A note on regular strongly shuffle-closed languages

B. Imreh * A. M. Ito[†]

In this work we study the class of regular strongly shuffle-closed languages and we present their description by giving a class of recognition automata.

The shuffle product operation plays an important role in the theory of formal languages, cf. [1], [2], [4]. Several properties of shuffle closed languages are studied in [3]. Among others a characterization of regular strongly shuffle-closed languages is presented by giving their expressions. Using this result, we determine a very simple class of deterministic automata accepting regular strongly shuffle-closed languages.

First of all we introduce some notions and notations. Let X be a nonempty finite set and let X^* denote the free monoid of words generated by X. We denote by 1 the empty word of X^* . The shuffle product of two words $u, v \in X^*$ is the set

$$u \diamond v = \{w : w = u_1 v_1 \dots u_k v_k, u = u_1 \dots u_k, v = v_1 \dots v_k, u_i, v_i \in X^*\}.$$

A language $L \subseteq X^*$ is called shuffle-closed if it is closed under \diamond , that is, if $u, v \in L$, then $u \diamond v \subseteq \overline{L}$. If L is shuffle-closed and, for any $u \in L$, $v \in X^*$, the condition $u \diamond v \cap L \neq \emptyset$ implies $v \in L$, then L is called a strongly shuffle-closed language, or briefly, an ssh-closed language.

Next let $X = \{x_1, \ldots, x_r\}$, $r \ge 1$, be an arbitrarily fixed alphabet. For any $L \subseteq X^*$, let us denote by alph(L) the set of elements of X occurring in words of L. We shall describe those regular ssh-closed languages over X for which alph(L) = X.

We use the Parikh mapping and its inverse which are defined as follows. Let $N = \{0, 1, 2, \ldots\}$. The mapping Ψ of X^* into the set N^r defined by

$$\Psi(u) = (\mu_{x_1}(u), \ldots, \mu_{x_r}(u)), \quad u \in X^*,$$

is called the Parikh mapping, where $\mu_{x_t}(u)$ denotes the number of occurrences of x_t in u. For a language $L \subseteq X^*$, we define $\Psi(L) = \{\Psi(u) : u \in L\}$. Moreover, if $S \subseteq N^r$, then $\Psi^{-1}(S) = \{u : u \in X^* \& \Psi(u) \in S\}$.

Now we recall a notation and a result from [3].

Let $\mathbf{a} = (i_1, \dots, i_r)$, $\mathbf{b} = (j_1, \dots, j_r) \in N^r$ and let p_1, \dots, p_r be positive integers. Then $\mathbf{a} \hookrightarrow \mathbf{b} \pmod{(p_1, \dots, p_r)}$ means that $i_t \geq j_t$ and $i_t \equiv j_t \pmod{p_t}$, for all t, $t = 1, \dots, r$.

^{*}Department of Informatics, A. József University, Árpád tér 2, H-6720 Szeged, Hungary

Faculty of Science, Kyoto Sangyo University, 603 Kyoto, Japan

Theorem 1 ([3], Proposition 5.2) Let $L \subseteq X^*$ with alph(L) = X. Then L is a regular ssh-closed language if and only if L is presented as

$$L = \bigcup_{u \in F} \Psi^{-1} \Psi(u(x_1^{p_1})^* \dots (x_r^{p_r})^*)$$

where

(i) p_1, \ldots, p_r are positive integers,

(ii) F is a finite language over X with $1 \in F$ satisfying

(ii)-(1) for any $u \in F$, we have $0 \le j_t < p_t$, $1 \le t \le r$ where $\Psi(u) = (j_1, \ldots, j_r)$,

(ii)-(2) for any $u, v \in F$, there is a $w \in F$ such that $\Psi(uv) \hookrightarrow \Psi(w) \pmod{(p_1, \ldots, p_r)}$, (ii)-(3) for any $u, v \in F$, there is a $w \in F$ such that $\Psi(uw) \hookrightarrow \Psi(v) \pmod{(p_1, \ldots, p_r)}$.

Finally, we make some further preparation. For any positive integer p and $x_t \in X$, let us denote by $C^{(p,x_t)} = (X, \{0, ..., p-1\}, \delta^{(p,x_t)})$ the automaton defined by the following transition function. For any $j \in \{0, ..., p-1\}, x \in X$, let

$$\delta^{(p,x_t)}(j,x) = \begin{cases} j & \text{if } x \neq x_t, \\ j+1 \pmod{p} & \text{if } x = x_t \end{cases}$$

where $j + 1 \pmod{p}$ denotes the least nonnegative residue of j + 1 modulo p.

Now let p_1, \ldots, p_r be positive integers and form the direct product of the automata $C^{(p_t,x_t)}$, $t=1,\ldots,r$. Let us denote by $C^{(p_1,\ldots,p_r)}$ this direct product and by $\delta^{(p_1,\ldots,p_r)}$ its transition function. It is easy to prove that $C^{(p_1,\ldots,p_r)}$ has the following properties:

- (a) it is a commutative automaton,
- (b) if $a, b \in \prod_{t=1}^{r} \{0, \dots, p_t 1\}$, $u \in X^*$ are such that $\delta^{(p_1, \dots, p_r)}(a, u) = b$, then $\delta^{(p_1, \dots, p_r)}(a, v) = b$, for all $v \in \Psi^{-1}\Psi(u)$,
- (c) for any $u \in X^*$, $\delta^{(p_1,\ldots,p_r)}(0,u) = \Psi(u) \pmod{(p_1,\ldots,p_r)}$, where 0 denotes the r-dimensional 0-vector and $\Psi(u) \pmod{(p_1,\ldots,p_r)}$ denotes the vector $(i_1 \pmod{p_1},\ldots,i_r \pmod{p_r})$ with $\Psi(u)=(i_1,\ldots,i_r)$.

For each t, t = 1, ..., r, let us denote by \mathcal{M}_{p_t} the group defined by the addition mod p_t over the set $\{0, ..., p_t - 1\}$. Let $\mathcal{M}^{(p_1, ..., p_r)}$ denote the direct product of the groups \mathcal{M}_{p_t} , t = 1, ..., r. Then $\mathcal{M}^{(p_1, ..., p_r)}$ is also a group; let \oplus denote its operation. Let us observe that the set of states of $\mathbf{C}^{(p_1, ..., p_r)}$ is equal to the set of elements of $\mathcal{M}^{(p_1, ..., p_r)}$. Therefore, for any subgroup H of $\mathcal{M}^{(p_1, ..., p_r)}$, we can define the recognizer

$$\mathbf{R}_{H}^{(p_{1},\ldots,p_{r})} = (\prod_{t=1}^{r} \{0,\ldots,p_{t}-1\},X,\delta^{(p_{1},\ldots,p_{r})},0,H),$$

where 0 is the initial state and H is the set of the final states.

The next property of $\mathbf{R}_{H}^{(p_1,\ldots,p_r)}$ can be proved easily:

(d) if $u, v \in X^*$ are accepted by $\mathbf{R}_H^{(p_1, \dots, p_r)}$ with final states \mathbf{a} , \mathbf{b} , respectively, then uv is also accepted by $\mathbf{R}_H^{(p_1, \dots, p_r)}$ with the final state $\mathbf{a} \oplus \mathbf{b}$.

Finally, form the set of recognizers

$$\mathcal{M}_X = \{\mathbf{R}_H^{(p_1,\ldots,p_r)}: (p_1,\ldots,p_r) \in N^r \text{ and } H \text{ is a subgroup of } \mathcal{M}^{(p_1,\ldots,p_r)}\}.$$

Now we are ready to prove our result.

Theorem 2 A language $L \subseteq X^*$ with alph(L) = X is regular ssh-closed if and only if L is accepted by a recognizer from M_X .

Proof. In order to prove the necessity, let us suppose that $L \subseteq X^*$ is a regular ssh-closed language with alph(L) = X. Then there are positive integers p_1, \ldots, p_r and $F \subseteq X^*$ which satisfy the conditions of Theorem 1. Let us consider the automaton $C^{(p_1,\ldots,p_r)}$ and let us define the set H by

$$H = \{ \mathbf{a} : \mathbf{a} \in \prod_{t=1}^r \{0, \dots, p_t - 1\} \text{ and } \delta^{(p_1, \dots, p_r)}(0, u) = \mathbf{a}, \text{ for some } u \in F \}.$$

We show that H is a subgroup of $M^{(p_1,\ldots,p_r)}$. Indeed, let $\mathbf{a},\mathbf{b}\in H$ be arbitrary elements. By the definition of H, there are $u,v\in F$ with $\delta^{(p_1,\ldots,p_r)}(0,u)=\mathbf{a}$ and $\delta^{(p_1,\ldots,p_r)}(0,v)=\mathbf{b}$. Let $\Psi(u)=(i_1,\ldots,i_r)$ and $\Psi(v)=(j_1,\ldots,j_r)$. Then, by (ii)-(1), we have $0\leq i_t,j_t< p_t$, for all $t=1,\ldots,r$, and hence, we obtain, by (c), that $\mathbf{a}=(i_1,\ldots,i_r)$ and $\mathbf{b}=(j_1,\ldots,j_r)$. On the other hand, by (ii)-(2) of Theorem 1, there exists a $w\in F$ with $\Psi(uv)\hookrightarrow \Psi(w)$ (mod (p_1,\ldots,p_r)). Let $\Psi(w)=(k_1,\ldots,k_r)$. Then, by (ii)-(1) and (c), $\delta^{(p_1,\ldots,p_r)}(0,w)=(k_1,\ldots,k_r)$. Since $w\in F$, we have $(k_1,\ldots,k_r)\in H$. From $\Psi(uv)\hookrightarrow \Psi(w)$ it follows that $i_t+j_t\equiv k_t\pmod{p_t},\ t=1,\ldots,r$. But then $\mathbf{a}\oplus\mathbf{b}=(k_1,\ldots,k_r)$. Therefore, H is closed under the operation \oplus implying that H is a subgroup of $M^{(p_1,\ldots,p_r)}$. This completes the proof of the necessity.

In order to prove the sufficiency, let us suppose that $L \subseteq X^*$ with alph(L) = X and there exists a recognizer $\mathbf{R}_H^{(p_1,\ldots,p_r)} \in \mathcal{M}_X$ accepting L. We show that L is a regular ssh-closed language.

The regularity of L is obvious. Now let $u, v \in L$ and let w be an arbitrary element of the set $u \diamond v$. Since L is accepted by $\mathbf{R}_H^{(p_1,\dots,p_r)}$, there are $\mathbf{a},\mathbf{b} \in H$ such that $\delta^{(p_1,\dots,p_r)}(\mathbf{0},u) = \mathbf{a}$ and $\delta^{(p_1,\dots,p_r)}(\mathbf{0},v) = \mathbf{b}$. Therefore, by (d), we obtain that uv is accepted by $\mathbf{R}_H^{(p_1,\dots,p_r)}$ with the final state $\mathbf{a} \oplus \mathbf{b}$. From this, by (b), we get that $w \in L$, and so, L is shuffle-closed.

Finally, let $u \in L$, $v \in X^*$ and let us assume that $u \diamond v \cap L \neq \emptyset$. If v = 1,

Finally, let $u \in L$, $v \in X^*$ and let us assume that $u \diamond v \cap L \neq \emptyset$. If v = 1, then $\delta^{(p_1,\ldots,p_r)}(0,v) = 0 \in H$, and so, $v \in L$. Now let us suppose that $v \neq 1$. Let $\delta^{(p_1,\ldots,p_r)}(0,u) = \mathbf{a}$, $\delta^{(p_1,\ldots,p_r)}(0,v) = \mathbf{b}$ and let $\Psi(u) = (i'_1,\ldots,i'_r)$, $\Psi(v) = (j'_1,\ldots,j'_r)$. Then there exist nonnegative integers $i_t < p_t$, $j_t < p_t$, l_t , k_t , $t = 1,\ldots,r$, such that $i'_t = i_t + l_t p_t$, $j'_t = j_t + k_t p_t$, $t = 1,\ldots,r$. Let us denote by u' and v' the words $x_1^{i_1+l_1p_1} \ldots x_r^{i_r+l_rp_r}$ and $x_1^{j_1+k_1p_1} \ldots x_r^{j_r+k_rp_r}$, respectively. Using (b) and (c), we obtain that $\delta^{(p_1,\ldots,p_r)}(0,u') = \mathbf{a}$, $\delta^{(p_1,\ldots,p_r)}(0,v') = \mathbf{b}$, where $\mathbf{a} = (i_1,\ldots,i_r)$, $\mathbf{b} = (j_1,\ldots,j_r)$. By our assumption on $u \diamond v$, there exists a word $w \in u \diamond v \cap L$. Let

$$w' = x_1^{i_1+j_1+(l_1+k_1)p_1} \dots x_r^{i_r+j_r+(l_r+k_r)p_r}.$$

Since $w \in u \diamond v \cap L$ and $\Psi(w') = \Psi(u'v') = \Psi(uv) = \Psi(w)$, (b) implies $w' \in L$. On the other hand, by (c), we have

$$\delta^{(p_1,\ldots,p_r)}(0,w')=(i_1+j_1 \pmod{p_1},\ldots,i_r+j_r \pmod{p_r}).$$

Now let us observe that $(i_1 + j_1 \pmod{p_1}, \dots, i_r + j_r \pmod{p_r}) = \mathbf{a} \oplus \mathbf{b}$. Since $w' \in L$, we have $\mathbf{a} \oplus \mathbf{b} \in H$. But H is a subgroup of $\mathcal{M}^{(p_1, \dots, p_r)}$, thus $\mathbf{a} \in H$ and $\mathbf{a} \oplus \mathbf{b} \in H$ imply $\mathbf{b} \in H$. Therefore, by $\delta^{(p_1, \dots, p_r)}(0, v) = \mathbf{b}$, we obtain that $v \in L$, and so, L is an ssh-closed language. This completes the proof of the theorem.

References

- [1] Eilenberg, S., Automata, Languages and Machines, Vol A, Academic Press, New York, 1974.
- [2] Ginsburg, S., Algebraic and Automata-Theoretic Properties of Formal Languages, North-Holland Publ., Amsterdam, 1975.
- [3] Ito, M., Thierrin, G., Yu, S.S., Shuffle-closed Languages, Publicationes Mathematicae, submitted for publication.
- [4] Lothaire, M., Combinatorics on Words, Encyclopedia of Mathematics and its applications, Addition-Wesley, Reading, 1983.

Received September 1, 1994