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Normal Forms and Minimal Keys in the 
Relational Datamodel* 

J. Demetrovics * Yu Due Thi* 

Abstract 
The normalization of relations was introduced by E. F. Codd. The main 

purpose of normalization is to delete undesired redundancy and anormalies. 
The most desirable normal forms are second normal form ( 2NF ), third 
normal form ( 3NF ) and Boyce-Codd normal form ( BCNF ) that have 
been investigated in a lot of papers. The concepts of minimal key and prime 
attribute ( recall that an attribute is prime if it belongs to a minimal key, 
and nonprime otherwise ) directly concern 2NF, 3NF and BCNF. This paper 
investigates connections between these normal forms and sets of minimal keys. 
Lucchesi and Osborn showed [l l ] that the problem to decide if an arbitrary 
attribute is prime is NP-complete for relation scheme. We proved [9] that 
a set of all nonprime attributes is the intersection of all antikeys ( maximal 
nonkeys ) and this prime attribute problem can be solved by polynomial time 
algorithm for relation. From these results some problems are NP-complete 
for relation scheme, but for relation these problems are solved by polynomial 
time algorithms. It is known [5j that a set of all minimal keys of a relation 
scheme ( and a relation ) is a Sperner system ( sometimes it is called an 
antichain ) and for an arbitrary Sperner system there exists a relation scheme 
the set of all minimal keys of which is exactly this Sperner system. In this \ 
paper the following concepts are introduced. 

A Sperner system K is in 2NF ( 3NF, BCNF, respectively ) if for each 
relation scheme s such that K, — K then « is in 2NF ( 3NF, BCNF, respec-
tively ), where K, is a set of all minimal keys of e. This paper gives necessary 
and sufficient conditions for an arbitrary Sperner system is in 2NF or 3NF 
or BCNF. We prove that problems of deciding whether K, is in 2NF ( 3NF, 
respectively ) are NP-complete. However, we show that if a relation scheme 
is changed to a relation then these problems are solved by polynomial time 
algorithms. We give a new characterization of relations and relation schemes 
that are uniquely determined by their minimal keys. From this character-
ization we give a polynomial time algorithm deciding whether an arbitrary 
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relation is uniquely determined by its set of all minimal keys. Osborn [14] 
gives a polynomial time algorithm testing BCNF property of a given relation 
scheme. This paper gives a polynomial time algorithm recognizing BCNF 
and finding a set of all minimal keys and a minimum cover if a given relation 
scheme is in BCNF. 

Key Words and Phrases: database, relation, relational datamodel, func-
tional dependency, relation scheme, second normal form, third normal form, 
Boyce-Codd normal form, closure, closed set, minimal generator, key, minimal 
key, antikey. 

1 Introduction 
Let us give some necessary definitions and results that are used in next section. 

D e f i n i t i o n 1.1 Let R = { a i , . . . , a n } be a nonempty finite set of attributes, r = 
{ A i , . . . , A m } be a relation over R, and A,BQR. Then we say that B functionally 

depends on A in r ( denoted A B) iff 

(VA,-, Ay € r)((Va e A)(A,(a) = Ay(a)) (V6 e B ) ( M & ) = Ay(6))). 

Let Fr = { ( A , B) : A, B Q R, A-^B}. Fr is called the full family of functional 

dependencies of r. Where we write (A, B) or A —* B for A B when r, / are clear 
from the context. 

D e f i n i t i o n 1.2 A functional dependency over R is a statement of the form A —» B, 

where A,BCR. The FD A—*B holds in a relation r if A-^-* B. We also say that 
r 

r satisfies the FD A —> B. 
Clearly, Fr is a set of all FDs that hold in r. 

D e f i n i t i o n 1.3 Let R be a nonempty finite set, and denote P(R) its power set. Let 
y C P{R) X P(R). We say that y is an f-family over R iff for all A,B,C,D C R 

1. (A, A) € y, 

2. {A,B)ey, [B, C) € y =>• (A, C) 6 y, 

S. {A,B)ey,ACC,DCB=> (C, D) e y, 

4. (A,B)e y, {C,D) € y = » ( A u C . B u D ) e y. Clearly, Fr is an f-family 
over R. 

It is known [l] that if y is an arbitrary /-family, then there is a relation r over 
R such that Fr = y. 

D e f i n i t i o n 1.4 A relation scheme s is a pair < R,F>, where R is a set of at-
tributes, and F is a set of FDs over R. Let F+ be a set of all FDs that can be 
derived from F by the rules in Definition l.S. Denote A+ = {a : A -+ { a } g F+}. 
A+ is called the closure of A over s. It is clear that A —* B 6 F+ iff B C A + . 
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It is known [3] that there is a polynomial time algorithm which finds A + from 
A. 

Clearly, if s =< R,F > is a relation scheme, then there is a relation r over R 
such that Fr = F+ (see, [1]). Such a relation is called an Armstrong relation of s. 
It is obvious that all FDs of s hold in r. 

Definit ion 1.5 Let r be a relation, s =< R, F > be a relation scheme, y be an 
f-family over R and A C R. Then A is a key of r ( a key of s, a key of y) if 

A R (A—*R& F+, (A, R) Ey). A is a minimal key of r(s, y) if A is a key of 
r(s, y), and any proper subset of A is not a key of r(s, y). Denote Kr, (K,, Ky) the 
set of all minimal keys of r(s,y). Clearly, Kr,K,,Ky are Sperner systems over R. 

Definit ion 1.6 Let K be a Sperner system over R. We define the set of antikeys 
of K, denoted by as follows: 

K~x = {A C R : [B e K) => (B % A) and (A c C ) = > (3B € K){B C C)} 

It is easy to see that K-1 is also a Sperner system over R. 

It is known [5] that if K is an arbitrary Sperner system over R then there is a 
relation scheme s such that K, = K. 

In this paper we always assume that if a Sperner system plays the role of the 
set of minimal keys ( antikeys ), then this Sperner system is not empty (doesn't 
contain R). We consider the comparison of two attributes as an elementary step 
of algorithms. Thus, if we assume that subsets of R are represented as sorted 
lists of attributes, then a Boolean operation on two subsets of requires at most |ii| 
elementary steps. 

Definition 1.7 Let I C P[R), R <= /, and A,B e I => AnB € I. Let M C P(R). 
Denote M+ = {C\M : M C M}. We say that M is a generator of I iff M+ = I. 
Note that R £ M+ but not in M, since it is the intersection of the empty collection 
of sets. 

Denote N = {A e I: A ? n { A ' e I: A c A ' } } . 
In [6] it is proved that N is the unique minimal generator of I. Thus, for any 

generator N of I we obtain N C N . 
Definit ion 1.8 Let r be a relation over R, and Er the equality set of r, i.e. Er = 
{Eij : 1 < % < j < |r|}, where E{i = {a e R : hi(a) = /iy(a)}. Let Tr = {A € 
P(R) : 3 E { j = A, /BEpq : A C Epq}. Then Tr is called the maximal equality system 
of r. 

Definition 1.9 Let r be a relation, and K a Sperner system over R. We say that 
r represents K iff Kr — K. The following theorem is known ([8]). 

Definition 1.10 Let K be a non-empty Sperner system and r a relation over R. 
Then r represents K iff i f - 1 = Tr, where Tr is the maximal equality system of r. 

Definit ion 1.11 Let s =< R,F> be a relation scheme over R. We say that an 
attribute a is prime if it belongs to a minimal key of s, and nonprime otherwise, 
s =< R,F > is in 

1. SNF if A—* {a } ^ F+ for each K £ K,, A <Z K, A, and a is nonprime. 
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2. SNF if A -* { a } g F+ for A+ ф R, a £ A, a is nonprime. 

S. В CNF if A — {a } & F+ for A+ ф R, a 0 A. 

Clearly, if s is in BCNF (SNF, respectively) then s is in SNF (2NF, respectively). 
If a relation scheme is changed to a relation we have the definition of 2NF, SNF 

and BCNF for relation. 

Definit ion 1.12 [4] Let P be a set of all f-families over R. An ordering over P is 
defined as follows: 

For F,F'eP let F < F' iff for all AC R, НРЛА) С HF(A). where HF(A) = 
{aeR: {A,{a})<=F}. 

T h e o r e m 1.13 [7] Let К be a Sperner system over R. Let 

Ш ] = ( Г 'л св B 
1> \ if3B e К'1 : А С В R otherwise 

and F = {[С, D): DC L(C)}. 
Then F is an f-family over R, Hp = L, and Kp = K. If F' is an arbitrary 

f-family over R such that Kp> = К then F < F' holds. 

2 Results 
In this section we give some results related to 2NF, 3NF, BCNF and sets of minimal 
keys. 

Definit ion 2.1 Let K be a Sperner system over R. We say that K is in 2NF (SNF, 
BCNF, respectively) if for every relation scheme s =< R,F > such that K, = K 
then s is in 2NF (SNF, BCNF, respectively). 

Now we give a necessary and sufficient condition for an arbitrary Sperner system 
is in 2NF. 

Let K be a Sperner system over R. Denote Kp = {a e R: 3A e K:a 6 A } , and 
Kn = R — Kp. Kp (K n ) is called the set of prime ( nonprime ) attributes of K. 

Given a relation scheme s =< R,F >, we say that a functional dependency 
A—>Be.F is redundant if either A = B or there is C D & F such that CCA. 

Theorem 2.2 Let K be a Sperner system over R. Then K is in 2NF if and only 
»/ Kn = 0. 

P r o o f . According to definitions of 2NF relation, 2NF Sperner system and Kn we 
can see that if Kn = 0 then K is in 2NF. 

Now, assume that K is in 2NF. Denote Kthe set of all antikeys of K. From 
K, K-1 we construct the following relation scheme. 

For each A C R there is B € K'1 such that A C B. Denote C = C\{B e 
K~l-.A C B}. We set A —* C. Denote T the set of all such functional dependencies. 
Set F = {E — R: E 6 K} U (T - Q), where Q = {X Y e T:X K is a 
redundant functional dependency } . JVom Theorem 1.13 and definition of Sperner 
system we obtain K, = K. Clearly, for each arbitrary relation scheme s' =< R, F' > 
such that Ky = K and A C R we have A*, C A+, where A^ = {a: A —• { a } G 
F'+}. We showed [9] that Kn is the intersection of all antikeys of K. Based on the 
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construction of s =< R, F > and according to definition of 2NF Sperner system 
we obtain Kn = 0. Our proof is complete. 

It is easy to see that a 3NF relation scheme is in 2NF and if a set of all non-
prime of arbitrary relation scheme is empty then this relation scheme is in 3NF. 
Consequently, Theorem 2.2 immediately implies the following corollary. 

Corol lary 2.3 Let K be a Sperner system over R. Then K is in SNF if and only 
if Kn = 0. 

Definition 2.4 Let K be a Sperner system over R. We say that K is unique if 
K uniquely determines the relation scheme s =< R,F > , t. e. for every relation 
scheme s' =< R, F' > such that K,< = K we have F+ = F'+. 

From definition of BCNF Sperner system and Definition £.4 we obtain 

Propos i t ion 2.5 K is in BCNF iff K is unique. 
Now we introduce the following problem. 

Theorem 2.6 The following problem is NP-complete: 
Given a relation scheme s, decide whether K, is in £NF. 

Proo f . For each a £ R we nondeterministically choose a subset B of R such that 
o £ B. By an algorithm finding the closure of B over s ( see [3] ) and based on 
definition of minimal key we decide whether B is a minimal key of 3. From this we 
can decide whether a is prime of s. According to Theorem 2.2 if for every a £ R a 
is prime then K, is in 2NF, in the converse case K isn't in 2NF. It is obvious that 
this algorithm is nondeterministic polynomial. Thus, our problem lies in NP. 

Now we shall show that our problem is NP-hard. It is known [ l l ] that the 
prime attribute problem for relation scheme is NP-complete. Now we prove that 
this problem is polynomially reducible to our problem. 

Let s' =< P, F' > be a relation scheme over P, and a £ P. Without loss of 
generality we assume that P is not a minimal key of s', i.e. if A £ K,i then A C P. 
By a polynomial time algorithm finding a minimal key of relation scheme ( see [ l l ] 
) we can find a minimal key Q of s' from P and F'. Denote T = {I: I £ P-Q, {/} —• 
P & F'+}. Assume that T = { a i , . . . , o t } . Now we construct the relation scheme 
s =< R, F > as follows: 

R = P U {b, c, d, ei,..., e t - i } , where b,c,d,e 1 , . . . , et-i & P and F contains F' 
and the following functional dependencies: 

It can be seen that s is constructed in polynomial time in the sizes of P and F'. 
According to the construction of s =< R,F > and definition of minimal key and by 
Q u { c } R, for all A £ Kt> we have A u { c } £ i f , ( l ) . Based on Qu{fc} Q u { c } 
and {6} { 0 } if A £ K„< we obtain (A - o) U {6} £ K,{2). By {{a,-, o i + 1 , e,} 
R-1 < i < t — 1} we have {a^, a^+i, e ; } ( l < i < t — 1) £ K,. From this and ( l ) 
Vo' £ P,b,c,ei,..., et-i are prime attributes of s. According to the construction of 
s and definition of 3NF relation scheme we can see that s is in 3NF. Now we prove 
that K„ is in 2NF iff a is prime attribute of s'. 

Assume that K, is in 2NF. According to Theorem 2.2 we can see that d is 
prime attribute of s. Consequently, there is a minimal key B of s such that d €. B. 
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It can be seen that a,b,ei,..., et-i B. Since there is only functional dependency 
{ c .d } —+ {£>J the left side of which contains d we obtain c £ B. According to 
{6} {a } , ( c ,d } {6} and (2) it is easy to see that ( S U a ) - { c , d } e K,>. Thus, 
a is prime attribute of a'. 

Now we assume that K, is not in 2NF. By Theorem 2.2 d is nonprime attribute 
of a. If a e A : A 6 K,- then by { c ,d } - » { a } 6 F+ and from (2) ( c , d } u ( A - a ) 6 K, 
holds. This conflicts with the fact that d is nonprime attribute of a. Consequently, 
a is nonprime attribute of a'. The theorem is proved. 

Theorem 2.6 immediately implies the following corollary 
Corol lary 2.7 The problem of deciding whether K, is in SNF is NP-complete for 
given a relation scheme s. 

It i3 known [8] that there is a polynomial time algorithm which from a given 
relation r finds the maximal equality systemTr. Based on Theorem 1.10 and because 
the set of all nonprime attributes is the intersection of all antikeys we have the 
following proposition. 

Propos i t i on 2.8 There is an algorithm that for a given relation r decides if Kr is 
in SNF or SNF. The time complexity of this algorithm is polynomial in the sizes of 
R and r. 

From Theorem 2.2 we immediately obtain the following corollary. 

Corol lary 2.9 There is a polynomial time algorithm that decides whether a given 
Sperner system is in 2NF or SNF. Let a = < R,F > be a relation scheme over R, 
K, is a set of all minimal keys of a. Denote the set of all antikeys of s. From 
Theorem 1.10 we obtain the following corollary. 

Corol lary 2.10 Let s =< R,F > be a relation scheme and r a relation over R. 
We say that r represents s if KT = K,. Then r represents s iff K*1 = Tr, where 
Tr is the maximal equality system of r. In [7] we proved the following theorem. 

Theorem 2.11 Let r = {hi,... .hm} be a relation , and F an /-family over R. 
Then Fr = F iff for every A e P[R) 

where HF[A) = {a S R: (A, { a } ) S F} and ER is the equality set of r. 
Let a = < R, F > be a relation scheme over R. FVom a we construct Z(s) = 

{ X + : X C R}, and compute the minimal generator N, of £(s). We put 

It is known [l] that for a given relation scheme a there is a relation r such that 
r is an Armstrong relation of s. On the other hand, by Corollary 2.10 and Theorem 
2.11 the following proposition is clear 
Propos i t i on 2.12 Let s =< R,F> be a relation scheme over R. Then 

It is known [5] that for given a Sperner system K there exists a relation scheme 
a ( a relation r, respectively ) such that K, = K (Kr = K, respectively ). We say 
that s ( r, respectively J is unique if K, ( Kr, respectively ) uniquely determines s 
( r, respectively ), i.e. K, ( Kr, respectively ) is unique. 

Now we give a necessary and sufficient condition for given a relation scheme is 
unique. 

T, = { A 6 N, -.FLBEN,: A C B) 

K;1 = T,. 
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T h e o r e m 2.13 Let s —< R, F > be a relation scheme over R. Then s is unique 
iff for all a A, A E K~l : A - a — n{J3 G i f f 1 : [A - a) C B} holds. 

P r o o f . It is known [4] that a Sperner system K is unique iff for all B C A, A € 
K-1, B is an intersection of antikeys. Denote P, = {A — a: A G Kj1, a G A}. 

It can be seen that if s =< R,F > is unique then B G P, implies B is an 
intersection of antikeys, i.e. B = f l {A G K~l-.B C A} . 

Conversely, assume that for every B G P, we have B = (~|{A G K~l : B C 
A} (* ) . Now we shall prove the following result : a = < R, F > is in BCNF iff for 
all B G P., B+ = J3(l) holds. 

It is easy to see that if s is in BCNF then we obtain (1). Now, we assume that 
for each B G P„ B+ = B. Suppose C —• {«¿} G F+ and d £ (7(2). If C+ ^ R then 
by definition of antikey and Proposition 2.12 there exists an A G K~x such that 
C+ C A and by (2) d G A holds. Clearly, C C A-d holds. It is easy to see that 
(A - d)+ holds. By A - d G P, we have (A - d)+ ± A - d. This conflicts 
with the fact that (A - d)+ — A- d. Hence, C+ = R holds, i.e. s is in BCNF. 

From this result and according to Proposition 2.12 we have N, C (P„ U K~1). 
It can be seen that s is in BCNF. Based on definition of N, and Proposition 2.12 
K'1 C N, holds. According to (*) we obtain Kt 1 = N,. Because a is in BCNF we 
can see that for all B C A, A G K : B+ = B holds. Thus, B is an intersection 
of antikeys of s. The proof is complete. 

According to definition of BCNF Sperner system and based on Theorem 2.13 
and Proposition 2.5 we give a necessary and sufficient condition for an arbitrary 
Sperner system is in BCNF. 
Theorem 2.14 Let K be a Sperner system over R. Then K is in BCNF iff for all 
aeA, Ae K'1 : A - o = n{B G K~l: (A - a) C B} holds. 

By a polynomial time algorithm finding a set of all antikeys of a given relation 
and according to Theorem 2.13 we obtain the following proposition. 

Propos i t i on 2.15 There exists an algorithm deciding whether a given relation r 
is unique. The time complexity of this algorithm is polynomial in the sizes of R 
and r. 

Theorem £.14 and Proposition £.15 immediately imply the following 

Propos i t i on 2.16 There exists a polynomial time algorithm deciding whether a 
set of all minimal keys of a given relation is in BCNF. 

Theorem 2.13 immediately implies the next corolllary. 

Corol lary 2.17 Let K be a Sperner system over R. Then there exists a polynomial 
time algorithm deciding whether a Sperner system H is unique, where H~l = K. 

Now we introduce the following problems : Given a relation scheme s ( a Sperner 
system K, respectively ), decide whether s ( K, respectively ) is unique. 

It is obvious that these problems are equivalent to the next problems: Given 
a relation scheme s ( a Sperner system K, respectively ), decide whether K, ( K, 
respectively ) is in BCNF. 

It is unknown that these problems have polynomial time complexity. We con-
sider these problem as interesting open problems. 

Osborn [14] gives a polynomial time algorithm deciding whether a relation 
scheme is in BCNF. It is known [10, 12] that a relation scheme s =< R, F > is in 
BCNF iff its minimum cover contains functional dependencies {K\ —> R,..., Kt —>• 
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R}, where K{( 1 < i < t) are minimal keys of s. FVom this the BCNF property of 
relation .scheme also is recognized in polynomial time. 

Let s =< R, F > be a relation scheme over R. PVom mles (3) and (4) of Defini-
tion 1.3 we can see that the functional dependency A —* { o i , . . . , a t } is equivalent 
to the set of functional dependencies {A —• { a i } , . . . , A —• {at } } - Thus, we can 
assume that F only contains the functional dependencies form A —> { a } . 

Definit ion 2.18 Let s =< R,F> be a relation scheme. We say that s is an a-
relation scheme over R if F = { A { b } : A j i b, JBB : (B -* {b})[B C A) } , where 
b e R. 

Definit ion 2.19 Let 3 = < R,F> be a relation scheme, b e R. Denote Kb = 
{AC R: A {b}, flB: (B -* { 6 } ) ( S C A} } . Kb is called the family of minimal sets 
of the attribute b. Clearly, R & Kb, {6} S Kb and Kb is a Sperner system over 

Algor i thm 2.20 ( Finding a minimal set of the attribute b ) 
Input: Let s =< R, F > be a relation scheme, A = {ai,..., at} —» {6}. 
Output: A' € Kb 
Step 0: We set L(0) = A 
Step i+1: Set 

Then we set A! = L(t). 

L e m m a 2.21 L{t) € Kb 

P r o o f . By the induction it can be seen that L(t) —• {6} , and L[t) C ... C L(0) 
( l j . If L{t) = b, then by the definition of the minimal set of attribute b we obtain 
L(t) £ Kb- Now we suppose that there is a B such that B C L(t) and 5 ^ 0 . 
Thus, there exists ay such that ay ^ B, ay G L{t). According to the construction 
of algorithm we have L(j — l ) — ay •/* {6}. It is obvious that by ( l ) we obtain 
L(t) - ay C L(j - 1) - ay(2). It is clear that B C L(t) - ay. From (1), (2) we have 
B -f* {6} . The lemma is proved. 

Clearly, by the linear-time membership algorithm in [3] the time complexity of 
Algorithm 2.20 is 0(|ii|2|F|). 

A lgor i thm 2.22 ( Finding an a-relation scheme ) 
Input: Let s =< R,F> be a relation scheme. 
Output: an a-relation scheme 3' = < R, F' > such that F'+ = F+. 
Step 1: By rules (S) and (4) of Definition l.S from s we construct s" =< 

R, F* = {A -* {6} : b e R} > such that F"+ = F+. 
Step 2: For each A —* {6} e F" we use algorithm 2.20 to find a minimal set A' 

of attribute b over s". Set F* = {A' -» b : V6 6 R}. 
Step S: Set s' =< R, F' = F* - Q) >, where Q = {X Y € F*: X Y is a 

redundant functional dependency }. 
According to definition of a-relation scheme, based on Definition 2.19 and 

Lemma 2.21 we can see that s' is an a-relation scheme and F'+ = F+. 
It can be seen that the time complexity of Algorithm 2.22 is polynomial in the 

sizez of R and F. 

R. 
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Theorem 2.23 Let s —< R,F > be a relation scheme. Then a is in BCNF if and 
only if there exists an a-relation scheme a' =< R,F' > such that F'+ = F+ and 
for every A -* (b) € F' A 6 K,< holds. 

Proo f . Assume that a is in BCNF. By Algorithm 2.22 we can construct an o-
relation scheme s' =< R,F' > such that F'* = F+. By Step 3 of this algorithm 
for each A -+ {6} e F' b & A holds. Since s' is in BCNF we have A + = R. Clearly, 
if there is a C C A such that C + = R then C —• {6} holds. This is a contradiction. 
Thus, A G K h o l d s . 

Conversely, we assume that there is an a-relation scheme s' =< R, F' > such 
that F+ = F'+ and for every A {6} 6 F' A € K,< holds. By Lemma 3 in [14] s' 
is in BCNF. Thus, a is in BCNF. Our theorem is proved. 

In Theorem 2.23 we set K = {A: A - » {6} € F'}. We have the following. 

Propos i t ion 2.24 K = K,. 

Proo f . By definition of BCNF relation scheme K,> = K, holds. From Theorem 
2 . 2 3 K C K,< holds. Suppose B £ K,<,B C R and B £ K. Because IF4< is a 
Sperner system over R we can see that K U B also is a Sperner system over R. It 
can be seen that according to definition of a-relation scheme B+ = B over s'. This 
conflicts with the fact that B is a minimal key of s'. The proof is complete. 

Theorem 2.23 immediately implies the following. 

Propos i t ion 2.25 Let a =< R,F> be a relation scheme. Then a is in BCNF if 
and only if there exists an a-relation scheme s' =< R, F' > such that F'+ = 
and for every A —• { 6 } € F' A is a key of s'. 

It can be seen that based on definition of a-relation scheme, in Proposition 2.25 if 
A —» {6} €E F' then A is a minimal key of s'. 

Clearly, the time complexity of Algorithm 2.22 ( finding an a-relation scheme ) 
is polynomial and deciding whether a set of attributes is a key also takes polynomial 
time, It is known [10, 12] that a relation scheme s =< R,F> is in BCNF iff its 
minimum cover contains functional dependencies { K i —• R,...,Kt —<• R}, where 
•^¿(1 are minimal keys of s. We can give a polynomial time algorithm rec-
ognizing the BCNF property of arbitrary relation scheme s, and if relation scheme 
s is in BCNF then this algorithm finds a minimum cover and a set of all minimal 
keys of s. 

Algor i thm 2.26 Input: Let a =< R, F > be a relation scheme. 
Output: Deciding whether a is in BCNF, if s is in BCNF then finding K,, and 

an a-relation scheme s' =< R,F' > such that a' is a minimum cover of s. 
Step 1: Use Algorithm 2.S2 we construct an a-relation scheme s" =< R, F" = 

{A {6} : b £ R} > such that F"+ = F+. 
Step 2: If there is an A —* {fc} 6E F" such that A is not a key of s" then s isn't 

in BCNF and stop. In the converse case go to the following step. 
Step S: Set K, = {A : A —• {6} e / " ' } . 
Step 4• Denote elements of K, by A i , . . . , A«. Set F' = {A,- —• R : 1 < t < i } . 
It can be seen that s' =< R, F' > is a minimum cover of a. 
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3 Conclusion 
Our further research will be devoted to the following problems: 

Given a relation scheme s. 

1. What is the time complexity of deciding whether s is in unique? 

Given a Sperner system K over R. 

1. What is the time complexity of deciding whether K is unique? 
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