
Acta Cybernetica, Vol. 11, No. 3, Szeged, 1994

Partitioning Graphs into Two Trees*

Ulrich Pferschy * Gerhard J. Woeginger* En-Yu Yao5

Abstract

We investigate the problem of partitioning the edges of a graph into two
trees of equal size. We prove that this problem is NP-complete in general,
but can be solved in polynomial time on series-parallel graphs.

1 Introduction
In this note, we will examine the partitioning problem P G 2 T defined as follows.

P A R T I T I O N I N G G R A P H S INTO T W O T R E E S (P G 2 T)

Input. A graph G = (V, E).

Question. Does there exist a partition of E = EiUE% with = l-^li
Vi,V2 C V, such that the two edge-induced subgraphs Gj = (V\,Ei)
and G 2 = (V2, E2) of G both are trees ?

If the trees Gi and Gi are required to be spanning trees of G, the problem can
be solved in polynomial time by matroid partitioning techniques, see Lawler [4].
In contrast to this polynomial time result, we will show that detecting a partition-
ing into two arbitrary (not necessarily spanning) equal-sized trees is NP-complete.
Our reduction is done from the Hamiltonian Path problem in cubic graphs (Garey
and Johnson [2]). To simplify the presentation, we will introduce an intermediate
problem TCT (defined below) and prove that it is also NP-complete.

On the positive side, we will show that P G 2 T is polynomial time solvable for
the class of series-parallel graphs.

The paper is organized as follows: Section 2 presents the NP-completeness
result, Section 3 gives the polynomial time algorithm for series-parallel graphs and
Section 4 finishes with the discussion.

'This research was partially supported by the Christian Doppler Laboratorium für
Diskrete Optimierung and by the Fonds zur Förderung der wissenschaftlichen Forschung,
Project P8971-PHY.

*TU Graz, Institut für Mathematik B, Kopernikusgasse 24, A-8010 Graz, Austria
' T U Graz, Institut für Theoretische Informatik, Klosterwiesgasse 32/11, A-8010 Graz,

Austria
'Mathematical Department, Zhejiang University, Hangzhou, People's Republic of

China

234 Ulrich Pferschy, Gerhard J. Woeginger, En-Yu Yao

2 Why the problem is NP-complete
In this section, we prove that PG 2T is NP-complete. The proof is done by a two-step
reduction from the following special case of the Hamiltonian Path problem.

H A M I L T O N I A N P A T H IN C U B I C G R A P H S (H P 3)

Input . A graph G' = (V1, E') such that all vertices in V' are of degree
three with the exception of the degree one vertices a and t.
Question. Does there exist a Hamiltonian Path of G' that starts in s
and ends in £ ?

T w o C O V E R I N G T R E E S P R O B L E M (T C T)

Input . A graph G" = (V", E"), two disjoint subsets Fx and F2 of E".
Question. Do there exist two edge-disjoint trees Tj and T2 in G" such
that Ti contains all edges in F,, i = 1,2 ?

To be precise, we will show that HP3 is polynomial time reducible to TCT, and
then that TCT is polynomial time reducible to PG2T. This clearly establishes the
NP-completeness result claimed above.

Hence, let us consider some instance G' = (V',E'), s,t € V of HP3. We will
construct a corresponding instance of TCT that is solvable if and only if HP3 is
solvable. This is done in three steps as follows.

(i) First, we subdivide every edge e = (u,v) £ E' into two subedges (u,e(m))
and (e(m),v) by introducing a new vertex e(m). Furthermore we introduce
a single new vertex c. Vertex c is connected to all vertices e(m) by an edge
which is put into F2.

(ii) We perform the following construction for every v € V' of degree three: Two
new vertices v* and v are introduced together with the two edges (t;, v*) and
(u,t>). The edge (v,v*) is put into Fi, the edge (v, v) into F2.

(iii) Finally, we introduce two new vertices a* and t* and two edges (s, s*) and
(t, t*) that are both put into F\.

We claim that the designed instance of TCT is solvable if and only if G' has a
Hamiltonian Path.

(If j': Assume, a Hamiltonian Path exists. Our tree 2\ simply consists of all
edges m Fi together with all subdivided edges of the Hamiltonian Path (i.e. if the
edge e = (u, u) is in the Hamiltonian Path, we put the two edges (u, e(m)), (e(m), v)
into the tree). It is trivial to check that this edge set is connected, without cycles
and contains all edges in Fx .

Hence, it remains to show that the set E* of remaining edges also forms a tree.
First, we will argue that E* is connected. Consider some vertex v of V' and the
three incident subedges (u,ei(m)), (v,e 2 (m)) and (ti, e3(m)). The Hamiltonian
Path uses exactly two of the edges t\, e2 and c3 . Therefore, the edge (v,v) is
connected to vertex c via the unused edge.

E* contains all edges (c, e, (m)) incident to c. Some of the vertices eAm) are of
degree one in E*, some of them are incident to two edges (u, e,-(m)) and (u, e,(m)).

Partitioning Graphs into Two Drees 235

Finally, there are the corresponding edges (u, u*) and (v, v*) appended to u respec-
tively v. Hence, E* is a tree of radius three with center c and the proof of the
(If)-part is complete.

(Only if): Now we assume that the TCT-instance is solvable. Consider T\ and
call an edge c = (u, v) in E' complete iff both subedges (u, e(m)) and (e(m), t;) are
in 7\. We claim that the complete edges constitute a Hamiltonian Path in G'.

Every degree three vertex v in G' is incident to at most two complete edges
(otherwise, the edge (v, C) in F2 would be separated from T2) . Vertices s and t are
incident to exactly one complete edge.

We remove from Ti all edges that are neither in Fi nor subedge of a complete
edge. It is easy to check that these removals cannot disconnect T\. Then we remove
all edges in Fi and replace the remaining subedges by the corresponding complete
edges. Since each vertex is of degree at most two and since s and t axe of degree
one, the resulting graph is a path spanning all vertices in V'. This completes the
proof of the (Only If)-part.

What we proved till now suffices to establish the NP-completeness of TCT.
However, we are interested in proving the NP-completeness of PG2T, and to this
end we need the following lemma.

Lemma 2.1 Given an instance of HP3, we can compute in polynomial time an
instance G" = (V",E"), Fx, F2 of TCT, such that HP3 is solvable iff TCT is
solvable and such that the following four conditions hold.

(Cl) TCT is solvable if and only if there exist two edge-disfoint connected subgraphs
S1 and S2 such that Si contains all edges in F{, i = 1 ,2.

(C2) If TCT is solvable, then there exists a solution that uses all edges in E".

(CS) |J\| and |F2| ore two distinct prime numbers.

(C4) Fi and F2 both contain at least one edge with one endvertex of degree one.

Proo f . To see (Cl) , we just have to check that in the proof of the (Only If)-part
above, we did not exploit the fact that T\ is a tree but only the connectedness of
Tj. (C2) follows from the proof of the (If)-part.

To ensure that (C3) and (C4) hold, we first compute a prime pj with |ii| < pi <
2|Fi|. Such a prime exists by Chebyshev's theorem. The prime can be computed
in polynomial time, since |Fi| is unary encoded by enumerating its elements. By
similar arguments, we can find another prime p2 ^ p 1 with |.F2| < P2 <

Then for t = 1,2, we take an edge e< = (t)j, u,) G Fi, create pi — new vertices
for V" and connect all these new vertices to t>; by new edges that are added to F,-.
Obviously, this new instance of TCT fulfills (C3) and (C4), it is solvable if and only
if the original instance was solvable, and conditions (Cl) and (C2) still hold. •

Now we consider an instance G" = (V", E"), FI,F2 C E of TCT as described
in the statement of Lemma 2.1. We construct an instance of PG2T that is solvable
exactly if TCT is solvable. Our construction is as follows (let n = 2\E"\, p 1 = |fi|,
P2 = |F3|).

(i) We subdivide every edge e in E" by a new vertex v(e). If e e Fi, we append
to v(e) a path of length p2n2 . Similarly, if e G F2 then we append to its
subdividing vertex a path of length pin2 .

236 Ulrich Pferschy, Gerhard J. Woeginger, En-Yu Yao

(ii) Let e,- = (tii, Vi) £ Pi with degree of v,- equal to one, t = 1,2, denote the two
edges that exist by (C4). We connect t>i and v2 by a path of length 2\E"\.

Clearly, the size of the new graph G = (V, E) is polynomial in the size of G",
and the construction can be performed in polynomial time. The total number |i?|
of edges in the new graph is 2pip2»i3 + 4\E"\. We claim that the designed instance
of P G 2 T is solvable if and only if T C T has a solution.

(If): Let Tj and T2 constitute a solution of TCT that uses all edges in E". Let
ni denote twice the number of edges in T\, 0 < ni < 2\E"\. We put into Ei all
the edges corresponding to 2\, i.e. subdivided edges of G" and the corresponding
appended paths. Moreover, we put into E\ the 2\E"\ — ni edges of the path defined
in (ii) that are nearest to uj.

Thus, Ei contains pi appended paths with p2n2 edges per path, together with
a number nj of subdivided edges from G", together with 2\E"\ — ni edges from the
path defined in (ii). This gives a total number of P1P2H2 + 2\E"\ = \E\/2 edges in
Ei . It is easy to see that Ei is cyclefree and connected, since Ti is cyclefree and
connected. The same holds for E — E\.

(Only If): Assume, the PG2T-instance has a solution E\, E2. Each of the
appended paths defined in (i) is contained as a whole either in E\ or in E2.

We claim that all pi paths of length p2n2 are in one of the Ei, and all p2

paths of length pin2 are in Suppose otherwise: Let Ei contain xx paths of
length pin2 (0 < xi < p2) and x2 paths of length p2n2 (0 < x2 < pi) . Then the
facts 0 < xi < p2 and 0 < x2 < pi imply Xipin2 + x2p2n2 ^ pip2n2. W.l.o.g.
Ei contains at least as many edges of the appended paths as E2. This yields a
contradiction, since

|£i| > pip2n2 + n2 > pip2n2 + 2\E"\ = \E\/2.

To complete the proof, we show that there exists a connected subgraph 5i of
G" that covers Using a symmetric argument for F2 and condition (Cl) of
Lemma 2.1, this implies the existence of a solution to the TCT-instance. W.l.o.g.
let Ei connect all appended paths corresponding to edges in Fi. We define Si to
contain all edges in F\ together with all edges in E" for which both subedges are
in Ei (if only one of the subedges is in Ei, it cannot contribute to the connectivity
of Ei). It is easy to check that Si is connected.

Summarizing, we have proved the following theorem.

Theorem 2.2 The problem PG2T is NP-complete. •

3 Series-parallel graphs are easy to treat
The class of series-parallel graphs is a well-known model of series-parallel electrical
networks. Many difficult combinatorial problems for graphs become easy when
restricted to series-parallel graphs, see e.g. Tamkamizawa, Nishizeki and Saito [5].
In this section, we show that the same holds for the partitioning problem of a grapn
into two trees, i.e. we will give a polynomial time algorithm for this problem on
series-parallel graphs.

One possibility to define series-parallel graphs is via two-terminal graphs, cf.
Duffin [lj. A two-terminal graph G — (V,E) is a graph with two special vertices

Partitioning Graphs into Two Drees 237

Figure 1: A TTSP graph and its binary decomposition tree

238 Ulrich Pferschy, Gerhard J. Woeginger, En-Yu Yao

that are called the left terminal ti and the right terminal tr. For two-terminal
graphs Gi = (V{tEi) with terminals tj and t'r, 1 < t < 2, we define the following
two operations.

• The series connection G, = Gj • G2 of G\ and G2 results from identifying
the right terminal of Gi with the left terminal of G 2 . The obtained graph
G, is regarded as a two-terminal graph with with left terminal tj and right
terminal f 2 .

• The parallel connection Gp = G1//G2 of G1 and G2 results from identifying
both right terminals with each otner and both left terminals with each other.
The terminal vertices of Gp simply are the identified terminals.

Now a two-terminal series-parallel graph (TTSP) is defined as follows:
(i) The graph consisting of two terminals connected by a single edge is a TTSP.

(ii) If Gi and G2 are TTSPs, then Gi * G2 and G1//G2 are TTSPs.
(iii) No other graphs than those defined by (i) and (ii) are TTSPs.

Finally, a graph is a series-parallel graph iff it is the underlying graph of a TTSP
(i.e. the terminals are considered as ordinary vertices).

It is well-known that decomposing a series-parallel graph into its atomic parts
according to the series and parallel operations can be done in linear time. Essen-
tially, such a decomposition corresponds to a binary tree where all interior vertices
Eire labeled by s or p (series or parallel connection) and where all leaves correspond
to edges of the graph (see Figure 1 for an illustration). We associate with every
interior vertex v of the decomposition tree the series-parallel graph G[v) defined
by the subtree rooted in v.

The usual way to deal with problems on series-parallel graphs is dynamic pro-
gramming via the decomposition tree, and this approach also works in our case.

Let us consider a TTSP graph G = (V, E), and one of the TTSP components
G(v) of G associated with one of the vertices v of the decomposition tree of G,
and let ij and tr denote the terminals of G(v). Let T be a subtree of G, and let
T" denote the edge-induced subgraph of T induced by the edges in T D G(v). We
distinguish five combinatorial types for T'.

(T l) T' consists of two connected components, one containing terminal i; and the
other one containing tT.

(T2) T' is connected and contains both terminals tj and tr.

(T3) T' is connected and contains only terminal tj but not t r .

(T4) T' is connected and contains only terminal tr but not tj.

(T5) T' is connected and contains neither tr nor tj.
Clearly, type (T l) covers the only possibility of not connected T' (In this case,
T can only be connected via some path going from tj to tr outside of G(u)). The
remaining four types (T2), (T3), (T4), and (T5) cover all possibilities for connected
graphs T'. Note that a T' of type (Tl) consists of exactly two trees, and a T' of
one of the other types is a tree itself.

We introduce twenty-five two-dimensional boolean arrays m], 1 < i,j < 5.
The first index v runs through all vertices of the binary decomposition tree, the
second index m runs from 1 to |V|. j4,y[u, m] will be set to TRUE if and only if

Partitioning Graphs into Two Drees 239

there exists a partition of G(y) into two edge-disjoint subgraphs T[and
V2 such that T{ is of type (Ti) and T2 is of type (T j) with respect to
G(u), and such that T[has exactly m edges.

If we compute the truthvalues of all entries of all arrays Aitp[*, *], we solve the
PG2T-problem as a by-product: The root r of the decomposition tree corresponds
to the graph G = (V, E) itself. The problem PG2T has a solution if and only if
is even and at least one of the sixteen entries A»y[r, |i?|/2] with 2 < i,j < 5 is set
to true.

Hence, our goal is to compute all entries of the array. This is done in a bottom-up
fashion according to the decomposition tree: We start with the entries correspond-
ing to leaves of the decomposition tree, and move up towards the root. The entries
corresponding to some vertex v of the decomposition tree are calculated only if all
entries corresponding to both sons have already been computed.

The initialization step is trivial, since the leaves of the decomposition tree cor-
respond to TTSPs consisting of a single edge.

The computation of entries corresponding to interior vertices v of the decompo-
sition tree is a little bit more complicated and depends on whether t> is labeled s or
labeled p. We just sketch two of the 50 possible cases and leave the other cases to
the reader as an exercise. (Some combinations like A&5[*, *j will only have entries
set to FALSE).

(1) Computation of -Aujv, m] if v is labeled s: Let Vi and v2 denote the right and
left son of v. In this case, 7\ may consist of (i) a not-connected part of type (T l)
in and a connected part of type (T2) in G(w2) (or the symmetric possibility
with G[vi) and G(t>2) exchanged), or (ii) of a part of type (T2) or (T3) in G(vi)
and a part of type (T4) in G(v2) (or again some symmetric possibilities). The same
possibilities hold for T2.

We just check whether there exist corresponding true entries Ai j [v i ,mi] and
Aki[v2,m2\, where mi, m2 denote two non-negative integers with mi -I- m2 = m
and i,j,k,l correspond to appropriate types as explained above.

(2) Computation of As2\v,m] if v is labeled p: Again, let «1 and v2 denote the
right and left son of v. In this case, Ti must consist of a part of type (T5) in <?(vi)
and G(«2) and of an empty part in the other subgraph. T2 must consist of a part
of type (T2) in G(t>i) and a part that is not of type (T5) in G(v2) (or vice versa).
Similarly as above, A2s\v,m] can be computed by investigating appropriate entries
Aij[vi, mi] and Afci[t>2, TI2], with numbers {mi , »715} = {0, m} .

Since all the operations used in the computations of the m] can be per-
formed in polynomial time, we may formulate the following summarizing theorem.

Theorem 3.1 The problem P G 2 T is solvable in polynomial time if the graph under
consideration is series-parallel. •

4 Discussion
In this paper, we proved that the problem of partitioning a graph into two trees is
NP-complete in general, and that the problem is polynomial time solvable for the
class of series-parallel graphs.

A similar but simpler version of the dynamic programming approach used for
series-parallel graphs in Section 3 succeeds to show that the problem can be solved
in polynomial time for trees.

240 Ulrich Pferschy, Gerhard J. Woeginger, En-Yu Yao

The problem is also polynomial time solvable on the classes of interval graphs,
cographs, circular arc graphs, chordal graphs and split graphs (see Johnson [3] for
definitions). These results are rather easy to see:" The~graphsin-these graph classes
tend to be rather dense and to contain large cliques, whereas a graph G = (V, E)
that is partitionable into two trees must fulfill |.E| < 2\V\ — 2 and cannot contain
cliques of size greater or equal to five. Consequently, most of the graphs in these
classes may be a priori disregarded, whereas the remaining 'reasonable' graphs
possess a rather rigid and primitive structure. (E.g. a 'reasonable' split graph
consists of a clique C with at most four vertices, an independent set I and some
edges between C and I).

We do not elaborate on these questions. The surprising part of our results is
not that the problem is easy on specially structured graphs, but that the problem
is hard in general.

References
[1] R.J.Duffin, Topology of series-parallel networks, J. Math. Applic. 10, 1965,

303-318.

[2] M.R.Garey and D.S.Johnson, Computers and Intractability, A guide to the
theory of NP-completeness, freeman, San Francisco, 1979.

[3] D.S.Johnson, The NP-completeness column: an ongoing guide, J. Algorithms
6, 1985, 434-451.

[4] E.Lawler, Combinatorial Optimization, Networks and Matroids, Holt, Rine-
hart and Winston, New York, 1976.

[5] K.Tamkamizawa, T.Nishizeki and N.Saito, Linear-time computability of com-
binatorial problems on series-parallel graphs, J. Assoc. Comput. Mach. 29,
1982, 623-641.

Received August SO, 199S

