivation in T' begins by a rule S' —* [S,t], which selects a component
7i of T which is simulated first. Assume we use now a component Pij, 1 < j < ri.
All the introduced nonterminals will be of the form [A, i], A € N. The derivation
will be maximal in P i j , hence it corresponds to a maximal derivation in 7 A f t e r
finishing the derivation in Pij, another component for 1 < s < r ,̂ can be used,
and so on. At each moment, all the nonterminals present in the current string are
of the form [A,i], for the chosen t. When no component P.- y, 1 < j < r c a n be
used (this corresponds to a maximal derivation in 7,), a component P- t, of
T' can be used. It changes all nonterminals in the sentential form from [A,i] to
\Ayj\. A component ^ 3', can be used without blocking the derivation only
when no derivation step in P^s, 1 < s < r ,̂ can be done, that is the corresponding
derivation in 7i is maximal (otherwise a rule [A,t] —> A £ dom(~ntt), for some
1 < s < r,-, can be used, which introduces the trap-symbol #) . Consequently, the
terminal derivations in T' simulate derivations in T.

Conversely, it is obvious that each derivation in T can be simulated in T'.
Consequently, Lt(T) = £ t(r ')> that is H2CD(t) C HiCD{t) = CD^t), which

concludes the proof.
•

Theorem 6 HhCD(f) = HxCD(f) = CF, for f £ {*, = 1, > 1} U { < k \ k > l} ,
and h > 1.

P r o o f . We proceed again as in the previous proof, reducing the problem to the
inclusion H2CD[f) C H1CD(f)-> because we know that HxCD[f) = CF, for / as
in the statement of the theorem, we shall prove the relation H2CU(f) C CF.

Consider a system of depth 2, T = (N,T,S, 71 , . . . , 7m) , with 7,• = {7» , i , . . .
• • • >7»,a. } 1 f° r each 1 < t < m, where 7tiy is a set of context-free rules, 1 < j < s,-.
Let G be the context-free grammar (N, T, S, {A —» x | A —» x £ 7,- y, 1 < t < m, 1 <
j < SI}).

Every derivation in T ammounts to the use of rules from sets 7,,y, hence the
inclusion L/[T) C L(G) is obvious (and actually holds for all modes of derivation,
and not only for the modes / as in the statement of the theorem). Conversely, every
derivation in G is correct with respect to the / mode in T, because we can reproduce
all derivations in G as = 1 derivations in T. Consequently, L(G) = Lj (F), that is
Lf(T) £ CF. •

Structuring grammar systems by priorities and hierarchies 203

It is an open problem whether Theorem 6 can also be extended to the derivation
modes = k and > k, for k > 2. This question seems to be related to the unsolved
problems about usual grammar systems concerning (1) the relations between fam-
ilies CD0o (= k) and CD^ (= j) for k j, and (2) the strictness of the inclusions
CDoo (> k) C CDoo(> k + 1) for k > 2 (weak inclusions are proved in [3]). In the
example from Section 3 we have seen that a derivation in the = 2 mode at the level
of the system corresponds, in some sense, to a derivation in the = 4 mode at the
level of components: two rules from the first sub-component and two rules from
the second sub-component are used.

We will demonstrate now that the result analogous to Theorem 3 holds for hcd
grammar systems.

Theorem 7 HhCD[f) C MAT, for all h > 0 and for f e {= k,> k \ k> 2}.

Proo f . First of all notice that for each / as in the statement of the theorem,
H0CD(f) = CF, and HiCD(f) = CD(f) - thus (see also the end of Section 2)
HoCD(f) C MAT and HxCD(f) C MAT. Hence we may assume that h> 2.

Let T be a hcd grammar system of depth h,T = (N, T,S, 7 1 , . . . , 7M). Using a
component 7 i n the = k mode for k >2, means to use k of its subsystems. This
in turn means that k sub-subsystems are used, and so on until one reaches the
level 0 (of sets of rules) where we use k rules from each set chosen by the previous
steps. This means that from the sets P}- on the level 0 we use sequences in the
sets Pj\ then "concatenating" such sequences, we obtain sequences corresponding
to the next level and so on. The so obtained sequences are matrices of rules, and
so the work of T in the = k mode can be simulated in a matrix grammar which is
defined as follows.

For a sequence of matrices of context-free rules, ny = (»"¿,1,..., rj,,,.), 1 < t <
p, we define (m i , . . . , m p) = (r<,i , . . . , riitl, r 2 , i , . . . , r 2 , „ , r3<1,..., rp > ,J , which is
again a matrix of rules.

For a set P of context-free rules let mat[P,k) = Pk (all matrices, in all orders
and combinations, of k rules in P), and then, for a system S = [N, T, S, Si,...
. . . , 67) of depth h > 1, we define recursively

mai(5, A;) = {mat(6i, k),mat(S2, k),..., mat{St,k)}k.

The matrix grammar G — (N,T,S,mat(T,k)) has the property L(G) = L=fc(r),
which proves the inclusion HhCD{= k) C MAT.

The inclusion HhCD(> k) C MAT can be obtained in the same way, using the
observation that every derivation in a system T in the mode > k can be decomposed
into one or more derivations in the mode = j, for k < j < 2k — 1. Therefore,
if we define now mat'(P,k) = U^-^.1 mat(P, j) and we modify in the same way
the definition of mat(S,k), then we obtain a matrix grammar G' generating the
language L>k(T).

•
Note that in the above theorem we have dealt with matrix grammars without

appearance checking.

204 Victor Mi trail a, Gheorghe Pâun, Grzegorz Rozenberg

References
[1] A. Atanasiu, V. Mitrana, Modular grammars, Intern. J. Computer Math., 30

(1989), 101 - 122.

[2] E. Csuhaj-Varju, J. Dassow, On cooperating distributed grammar systems, J.
Inform. Process. Cybern., EIK, 26 (1990), 49 - 63.

[3] E. Csuhaj-Varju, J. Dassow, J. Kelemen, Gh. Páun, Grammar Systems, Gor-
don and Breach, 1994.

[4] J. Dassow, Gh. Páun, Regulated Rewriting in Formal Language Theory, Sprin-
ger-Verlag, 1989.

[5] J. Dassow, Gh. Páun, S. Vicolov, On the generative capacity of certain classes
of cooperating grammar systems, Fundamenta Informaticae, to appear.

[6] L. Kari, Al. Mateescu, Gh. Páun, A. Salomaa, Teams in cooperating grammar
systems, J. Experimental and Theoretical AI, to appear.

[7] R. Meersman, G. Rozenberg, Cooperating grammar systems, Proc. MFCS '78
Symp., LNCS 64, Springer-Verlag, 1978, 364 - 374.

[8] P. H. Nii, Blackboard systems, in The Handbook of AI, vol. 4 (A. Barr, P. R.
Cohen, E. A. Feigenbaum, eds.), Addison-Wesley, 1989.

[9] Gh. Páun, G. Rozenberg, Prescribed teams of grammars, Acta Informática, to
appear.

[10] G. Rozenberg, A. Salomaa, The Mathematical Theory of L Systems, Academic
Press, 1980.

[11] A. Salomaa, Formal Languages, Academic Press, 1973.

Received October 6, 199S

