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1 Introduction

In the theory of relational databases, connections between functional and multival-
ued dependencies and a certain fragment of propositional logic have been investi-
gated in several papers.

The full family and the possible mathematical structure of functional depen-
dencies was first axiomatized by W.W.Armstrong [1]. Different kinds of functional
dependencies have also been investigated. The full family of strong dependencies
has been introduced and axiomatized [5,7,8,9,14,15].

The family of Boolean dependencies is introduced {13]. In [2,3], the large sub-
class of positive Boolean dependencies, that is, Boolean combinations of attributes
and the logical constant TRUE in which neither negation nor FALSE occur are
studied. In [4], the class of equational dependencies is introduced. This class in-
cludes the class of functional dependencies as well as the Boclean dependencies, the
positive Boolean dependencies and the classes of dependencies considered in [6,10].

In the papers mentioned above, the connection between dependencies and the
fragment of propositional logic is built on the set of truth assignments T of a given
relation R. Namely, for each pair of distinct tuples of R, the set Tg contains the
truth assignment that maps an attribute A to TRUE if the two tuples are equal on
A and to FALSE if the two tuples have different values for A.

In [11] a large class of mappings for constructing the truth assignments of rela-
tions was introduced. This class includes the equality mappings mentioned above.
The class of Generalized Positive Boolean dependencies is introduced on these map-
pings.

In this paper we introduce a class of strong-Generalized Positive Boolean de-
pendencies. We present a characterization of Armstrong relations for a given set
of strong Generalized Positive Boolean dependencies.
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The paper is structured as follows. In Section 2 we give some basic definitions.
The concept of strong Generalized Positive Boolean dependencies is introduced in
Section 3. In Section 4 we investigate connections between full families of strong
Generalized Positive Boolean dependencies, s-semillatice and strong operations.
Armstrong relation, the update problem and membership problem for strong Gen-
eralized Positive Boolean dependencies are studied in Section 5, Section 6 and
Section 7.

2 Basic Definitions

We assume that the reader is familiar with the relational model of database systems
and with the basic concepts of relational database theory [12,16]. In this paper we
use the following notation.

Let U = {A1,..., A} be a set of attributes. Corresponding to each attribute A;
is a set d;, 1 <1 < n, called the domatn of A;. We assume that every d; contains
at least two elements. )

A relation R over U is a subset of d; X ... X d,,. Elements of R are called tuples
and we usually denote them by u, v or t. The class of all relations over U is denoted
by R. For k > 0, R denotes those relations in R that have at most k tuples. If
Re R, t€ R, A€l and X C U, then we denote by ¢[A] the value of ¢ for the
attribute A, and by ¢[X] the set {¢{A]| 4 € X}.

By 7 we denote the set of all formulas that can be constructed from U using
the logical connectives A, V, —, -, and logical constants 1 (TRUE) and 0 (FALSE).

For X = {A:,,...,Ai,} € U, AX denotes the formula 4;, A...A 4;,, and VX
denotes the formula A;, V...V 4;,.

Let 8 = {0,1}. A valuation is any function z : U — B. The notation z =
(z1,...,2Zn) € B™ means that z(4;) = z;, A, €U, 1<1<n.

If f€ ¥ and z € B", then f(z) denotes the truth value of f on the valuation z.
For a finite subset- L of 7 and for a valuation z in 8", we denote I(z) = A{f(z) |
f ez} :

Let}, f be a formula in 7. We denote Ty = {z € B™ | f(z) = 1}. For a subset T of
7, we denote Tg =N{Ty | f € £}. Then z € Tt if and only if (Vf € Z) (f(z) = 1)).

Definition 2.1 Let f and g be two formulas. f implies g, written f g, of Ty C T,,.
f and g are equivalent, f = g, if Ty = Ty. For Z,T C #,E+F T if Ty C It, and
=T 1Tg =Tr.

Let e = (1,...,1) be the valuation that consists of all 1. A formula f in 7 is
positive if f(e) = 1. Let 7, denote all positive formulas on U. We know that 7, is
equivalent to the set of all formulas that can be built using the connectives A, Vv, —
and constant 1 [10].

For each domain d;, 1 € ¢+ £ n, we consider a mapping «; : d;? — B. We
assume that the mappings a; satisfy the following properties.

(i) (Va € d;) (@i(a,a) = 1),
(1) (Va,b € i) (ai(a, b) = ai(b,a)), and
(iii) (3a,b € d;) (ai(a,b) = 0).
Example 2.2 It ts easy to see that the equality mappings on d;,

: _J 1 sfa=b
o;(a,b) = { 0 otherwise
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a,bed;, 1<1<n

satisfy the properties (i) — (ii5).

Example 2.8 Let U = {A, B,C}, where d4 ts the set of positive integers, dp 1s
the set of real numbers and a null-value 1, and dc 1s the set of words w on a
nonempty alphabet P, where the length of w 38 not greater than k, k > 1. We define
the mappings a s, ap, and ac as follows.

(a,b) = 1 if both a and b are ssmultaneously odd or even numbers
@Al =1 0 otherwise

ap(ab) = 1 if both a and b are simultaneously real or 1
BAPI =1 0 otherwsse

(a,b) = 1 if both a and b have the same length
*ClOT =\ 0 otherwise

It is not hard to versfy that the mappings ay, ap, and ac satisfy the properties

(i) - (5i).
Let R € R. For u,v € R we denote by a(u,v) the valuation
(a1(u[A1],v[A1]), ... ) an(u]4n], v[4n]))-

Now for R € R we denote T = {a(u,v) | u,v € R}. Note that for every u in R,
a(u,u) = ¢, so eis in Tr.

Definition 2.4 Elements of 7, are called generalized positive Boolean dependencies
(GPBD).

Definition 2.6 For R € R and f € %,, we say that R satisfies the GPBD f,
written R(f), of Tr C Ty.

Definition 2.6 Let R € R and T C 7,, we say that R satisfies the set of GPBDs
B, written R(Z), +f R(f) for all f € . This 13 equivalent to Tp C Tg.

For £C 7, and f € 7,, £ |= f means that, for all R € R, if R(X) then R(f).
T |=2 f means that, for all R € R,, if R(Z) then R(f). In other words, T |= f if
and only if for all R € R, Tg C Ty implies Tp C Ty.

For the equality mappings mentioned in Example 2.2 several classes of Boolean
dependencies were investigated. Boolean dependencies were introduced in [13]. Pos-
itive Boolean dependencies are studied in {2,3]. Equational dependencies were in-
troduced in [4]. Boolean dependencies of a special form ‘are studied in [6,10]. These
papers consider dependencies equivalent to the Boolean dependencies AX — AY
(functional dependency), AX — VY (weak dependency), VX — AY (strong de-
pendency), and VX — VY (dual dependency). In [3], the authors shown that the
consequence relation for positive Boolean dependencies is the same as the conse-
quence relation for propositional logic.
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3 Strong-Generalized Positive Boolean Depen-

dencies
Definition 3.1 Let R = {¢;,.. Lbc a relation over the finite set of atiributes
U, and X, Y C U. We say that GPBD VX — AY is strong-GPBD (for short s-

GPBD) in R denoted f5(X,Y) = VX—'AY or X—vY or XY if

(Vti,t; € R)(34 € X)(aa(t:|A],t;]4]) = 1) —
(VB € Y)(ap(t:|B], t;|B]) = 1).
Let Sg = {X—;rY}. Sg 18 called a full famsly of s-GPBDs of R.

Definition 3.2 A s-GPBD over U is a statement of the form X Y, where X,Y C
U. The s-GPBD X =Y holds in a relation R iin»Y. We also say that R satisfies

the X Y.

We now introduce five inference s-axioms for s-GPBDs, Let U be a finite set of
attributes, and denote by P(U) its power set. Let G C P(U) x P(U). We say that
G is a full family of s-GPBDs over B if forall X,Y,Z,W ClU,and A€l

(S1.) f*(A,4) €G

(S2) f(X,Y)€G,f(Y,2)€GY #0 — f(X,2Z) G
(83.) f*(X,Y)€G,ZCX,WCY — f(Z,W)eq

(S4.) f(X,Y)€EG,f(Z,W)eG — f(XUZYNW)EG
(S5.) f*(X,Y)€G,f(Z,W)eG — f(XNZYUW)EG

Let £, be a set of s-GPBDs over U. The closure of X,, written £}, is the
smallest set containing I, such that s-axioms cannot be applied to the set to yield
an s-GPBD not in the set. Since £} must be finite, we can compute it by staring
with I,, applying S1, S2 and S5 and adding the derived s-GPBDs to X, until no
new s-GPBDs can be derived.

It can be seen {11] that there is a relation R over U such that Sg = I7. Such
a relation is called Armstrong relation for L,.

Definition 3.8 X %Y 15 a s-GPBD over U if X and Y are both subsets of U. 2,
13 a set of s-GPBDs over U if every s-GPBD in L, ts s-GPBD over U.

Definition 3.4 If ¥, 13 a set of 3-GPBDs over U and G 1s the set of all possible
s-GPBDs over U, then X7 — I}, I s the ezterior of T,.
If ¥, is a set of s-GPBDs over U and X is a subset of U/, then there is s-GPBD

X =Y in I} such that Y is maximal: for any others-GPBD X % Zin £},Y D Z.
This result follows from S5. Y is called the closure of X, and is denoted by X*.

Definition 8.5 Let T, be a set of s-GPBDs over . X C U, A€ U. Then {A} =
(Bel|{A}>{B)ez}}), Xt ={Bel|X>{B}eZL?})
{A}" is called the closure of {A}.
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Theorem 3.8 Inference azsoms S1 to S5 are complete.
Proof: Given a set I, of s-GPBDs over U, for any ssGPBD X %Y in Z;. We

shall axhibit a relation R that satisfies £} but not X -+ Y. Hence, we can see that
there are no s-GPBDs implied by X, that are not derived by Z,. Relation R will

satisfy most of the s-GPBDs in I}, for a s-GPBD (W = Z) in T}.

Let U = {A1,As,...,An} a.nd let a;,b;,¢; be distinct elements of dom(4;),
1 <t < n. There w1ll be only two tuples in R, t; and t3. Tuple ¢; will be
< a1az...a, > . Tuple t; is defined as

VA; € X1, a,,(t1]A] taA]) =1

and
VA; & X+ aA.(t]_[A,-] tglA"]) =0.

First we show that R does not satisfy X — Y. From the definition of R, 3B € X
that aB(tl[B] t2[B]) = 1. Suppose ac(t;[C],t2[C]) = 1for all C €Y, and hence
YCX

But since (X = X*) € T}, by S3, we obtain that X -Y is in T}, a contradic-
tion to X Y is in I .

Now we show that R satisfies all the s-GPBD in L}. Let {B} € X, hence by
Definition 3.5. we obtain that {B}" = X*. By the definition of s-GPBDs, we have
(W2 X*) € TF. Since (W = Z) € T}, and by S5, we obtain (W (Xt U Z)) €
Lh so (Xt UZ)eW?. Hence ZC X%, and ac(t,[C),t2[C]) =1forall C € Z.

0

4 Strong-Generalized Positive Boolean Depen-
dencies and s-semilattice

Definition 4.1 Let I C P(U). We say that I 13 a N-semslattice over U if U € I, and
X,YelI—XnY €l Let M C P(U). Denote by M* the set {nM' | M' C M}.
Then we say M generates I tff M =1,

Theorem 4.2 [4] Let I C P(U) be a N-semilattice over U. Let N = {X € I :
VZWel: X=2Z0W — X =Zor X =W}. Then N generates I and if N'

generates I, then N C N'. N is called the minimal generator of I (It 1s obvious
that Ul € N).

Definition 4.8 [15] Let I C P(U). We say that I 1s an s-semalattice over U of I
satisfies

(1.) I i3 a N-semilattice,
(2.) foral X C N\ U
(BA€ X)(VZ e N\U)(X ¢ 2) — (A2 2),

where N 1s the minimal generator of I.
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Definition 4.4 [15] The mapping F : P(U) — P(U) s called a strong operation
over U if for every A,B € U and X € P(U), the followsng properties hold:

(1.) F(8) =,

(2) A€ F({4)), |

(s.) B e F({A}) — F({B}) c F({4}),
(4.) F(X)= N F({4}).

AeX

Theorem 4.5 [15] Let F be a strong operation over U. Let Ir = {F(X) | X €
P(UZ}. Then Ir is an s-semilattice over . Conversely, if I is an s-semilattice over

U, then there is ezactly one strong operation F such that Ir = I, where F(0) = U,
and forall A€l

N W f3IW:AeW (N the minimal generator of I),
AEW
WeN\U
v otherwise.

F({a}) =

Theorem 4.6 Let G C P(UT) x P(U). G 1s a full family of s-GPBDs over U. Let
(X,Y)e P(U)x P(UY\G. There 1s an A € X, and an E4 C U such that

(‘l) A € E,4,
(i) ({A}>E4) €G,
(i5.) E' D E4 implies that ({A} 2 E') ¢ G.

Proof: If for any A € X we have ({A},Y) € G. By S5 we have (X,Y) € G. Hence
there is an A € X such that ({A} >Y) & G. If for every B€ Y, ({A} 2{B}) € G
holds, then by S4 ({A} >Y) €G.

Thus there is a B € Y such that ({A}{B}) ¢ G. By S1 and S3 there is an

E4 C U such that A € E4, ({4} —’»EA) € G and E, is maximal to this property.
0

Theorem 4.7 Let G C P(U) x P(U). G is a full family of s-GPBDs over U if and
!
only if there is a family {E; : i = 1,...,1; |J E; = U} of subsets of U such that

(i.) foral X CU, (8-> X) €G,

(#i.) forany X,YC [} — (X>Y)E€EQG,
E;NnX#¢

(1) (Z>W)EG, ZNE# 0 — W C E,.
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Proof: Only if: Assume that G is a full family of s-GPBDs over . Then by
Theorem 4.6, S1, S3, and S5 for each A € U we can construct an E;(E; C U) such

that ({A} % E;) € G, and VE' | E; C E' implies ({A} > E') ¢ G. By Theorem 4.8,
it is obvious that A € E; and we have n such E;-s, where n =| U | . Thus, we
have the set E = {E; : ¢+ = 1,...,n; |J E; = U}. Assume X = {4;A4;... Ay :
=1
A;ell,j=1,...,k} # § and Y; is a set such that (X >Y;) €G,VY;:Y; C Y;
implies (X = Y2) € G. By the construction of E, we have that for each A; there
k k
is an E; € E such that ({A} > E;) € G. By 54 we have (] 4;,> ) E;) =
=1 7=1
k k
(X—‘—v (N E;) € G. By Theorem 4.6 and the definition of Y; we have | E; C Y;.
=1 : =1

By (X Y1) € G and by S3, we have ({4;} Y1) € G for all 5( = 1,...,k).
k k

Thus, Y7 C [ E; holds. Hence, Y; = [} E;. It is obvious that
Jj=1 =1

Thus, for all

Hence (X >Y) € G holds.

If (ZHW)EGQG, ZNE; # 8. Let A} € ZN E;. Suppose that W n (U \ E;) # 0.
Let D, e Wn (U \ E).

By S3 we have ({4;} ={D1}) € G, and by S1 we have ({41} ={4:}) € G. Let
A € E;, then ({A} = E;) € G implies that ({4, 4;} >{A4;}) € G by S5. Hence by
S3 we have ({A} 2{A1}) € G. Since ({A} >{A1}) € G, ({A1} >{D,}) € G and
by S2 we have ({A} ={D1}) € G. Thus, by S4 we have ({A} > E; U{D;}) € G.

On the other hand, by Theorem 4.6 we have ({A} = E;) € Gand VE : E; Cc E'
implies ({4} 2 E') € G. Hence W C E;.

!
If : Assume that there is a family {E; : 1 = 1,...,l: |J E; = U} such that
2

satisfies g;t), (¢2) and (d21).
By Theorem 4.6 we can construct an E;(E; C U) so that VA € U,

({4}~ E)eg,

and VE' : E; C E' implies ({4} > E') ¢ G.
It is obvious that A € E;, and easy to see that I = n, where n =| U |.
Then, from (i1), easy to see that VA € U, we have ({A} >{A}) € G. Assume

S5 does not hold, that is if (X >Y) € G and (Z W) € G then
(XnZ)Suw)) eq. (4.7.1)
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Suppose XN Z =@ and Y UW = U. From (4.7.1), we have (# - U) & G. This
contradiction to (z), so S5 holds.

Assume S4 does not hold, that is if (X -Y) € G and (Z > W) € G, then
(XnZ)S(Yuw)) ¢ G. (4.7.2)

Suppose XU Z = z,
Ynw=wgc [) E.
EnX#9

From (4.7.2), we have (Z' BN W') & G. this contradiction to (3z), so S4 holds.
From (1), (212) it is easy to see that S2, S3 hold too.

Theorem 4.8 Let G be a full family of s-GPBDs over U. We define the mapping
Fg : P(U) x P(U) as follow:

Fe(X)={Ael|(X>{4}) eG}.

Then Fg 1s a strong operation over U. Conversely, if F is an arbitrary strong
operation over U, then there i3 ezactly one full family of s-GPBDs G such that
Fg = F, where

G={(X>Y)|X,YeP(U):Y C F(X)}.
Proof: 1. Assume G is a full family of s-GPBDs over {/. We show that F is a
strong operation. Since Fg(X) = {4 € U | (X >{A}) € G}, so

Fo({A}) ={B el |({A}{B}) e G}. (4.8.1)
By S1, we have that VA € U, A € Fg({A}). By (i) in Theorem 4.7,

vecu,(>c)eq.

So we have F(#) = U. By Theorem 4.6, and by (4.8.1), we obtain that for 4 € U,
FGLEA}) = E4. So, by (i1) in Theorem 4.6, we have for B € U, ({ B} = Fz({B})) €
G. ({hu}s), assume B € Fg({A}), and by (i1:) in Theorem 4.7, we have Fg({B}) C
Fe({A}).
On the other hand, from (4.8.1) and Theorem 4.6, we have for A € U,
A} Fo({A))) € G.
Ao A2

C U, then by S5 we obtain

(x> ) F({a})) €G.

AeX

That is
N F{A}S Fe(X).
A€X

By the definition of Fg(X), we have (X = Fg(X)) € G. Since for VA € X, X n
Fc({A}) # 0, by Theorem 4.7, we obtain Fg(X) C Fg({A}). So
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Fo(X) S [ F({4}).

AEX

Hence

Fx)= () P(A)).

AEX

2. Assume that F is a strong operation over U,and G = {(X >Y) | Y C F(X)}.
We have to show that G is a full family of s-GPBDs. That is, we show that it
satisfies (1), (12) and (471) in Theorem 4.7.

By Theorem 4.6 and Theorem 4.7, we set

E={F{A}):AelU,n=|U|}.

Assume

[\ F({A)C F(X).

F{ADNX#D

Since G = {(X >Y)|Y C F(X)}. Soif

Yyc [} F(ay,

F({A})aX#9

then it satisfies (7¢) in Theorem 4.7

Assume (V,W) € G, and VN F({A}) # 0. Let Be VN F({A}),so BeV
and B € F({A}). Thus, by (:72) in the definition of strong operation B € F({A})
implies F({B}) € F({A}). By the definition of G, we have W C F(V). By (21¢) in
the definition of strong operation, we have

FvV)= (] F{D}).
Since B €V, so

(| F{DY)<S F({B}).

DeVv

Hence D C F({A}), i.e. it satisfies (1iz) in Theorem 4.7. It is clear that YA € U,
(#={a}) eaq. D

5 Armstrong relation for s-GPBDs

Definition 5.1 Let T, be a set of s-GPBDs on U, and let R be a relation on . R

ezactly represents £, if Sg = L. If R ezactly represents T, then we also say that
R 1s an Armstrong relation for 53,.
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Definition 5.2 Let R = {t1,...,t;} be a relation over U. We set E;; = {A el |

ayp (ti[A]’tJ'[A]) =1},and Ep = {EtJ» 1<4,5 < m}. We denote E(A) = N E;;
AE€E;;

if there ts a such E;;, in the converse case set E(A) = U, where A € U. Denote

Ey = {E(A) | A€ U)}. Ey 1s called the a-attribute-equality set of R.

A strong relation scheme is a pair (U, Z,), where U is a set of attributes and X,
is a set of s-GPBGs on U.

Definition 5.8 Let H =< U, L, > be a strong relation scheme, X C U. We set
Xt ={Ael|(X>{A}) € T}}. X* is called the closure of X. Denote I(H) =

{X*|Xe P(N)} It can be seen that I(H) (for short I(3,)) 1s a s-semilattice over
U. Denote by N(H) (for short N(E,)) the minimal generator of I(H

It is easy to see that N(H) satisfies (2) in Definition 4.3 and Xt NnY* =
(Xuy)t,x+= N {4}".
AeX

Theorem 5.4 Let G be a full family of s-GPBDs, and R = {t1,...,t,} be a
relation over U. Then R represents G sff for each A€l

N E;; +f3E;: A€ Ey,
FG({A}) = A€EE;;
U

otherwsise.

Where FGSX) = {A€ U | (X {A}) € G}, and E;; is the equality set of R.
Proof: Only 1f: By Theorem 4.8 Sp = G if and only if Fg, = F, where F is
strong operation over {{. We have show that Fg,({a}) = FG({A}) for all A € U.

Clearly,
Fs,({A}) = {Bel: ({4} >{B})}. (5.4.1)

According to the definition of s~GPBDs we know that for any A € U, and A # ¢
({A}=>Y) iff

(th,tg € R)aA(tllA],tglA]) =1— (VB € Y)(!B (tI[B],tg[B]) = 1.
Let T = {E;; | A € Ei;}. It is easy to see that if T = @, then Fs, ({A}) = U holds.
If T #49. Let
X= () E;j-
A€E:j

If T = E (E is the set of all a-attribute equality sets of R), then ({4} 2 X). If
T C E, then for all E;; € T, we have ay (tllA],th'A]) # 1. By (5.4.1), we obtain

Fs,({4})= () Ei-
AEE;;
If: If Fg holds to (5.4.1), then we have Fg({A}) = Fs, ({A}). By Theorem 4.8,

we obtain Fg = Fg,.
O
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Definition 5.5 Let R be a relation, an F a strong operation over U. We say that
the relation R ezectly represents F sff Fg, = F.

Lemma 5.6 [15] Let F be a strong operation and R a relations over U. Then R
represents F iff forall A€ U,

n E.'_,' ‘l'f BE‘-,' tA€e E.'j,
F({A}) = AEE;;

U otherwsise.

Theorem 5.7 Let I, be a set of s-GPBDs on U, and let R be a nonempty relation
on U. Then R is an Armstrong relation for T, if and only if

N(Z,) € ER € I(Z,).
Pro'{ Only if: If R is an Armstrong relation for X,, then by Definition 5.1
Sp = We set Fp+ = X for all X € P(U) and .
Fsp(X)={AclU]| (X-'*{A})}-

By Theorem 4.8, Sg = &} if and only if Fs, = F, where F is a strong operation
over U. Tt follows that FE+ = Fg,.

By Theorem 4.5 and Definition 5.3, I(Z,) = Ir,, and N(Z,) = N, where N is
the minimal generator of IpsR . In other hand, since

FSR (X) = n an ({A})
AeX

for all X € P(U), so we have to show that Fg,({A}) = E(A) for each A€ U.
Clearly, Fs, ({A}) = {B € U | ({A} ={B})}. By the definition of s-GPBD, we
know that for any A € U, A # 0, ({A} >Y) iff

(Vti, t; € R)(aa(ts[A),t5[A]) = 1) — ((VB € Y)(ap(t:(B],t;|B]) = 1)).
Assume Q = {E;; | A € E;;}. It is obvious that if Q = @ then Fr({A}) =U. If
Q = 0, then assume that
x= () Ey

‘ A€E;;

then it is obvious that ({4} X) and for all Ey; : E;; € Q,
(xa(t:[4], t5]4]) # 1).
Hence,
Fsa({A}) = n E;; = E(A)
A€E;;

for all A € U. Therefore, by Definition 5.3, ER C Ir,.
Now we show that N(X,) C E}. By Definition 4.3, Theorem 4.2, and Theorem
4.5, clearly to see that N(X,) C Ej.
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If: Assume that N(Z,) C Ej C I(Z,). Since E}, C I(%,), and I(Z,) = {X* :
X € P(U)},

t={Ael|(XS{A}) ez},

Thus we obtain E = {Fy+({A}) : A € U}. By above proof for each A € U, we
have that E(A) = Fs,({A}). Hence,

(Fys ((A)) : A€ U} = (Fs, ({A)) A € U},

Suppose A € U that Fp+({A}) # Fs,({A}). By Definition 4.4 and Theorem 4.5
we assume that Fp+ = Y, where Y € N(Z,). Since N(Z,) € Ef, so Fg+ € E},.
Clearly to see that FE+ ({A}) = E(A). This is a contradiction. Therefore, we obtain
that F+({4}) = an_({A}) for each a € U. Thus, Fy+ = Fs,, and by Theorem
48, Sp =T%. '

* O

Algorithm 5.8 (Finding T,)
(Input :) Given relation R = {t,...,t,} over U.
(Output :) Construct £,, such that Sp = L}
(Step 1 :) From R we compute Eg.
(Step 2 :) From Egp we construct E}, = {E(A) : A€ U}.
(Step 8 :) Set T, = ({A} ~.E(4)) | Ael)
Clearly, the time complexity of this algorithm is polynomial in the size of R.
Algorithm 5.9 (Finding {A})
(Input :) Given T, = {(A: > B;)|i=1,...,m}and A€ U.
(Output :) Compute {A}*
(Step 1:) Aell, let Ly = {A}
(Step i+1 :) If there is an (A; > B;) € L,
so that A; N XC) £ @ and B  XO) then

xtH=xu( |J By
A,-nx“)

In the converse case we set {A}T = X(t),

It can be seen that the time complexity of this algorithm is polynomial in the
sizes of ¥, and U.
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6 Update Problem

In [11], the update problem is introduced for a set of GPBDs X. Let R be a relation
that satisfies a set of GPBDs X and t be a tuple d; X ... x d,,. We say that ¢ can
be added to R if RU {t} satisfies Z.

Theorem 6.1 [11] Let R be a relation satisfying a set of GPBDs L, and let t be a
tuple indy X...Xdy. Thent can be added to R if and only if (Vu € R)(a(t, u) € Tx).

Let T, be a set of s-GPBDs, T, = {X; >Y;}, where X;,Y; C U. Let M =
UX;, N = UY;. By Theorem 6.1 and definition of s-GPBDs, we get the following
result.

Theorem 6.2 Let R be'a relation satisfying a set of s-GPBDs £,, &, = {X; > Y;},
and let t be a tuple in dy X ... X d,. Then t can be added to R if and only if
(Vu € R)(VA € N)(aa(t[A], u[4]) = 1).

It is easy to see that, if (Yu € R)(VA € M)(aa(t[A], u[A]) = 0). Then ¢ is added
to R too.

7 Membership Problem for s-GPBDs

In [11], the membership problem for GPBDs is introduced. Given a set of GPBDs
L and a GPBD f, decide whether T = f.

From Algorithms 5.8, 5.9 and X+ = U{A}" 4 € X. We have the following.

Proposition 7.1 Let &, be a set of s-GPBDs on U and X, Y C U. Then, there 1s
an algorithm deciding whether that X Y € £} .

The time complexity of this algorithm is polynomial in the sizes of ¥, and U.
Theorem 7.2 (11] Let T be a set of GPBDs on U, and X,Y,Z C U. Then

LZEAX -AY &
(vz € Tc)(((34 € X) (2(4) = 0)) v (VB € ) (z(B) = 1))).

2TEAX—-VY &

(Vz € Tc)(((34 € X) (2(4) = 0)) v (3B € ) (2(B) = 1))).
3. ZEVX—AY &

(vVz € Te)(((VA € X) (2(4) = 0)) v (VB € Y) (z(B) = 1)).
4. TEVX VY &

(Vz € Tz)(((v4 € X) (2(4) = 0)) v (3B € ) (2(B) = 1)).
5. SEAX = (AY VAZ) & (Vz € T )(((34 € X) (z(4) =0))v

(VB € Y) (z(B) = 1)) v ((¥C € Z) (z(C) = 1)))).
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Theorem 7.3 Let L, be a set of s-GPBDs on U, and X,Y C U. Then

L, EFvX —<
E,}:VX—< Z,EAX =AY
Z, EAX —a{
Proof:
By Theorem 7.2 and definition of s-GPBDs. It is easy to see that Theorem 7.3
holds. O
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