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On Semi-Conditional Grammars with
Productions Having either Forbidding or
Permitting Conditions

A. Meduna * A. Gopalaratnam®*

Abstract

This paper simplifies semi-conditional grammars so their productions have
no more than one associated word-either a permitting condition or a forbid-
ding condition. It is demonstrated that this simplification does not decrease
the power of semi-conditional grammars.

1 Introduction

A semi-conditional grammar is a context-free grammar with productions having
two associated words—a permitting condition and a forbidding condition. Such a
production can rewrite a word, w, provided its permitting/forbidding condition
is/is not a subword of w. Semi-conditional grammars without erasing productions
characterize the family of context-sensitive languages; when erasing productions
are allowed, these grammars define all family of recursively enumerable languages.

This paper studies a simplified concept of these grammars, whose productions
have no more than one associated word—either a permitting condition or a forbid-
ding condition. It is shown that this simplification does not decrease the generative
power of semi-conditional grammars.

2 Definitions and Examples

We assume that the reader is familiar with formal language theory (see [3]).

Let V be an alphabet V* denotes the free monoid generated bX V under the
operation of concatenation, where A denotes the unit of V*. Let VT = V* — {A}.
Given a word, w € V*, |w| represents the length of w, and alph(w) denotes the set
of symbols occurring in w. We set sub(w) = {y : y is a subword of w}. Given a
symbol, a € V, #,w denotes the number of occurrences of a in w.

A semi-conditional grammar (an sc-grammar for short) is a quadruple, G =
£,V, P,S,T), where V, T, and S are the total alphabet, the terminal alphabet (T C

), and the axiom, respectively, and P is a finite set of productions of the form
(A— a,p,p)with A€V —T,aecV*, eVt uU{0}, and p € V* U {0}, where 0
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is a special symbol, 0 ¢ V (intuitively, 0 means that the production’s condition is
missing). If (A — a, B, p) € P implies a # A, G is said to be propagating. G has
degree (¢,0), where 1 is a natural number, if for every (A — a,8,u) € P, eVt
iﬂl—f)liesﬁﬁ |<7%, and p=0. G'has aegi'éé_'(o;j), where 7 is a natural number, if for
every (A — a,B,p) € P, =0, and p € V* implies |u| < 5. G has degree (1,7),
where ¢ and j are two natural numbers, if for every (A — a,8,u) € PVt
implies || <4, and p € V* implies |u| < j. Let y,v €V*, and (4 — a,f,u) € P.
Then, u directly derives v according to (A — a, fs), denoted by

u=>v[(A = a,p,u)]

provided for some uy, u; € V*, the following conditions (1) through (4) hold

1) u=u;Au,
2) v=ujaus
3) B # 0 implies B € sub(u
4) p # 0 implies p ¢ sublu

When no confusion exists, we simply write u => u. As usual, we extend = to =*
where 1+ > 0), =%, and =*. The language of G, denoted by L(G), is defined by
(G)={weT;S=>"w}

Now, we introduce the central notion of this paper-a simple semi-conditional
grammar. Informally, a simple semi-conditional grammar is an sc-grammar in
which any production has no more than one condition—either a permitting condition
or a forbidding condition. Formally, let G = (V, P, S, T) be an sc-grammar. G is a
ssmple semi-conditional grammar (an ssc-grammar for short) if (A — z,a,8) € P
implies {0} C {e, A}.

To give an insight into ssc grammars, let us present two examples.

‘Example 1 Let
. G = ({S’ A’ X’ C’ Y)a’ b}’ P’ S’ {a’ b})

be an ssc-grammar, where

P = {(§— AC,0,0),
(A — aXb,Y,0),
(C—Y,4,0),
(Y — Ce,0, A),
(A — ab,Y,0),
(Y —’C,O’A),
(X — A,C,0)}

Notice that G is propagating, and it has degree (1, 1). Consider aabbcc. G derives
this word as follows: :

S = AC = AY = aXbY = aXbCc = aAbCc = aAbY ¢ = aabb¥Yc = aabbee.

Obviously,
L(G) = {a"b"c";n > 1}.

Note that {a"b"c";n > 1} is not a context-free language.
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Example 2 Let
G= ({S) A, B, X,Y,a},P,S, {G})

be an ssc-grammar, where P is defined as follows:

P = {(S—a,0,0),
(S — X,0,0),
(X = YB,0, A),
(X — aB,0, A),
(Y — XA4,0, B),
(Y — aA,0, B),
(A — BB, XA,0)}
(B — AA,YB,0)}
(B — a,a,0)}.

G is a propagating ssc-grammar of degree (2,1). For aaaaaaaa, G makes the
following derivation:

S = X=>YB=>YAA=>XAAA= XABBA = XABBBB = XBBBBBB =
aBBBBBB = aBaBBBBB = aBaBBBBa => aaaBBBBa =
aaaBBBaa = aaaaBaaa = aaaaaaaa.

Clearly, G generates {a2";n > 0}, that is,
L(G) = {a®*";n > 0}.

Note that {a’n; n > 0} is not context-free. :
The family of languages generated by ssc-grammars of degree (z,7) is denoted
by SSC(s, 7). Set

SSC = G G SSC(s, 5).
+=035=0

To indicate that only propagating grammars are considered, we use the prefix
prop-; for intance, prop-SSC (2, 1) denotes the family of languages generated by
propagating ssc-grammars of degree (2, 1).

The families of context-free, context-sensitive, and recursively enumerable lan-
guages are denoted by CF, CS, and RE, respectively.

Let us finally recall that a context sensitive grammar in Penttonen normal form
is a quadruple, G = (V, P, S, T), where V, S, and T have the same meaning as for
an sc-grammar, and any production in P is either of the form AB — AC or of the
form A — a, where A,B,C €V —T,a € (TU(V — T)?) (see [2]). In the standard
manner, we define =,=>*, =+ =* and L(G). If we want to express that z = y in
G according to p € P, we write z => y [p].

3 Results

From the definition, the results achieved in (1], and the examples given in the
previous section, we see that

CF c prop—-SSC C prop—SC = prop-SC(2,1) = prop—SC(1,2) = CS
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and
prop—SSC C SSC C SC =SC(2,1) = SC(1,2) = RE

This section ~s(:ates that

CF
C
prop — SSC = prop — SSC(2, 1) = prop — SSC(1,2) =
prop — SC = prop — SC(2,1) = prop — SC(1,2) = CS
. c
SSC = SSC(2,1) = SSC(1,2) = SC = SC(2,1) = SC(1,2) = RE

In other words, we demonstrate that ssc-grammars are as powerful as sc-grammars.
To establish this result, we first prove that propagating ssc-grammars of degree
(2,1) generate precisely the family of context-sensitive languages.

Theorem 1 CS = prop — SSC(2,1).

Proof. Clearly, prop — SSC(2,1) C CS, so it suffices to prove the converse
inclusion.

Let G = (V, P, S, T) be a context-sensitive grammar in Penttonen normal form.
We construct an ssc-grammar, G' = (V UW, P!, S, T), that generates L(G). Let

W = {B;AB — AC€ P,A,B,CeV - T}
We define P’ in the following way:

1.ifA—-a€eP,AeV -T,ae Tu(V - T)?,
then add (A — «,0,0) into P’,

2. f AB—+ ACe P ABCeV-T,
then add

(B — B,o, é), (é — C, Aé,O), and (B — B,0,0)
to P'(B is the ~ version of B in AB — AC).

Notice that G is a propagating ssc-grammar of degree (2,1). Moreover, from
(2), we have for any Be W

S =& aimplies #ga < 1

because the only production that can generate B is of the form (B — B,9, B).
Let g be the finite substitution from V* into (W UV)* defined as follows:
foralDeV,

1. if D € W(D is the ~ version of D), then g(D) = {D, D};

2. if D ¢ W, then g(D) = {D}.
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Next, we will show that for any w € V¥,
S =>¢ wif and only if § =%, vwithv € g(w)

for some m,n > 0.

Only sf: This is proved by induction on m.

Basis: Let m = 0. The only w is S as S =2 S. Clearly, § =2, S for n = 0,
and S € g(S).

Induction Hypothesis: Assume that the claim holds for all derivations of length
m or less, for some m > 0.

Induction Step: Consider a derivation S »'5“ a,x €Vt Because m+12>1,
there is some § € V* and p € P such that § =% 8 =¢ a [p]. By the induction
hypothesis, S =%, ' for some B' € g(B) and n > 0. Next, we distinguish two

cases, case (i) considers p with one nonterminal on its left- hand side, and case (ii)
considers p with two nonterminals on its left-hand side.

(l) Letp—D—»ﬂz eP,DeV-T5 ETU(V T)2 ﬂ=ﬂ10ﬁ3,ﬂ1,ﬁ3 eV,
@ = ﬂ1ﬁ2ﬁ3)ﬂ' = ﬂixﬂ:'sxﬂi € g(ﬂl))ﬂé € g(ﬂS)s and X € g(D) By (1)) (D -
$2,0,0) € P. If X = D, then S =%, f1DB3 =>¢' p1P2P3 [(D — p2,0,0)]. Because
B € g(ﬂl) B3 € g(Bs), and Bz € g(B;), we obtain ] 8,6; € g(B18283) = g(a). If
X = D, wehave (X — D,0,0) € P',50 S =%, B X84 = B, DB (D — B2,0,0)],

and f ﬂzﬂaeg(a
(i) Let p = AB — AC € P,A,B,CE€V — T, = p1ABBy, f1, 2 EV*, a =

PLACBs,B' = B XY B3, P1 € 9(ﬁ1) Bz € 9( —2), X € g(A), and Y € g(B). Recall
that for any B #56 <1land (B — B,0,0) € P'. Then, 8’ =%, f; ABp; for some
i€ {0,1} s0 By € g(B;),5 = 1,2, and (g(A) U g(B))N alph(B1ABf2) = {A B}. At

this point, we have:

S =>2;l 51AB52
e PiABB [(B— B,0,B)|
=g P1ACB; - |(B — C,AB,0)|

where B1 € g(B1), B2 € 9(B2),C € ¢(C), i.e., B ACP; € g(a).
If: This is established by induction on n; in other words, we demonstrate that

if S =%, v with v € g(w) for some w € V¥, then § =¢ w.

Basis: For n = 0, v surely equals S as § =%, S. Because S € g(S), we have w = S.
Clearly, S =>‘C); S.

Induction Hypothests: Assume the claim holds for all derivations of length n or less,
for some n > 0.

Induction Step: Consider a derivation, S =3t o/,0' € gla),a € V. Asn+12>
1, there exists some § € V1 such that S =% B = o [p|,B' € g9(B).
induction hypothesis, S =>; 8. Let §' = B1B'f3,8 = p1Bp2,B; € 9(B;),7 =
1121)6:' € VtiBl € g(B)aB eV - Tra' = ﬁi“'ﬂaa and p= (B' - #',#11#2) € P'.
The following three cases — (i), (ii}, and (iii) — cover all possible forms of the
derivation step f’' =>g+ o' [p].
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(i) 4 €g(B). Then, S =>¢ f1BBs, B11' B3 € g(P1BB3), i.e., o' € g(B1 BBz).

(i) B=BeV-T,ueTU(V—-T)%u =0=pu; Then, there exists a
production, B — u' € P, 80 S =4 1 Bfz = Pip'Pz|B — u']. Since p' € g(u'),
we have a = BB, such that o’ € g(a).

(i) B'=B,u’ =C,p; = AB,p3=0,A,B,C €V —T. Then, there exists
a production of the form AB — AC € P. Since #zf' < 1,Z = B, and AB €
sub(B’), we have 8] = §'A,p, = 6A (for some 6§ € V*), and §' € g(6). Thus,
S =g 6ABB; =>c §ACB;3|AB — AC|,6ACB; = $,CPB,. Because C € ¢(C), we
get a = 1 CP; such that a' € g(a).

By the principle of induction, we have thus established that for any w €
V*t,S =% wif and only f § =7, v with v € g(w). Because g(z) = {z}, for
any z € T*, we have for every w € T,

S=>¢wif and only if S =7 w.
Thus, L(G) = L(G'), and the theorem holds. Q.E.D.

Corollary 2 CS = prop — SSC(2,1) = prop—SSC = prop-SC(2,1) =
prop — SC.

We now turn to the investigation of ssc-grammars with erasing productions. We
prove that these grammars generate precisely the family of recursively enumerable
languages.

Theorem 8 RE = SSC (2,1).

Proof. Clearly, we have the containment SSC(2,1) C RE; hence, it suffices to
show RE C SSC(2,1). Every language L € RE can be generated by a recursively
enumerable grammar, whose productions are of the form AB — AC or A — «
where A, B,C€V —T,a€ TU(V — T)2U {1} (see [2]). Thus, the containment
RE C SSC(2, 1) can be proved by analogy with the proof of Theorem 1 (the details
are left to the reader). Q.E.D.

Corollary 4 RE = SSC(2, 1)= SSC = SC(2, 1)= SC.

To demonstrate that propagating ssc-grammars of degree (1,2) characterize CS,
w)e first establish a normal form for context-sensitive grammars (see Lemmas 5 and
6).

Lemma 5 Every L € CS can be generated by a context sensitive grammar, G =
(NcpUNgsUT, P, S,T), where N, Ncs, and T are pairwise disjoint alphabets,
and every production in P is either of the form AB — AC or A — z, where
Be€ Ngs,A,C € Nop,z € Nos UT U (U‘?:lN’CF).

Proof. Let L € CS. Without loss of generality, we can assume that L is generated
by a context sensitive grammar G’ = (V, P/, S, T) in Penttonen normal form, that
is, every production in P’ is either of the form AB— ACor A—- BCor A — ¢«
(where A,B,C€V'—-T anda€ T}‘.

Let G = (Ncp UNecsUT,P,S,
follows:

NC’F = V—-T;
Ngs = {B;Bisthetilde version of Bin AB — AC € P'};
P = {A—-z;A—-z€P, A€V -T,z€TU(V-T)>?%}
U{B— B,B— AC;AB— ACe P',A,B,CcV —T}.

) be the context sensitive grammar defined as
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Obviously, L(G') = L(G), and G is of the required form. Hence, the lemma holds.
Q.E.D.

Lemma 6 Every L € CS can be generated by a context sensitive grammar G =
({S} U Ncr UNgs UT, P, S,T), where {S}, Ncr,Ncs,T are pairwise disjoint
alphabets, and every production in P is either of the form S — aD or AB — AC
or A— z, where a € T,D € Ncr U {/\},B € N¢s,A,C € Ncp,z € NosUTU
(U?=1 N&F)' .

Proof. Let L be a context sensitive language over an alphabet, T. Without loss of
generality, we can express L as L = L, U L3, where L; C T and L; C TT*. Thus,
by analogy with the proofs of Theorems 1 and 2 in 2], L2 can be represented as
Ly = UgeralL,, where each L, is a context sensitive language. Let L, be generated
by a context sensitive grammar, G, = (N¢r, U N¢s, UT, Pq,S,,T), of the form
of Lemma 5. Clearly, we can assume that for all a’s, the nonterminal alphabets
(Ncr, U Ngsg,) are pairwise disjoint. Let S be a new start symbol. Consider the
context sensitlve grammar

G = ({S} UNecrUNgs U T,P,S,T)

defined as:

Ncr = Uqer Ner,;

Ncs = Uaer Nes,;

P=U,erP,U{S —aS;;a€ T}U{S —~a;a€ L,;}.
Obviously, G satisfies the required form, and we have
L(G) = Ll U (UGET GL(GG)) = L1 U (UGET GLG) = L1 U L2 = L.

Consequently, the lemma holds. Q.E.D.

( \)?Ve are now ready to characterize CS by propagating ssc-grammars of degree
1,2).
Theorem 7 CS = prop — SSC(1,2).

Proof. Clearly, prop — SSC(1,2) C CS; hence, it suffices to prove the converse
inclusion.

Let L be a context sensitive language. Without loss of generality, we can assume
that L is generated by a context sensitive grammar, G = ({S} U Ncr U Ngs U
T, P,S,T), of the form of Lemma 6. Set V = ({S}UNcrUNcsUT). Let g be the
cardinality of V; ¢ > 1. Furthermore, let f be an (arbitrary, but fixed) bijection
from V onto {1 ...,}), and let =1 be the inverse of f.

Let G~ = (V"‘, ~,S,T) be a propagating ssc-grammar of degree (1,2), in
which A

Ve = (U?=1Wf) U |4

where

W, = {<a,AB— AC,j>;a€T,AB — AC € P,A,C € Nor, B € Nes,
1<j<5)

W, = {[a,AB — AC,jl;a€T,AB —+ AC € P,A,C,€ Ncp,B € Ngg,
1<5<q+3);

Ws = {B,B',B";B¢e Ngs});
W, = {(aa€T}
and P~ is defined as follows:
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1.if S —+adePaeT Ac(NcrU{A}),
then add (S — 3A4,0,0) to P~;

2. faeT,A—z€ P, A€ Ngr,z€ (V = {S})U(Ncr)?,
then add (A — z,3,0) to P~;

3.faeT,AB—+ ACe P, A C,e Nop,B€E Ncg,
then add to P~ the following set of productions
(an informal explanation of these productions can be found below):

{(@a -< a,AB — AC,1 >,0,0),

(B— B',<a,AB — AC,1 >,0),

(B— B,<a,AB — AC,1>,0),

(< a,AB — AC,1>—<a,A — AC,2 >,0, B),
(B — B",0,B"),

(< a,AB — AC,2 >—< a,AB — AC,3 >,0, B),
(B" — [¢,AB — AC,1],< a,AB — AC,3 >,0)}

U {([a,AB — AC,j] — [a,AB — AC,j + 1},0,
f~'(s)la, AB — AC,j]);1 < 5 < gq, f(A) # 5}

U {([a,AB — AC, f(A)] — [a,AB — AC, f(A) + 1],0,0),
([a,AB — AC,q+ 1] — [a,AB — AC,q +2],0,
B'la,AB — AC,q+1]),

(la,AB — AC,q+ 2] — [a, AB — AC,q + 3],0,

< a,AB — AC,3 > [a, AB — AC,q+2|),

(< a,AB — AC,3 >—+< a,AB — AC,4 >,

[a,AB — AC,q +3],0),

(B' — B,<a,AB — AC,4>,0),

(< a,AB — AC,4 >—< a,AB — AC,5 >,0,B’),
([a,AB — AC,q+3]— C,< a,AB — AC,5 >,0),
(<a,AB — AC,5 >— &,0,[a, AB — AC,q+ 3])}
(B, B, and B" correspond to Bin AB — AC);

(4) if a € T, then add (@ — a, 0,0L to P~.
Let us informally explain the basic idea behind point (3)-the heart of all con-
struction. The production introduced in this point simulate the application of
productions of the form AB — AC in G as follows: an occurrence of B is chosen,
and its left neighbor is checked not to belong to V~ — {4}; at this point, the left
neighbor necessarily equals A, so B is rewritten with C.
Formally, we define a finite letter-to-letters substitution g from V* into (V~)*
as follows:
if D € V, then add D to g(D);
if <a,AB — AC,j >e W1(a € T,AB — AC€ P,B € N¢cs,A,C € Nor,
7 €{1,...5}), then add < a, AB — AC, 5 > to g(a);

if [s, AB — AC,j]€W3(a € T,AB —+ AC€ P,B€ N¢s,A,C € Ngr,
7€{1,...,g+3}), then add [s,AB — AC, j] to g(B);

if {B, B, B"} C W3(B € Ngs), then include {8, B', B"} to g(B);

if 8 € Wy(a € T), then add & to g(a).
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Let g7 ! be the inverse of g.
To show that L(G) = L(G™), we first prove three claims.

Claim 1: S =% zin G,z € V*, implies z € T(V — {S})".

Proof of Claim 1.

Observe that the start symbol, S, does not appear on the right side of any
production and that § — z € P implies £ € TUT(V — {S}). Hence, the claim
holds.

fClaim 2: S =%zin G”,z € (V~)*, then z has one of the following seven
orms:
(i) z=oay, wherea €T,y (V- {S})%;
(i) z=ay, whereaeW,ye(V-{S})*;
(iii) z=<a,AB — AC,1> y, where <a,AB — AC,1 > W),
yE ((V - {S}) U {B') BxB"})‘i#B”y <1
(iv) z=<a,AB — AC,2 > y, where <,AB — AC,2 > W;,
ye((V-{(S,B})U{B'B,B'}) #s < I;
(v) z=<a,AB — AC,3 >y, where < a,AB — AC,3 > W,
y € ((V - {S,B})u{B'})* ({[s, AB — AC,j};1<j < g+3}U
{*, B"H((V - {S,B}) u{B'})"; '
(vi) z=<a,AB — AC,4 > 2, where < a,AB — AC,4 >e W,
y€((V-{S}))u{B'})*[e,AB — AC,q+3|((V - {S}u{B'})";
(vi) z=<a,AB — AC,5 > y where < 6, AB — AC,5 > W,
y € (V- {S})*{la, AB — AC, g5], A}(V - {S})".

Proof of Claim 2.
The claim is proved by induction on the length of derivations.

Basis: Consider S = z. By inspection of the productions, we have § = aA [(S —
aA,0,0)] for some 8 € Wy, A € ({A} U Ncr). Therefore, z =a or z = aA (where
a€Wqand A € ({A} UNcF)); in elther case, z is a word of the required form.

Induction hypothesis: Assume the claim holds for all derivations of length at most
n, for some n > 1.

Induction step: Consider a derivation of the form § =>"*! z . Since n > 1, we
have n + 1 > 2. Thus, there is some z of the required form (z € (V~)*) such that
S =" 3 = z |p] for some p € P~.

Let us first prove by contradiction that the first symbol of z does not belong to
T. Assume that the first symbol of z belongs to T. As z is of the required form,
we have z = ay for some a € (V — {S})‘. By inspection of P~, there is no p € P~
such that ay = z&p], where z € (V™)*. We have thus obtained a contradiction, so
the first symbol of z is not in T.

Because the first symbol of z does not belong to T, z cannot have form (i); as
a result, z has one of forms (ii) through (vii). The following cases I through VI
demonstrate that if z has one of these six forms, then z (in § =" z = x[pf) has
one of the required forms, too.
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L. Assume that z is of form (ii), i.e., 2 = @y, € W,, and y € (V — {S})*. By
inspection of the productions in , we see that p has one of the following forms
(a), (b), and (c): S

a) p=(A — u4,8,0) where A € Nocr and v € (V - {S}) UéNcp)z;

b) p=(@ +<a,AB — AC,1> 0,0) where < a, AB — AC,1 > W;;

¢) p=(a@ — a,0,0) where a € T.
ote that productions of forms (32{, (b), and (c) are introuced in construction
steps (2), 5)3), and (4), respectively.) If p has form (a), then z has form }ii). If p
has form (b), then z has form (iii). Finally, if p has form (c), then z has form (i).
In any of these three cases, we obtain z that has one of the required forms.

II. Assume that z has form (iii), i.e., z =< a,AB — AC,1 > y for some
< a,AB — AC,1 >e W,y € ((V — {S}) u{B",B,B"})*, and #sny < 1. By
the inspection of P~, we see that z can be rewritten by productions of these four
forms:

(a) (B— B',<a,AB— AC,1>,0);

(b) (B— B,<a,AB — AC,1>,0);

() (B—B",0,B) (if B" ¢ alph(y),i.c., #5ny = 0);

(d) (<a,AB — AC,1>—<a, AB — AC,2 >,0,B)  (if B" ¢
alph(y),s.e., #py =0).

Clearly, in cases (a) and (b), we obtain z of form (iii). If z = =z [p] in G~, where
p is of form }c‘), then #pvz = 1, so we get z of form (iii). Finally, if we use the
production of form (d), then we obtain z of form (iv) because #pz = 0.

III. Assume that z is of form (iv), i.e,, 2 =< a,AB — AC,2 > y, where
< a,AB — AC,2 > e W,,y € ((V — {S,B})u{PB', B,B"})*, and #p»y < 1. By

inspection of P~, we see that the follwoing two productions can be used to rewrite

z:

(a) (B — B",0,B") (¢fB" & alph(y));

}.:) (<a,AB — AC,2 > — < a, AB — AC,3 >,0, B) (:fB ¢ alph(y)).

cage (a), we get z of form (iv). In case (b), we have #zy =0, 80 #5z = 0.

Moreover, notice that #p+z < 1 in this case. Indeed, the symbol B” can be
generated only if there exists no occurrence of B” in a given rewritten word, so no
more that one occurrence of B appears in any sentential form. As a result, we
have #p# < a,AB — AC,3 > y < 1,ie, #p»z < 1. In other words, we get z of
form (v).

IV. Assume that z is of form (v), i.e., 2z =< a,AB — AC,3 > y for some
< 6,AB — AC,3 >€ W,y € ((V - {S,B})u {B'})*({[a,AB — AC,j];1 <
7 < qg+3u{B"A}) ((V — {S,B}) U{B'})*. Assume that y = y; Yy, with
y1,¥2 € (V- {S,B})U{B'})*. Y = ), then we can use no production from P~
to rewrite z. Because z = z, we have Y # A. The following cases (A) through (F)
cover all possible forms of Y.

(A) Assume Y = B". By inspection of P~, we see that the only production
that can rewrite z has the form (B" — [a, AB — AC,1],< a,AB — AC,3 >,0).
In this case, we get z of form (v).

(B) Assume Y = [a,AB — AC,j]w,j € {1,...,q}, and f(A) # j. Then z
can be rewritten only according to the production ([a, AB — AC,j| — [a, AB —
AC,37 + 1],0,f~(j)[a, AB — AC,j]) (which can be used unless the rightmost
symbol of < a, AB — AC,3 > y; is f~1(j)). Clearly, in this case we again get z of
form (v).
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(C) Assume Y = [a, AB — AC,j],5 € {1,..., 49}, f(A) = 7. This case forms an
analogy to case (B), except that the production of the form ([a, AB — AC, f(4)] —
l[a, AB — AC, f(A) + 1],0,0) is now used.

(Dﬁ Assume Y = [s, AB — AC,q + 1]. This case forms an analogy to case
(B); the only change is the application of the production ([a, AB — AC,q+ 1] —
[a, AB — AC,q+2],0,B'[a, AB — AC,q + 1])1‘

(E) Assume Y = |a,AB — AC,q + 2]. This case forms an analogy to case
(B) except that the production ([a, AB — AC,q+ 2| — [a¢,AB — AC,q +3],0,<
a,AB — AC,3 > [a, AB — AC, ¢ +2]) is used.

(F) Assume X = [a, AB — AC,q + 3|. By inspection of P~, we see that the
only production that can rewrite 2z is (< ¢, AB — AC,3 >—< a,AB — AC,4 >
y[a, AB — AC, q + 3],0). If this production is used, we get z of form (vi).

V. Assume that z is of form (vi), i.e., 2 =< a,AB — AC,4 > y, where <
a,AB — AC,4 >e Wy and y € ((V — {S})u{B'})* [a,AB — AC,q + 3]((V -
{S}) U{B'})*. By inspection of P~ these two productions can rewrite 2:

(a) (B’ — B,<a,AB — AC,4 >,0);

g)) (<a,AB — AC,4 >—<a,AB — AC,5>,0,B’) (if B’ € alph(y)).

learly, in case (a), we get z of form (vi). In case (b), we get z of form (vii)
because #5:y =0, 80 y € (V — {S})*{[a, AB — AC,q + 3], A}(V — {S})*.

VI. Asgume that z is of form (vii), i.e., 2 =< @¢,AB — AC,5 > y, where
<a,AB — AC,5 >e Wy and y € (V — {S})*{[a, AB — AC,q + 3], A}V — {S})*.
By inspection of P™, one of the following two productions can be used to rewrite

z:
a [a, AB — AC,q+3] = C,< a,AB — AC,5 >,0);
b <a,AB — AC,5 >— 8,0,[a, AB — AC,q+3])
if [a, AB — AC,q + 3| € alph(2)).
In case (a), we get z of form (vii). Case (b) implies #(a,AB—AC,q+3]Y = 0; thus,
z is of form (ii).
This completes the induction step and establishes Claim 2.

Claim 3: It holds that
S=>"winGifandonlyif S=>"vin G~

where v € g(w) and w € V*, for some m,n > 0.

Proof of Claim 8.

Only sf: The only-if part is established by induction on m; that is, we have to
demonstrate that S =™ w in G implies § =* v in G~ for some v € g(w) and
weVt.

Basis: Let m = 0. The only w is S because S =° S in G. Clearly, S =° S in
G~, and S € ¢(S).

Induction Hypothesis: Suppose that our claim holds for all derivations of length
m or less, for some m > 0.

Induction Step: Let us consider a derivation, § =™*! z,in G,z € V*. Because
m+ 12> 1, there are y € V* and p € P such that S =™ y = z [p] in G, and
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by the induction hypothesis, there is also a derivation S =" y™ in G~ for some
y~ € g(y). The following cases (i) through (iii) cover all possible forms of p.

(i) Let p=S — aA € P for some a € T, A € Ncr U{A}. Then, by Claim 1,
m=0,s0 y=3S5 and z = aA. By (1) in the construction of G~,(S — &A4,0,0) €
P~. Hence, S = a~ A in G~ where a~ 4 € g(aA).

(ii) Let us assume that p= D — y, € P, D € NgF,ys € (V-{S})U(Ncr)?,y =
y1Dys,y1,y3 €V* and z = y; yays. From the definition of g, it is clear that g Z‘)’ =
{Z} for all Z € N¢F; therefore, we can express y~ = z; Dz3 where 2z, € g(y,) and
23 € g(ys). Without loss of generality, we can also assume that y; =ar,a € T, r €
(V' = {S})® (see Claim 1), s0 z; = a"7",a" € g(a), and r" € g(r). Moreover, by (2)
in the construction, we have (D — y3,3,0) € P~. The following cases (a) through
(e) cover all possible forms of a”.

(a) Let a” = & (see (ii) in Claim 2). Then, we have S =" ar’Dzz =
ar''yazs [(D — y2,38,0)], and Gr''y323 = 219223 € g(y1y2y3) = g(z).

(b) Let a” = a (see (i) in Claim 2). By (4) in the construction of G~, we
can express the derivation in G~ : § =™ ar""Dz3 as § =" ar''Dz3 => ar'"Dz,
[(@ — a,0,0)]; thus, there exists this derivation in G~ : S =""1 ar"Dz; =
ar' yazs((D — ya, 8,0)] with @r''yz23 € g(z).”

(c) Let 0" = < a, AB — AC,5 > for some AB — AC € P (see (vii) in Claim
2), and let "Dz € (V — {S})*, i.e., [a, AB — AC, ¢+ 3| € alph (+"Dz23). Then,
there exists this derivationin G~ : § "< a,AB — AC,5 > r""Dz3 = ar'" Dz; [(<
a,AB — AC,5 > — &,0,[a,AB — AC,q + 3|)] = ar"yz23[(D — y2,8,0)}, and
ar''yz2s € g(z). :

(d) Let a” = < a, AB — AC,5 > (see (vii) in Claim 2). Let [a,AB — AC,q +
3] € alph (" Dz3). Without loss of generality, we can assume that y~ = < a,AB —
AC,5 > 7" Ds"[a, AB — AC, q+ 3]t", where s"[a, AB — AC,q+ 3]t" = 23,sBt =
ys, 8" € g(t),s,t € (V — {S})*. By inspection of P~ (see (3) in the construction of
G™), we can express the derivation in G~ : § =" y™~ as:

s > ar"Ds" Bt"
=> < a,AB — AC,1 > ¢"Ds" Bt"
[(8 =< a,AB — AC1>,0,0)]

=1+lmimal <4 AB — AC,1>' Ds'Bt'
[my(B — B, < a,AB — AC,1>,0)m,]

= < a,AB — AC,2 > ¢'Ds'Bt'
" [(< ¢y, AB — AC,1>—< a,AB — AC,2 >,0, B)]
= <a,AB — AC,2 > v'Ds'B"t
[B‘___’ B",O,B")]
= < a,AB — AC,3 > ¢ Ds'B"t
[(< a,AB — AC,2 >—< a,AB — AC,3 >,0, B)]
= <a,AB — AC,3 > r'Ds'[a, AB — AC, 1]t

[(B" — [a,AB — AC,1],< a, AB — AC, 3 >,0)]
=»e+2 <a,AB — AC,3 > r'Ds'[a,AB — AC,q+ 3]t
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[(la, AB — AC,1] — [a,AB — AC, 2,0, f~*(1)
[a,AB — AC,1))...
(la, AB — AC, f(4) — 1] — [a, AB — AC, f(4)],0,
f7(7(A4) - 1)[a, AB — AC, f(4) - 1])
(la,AB — ACf(A) — [a, AB — AC, f(A) +1],0,0)
(la, AB — AC, f(A) + 1] — [a, AB — AC, f(4) +2],0,
f—l(f(A) +1)[a,AB — AC, f(A) +1])...
([a;AB — AC,q] — [0, AB — AC, ¢ + 1],0,
f7*(a)la, AB — AC, q))
([a,AB — AC,q+ 1] — [a,AB — AC,q +2],0,B'
[a,AB — AC,q+1])
([¢,AB — AC,q+ 2] — [a,AB — AC, g+ 3],0,
<a,AB — AC,3 > [a, AB — AC,q+2|)]

= < a,AB— AC,4> r'Ds'[a, AB — AC,q + 3]t
[(<a,AB — AC,3 >—< a,AB — AC,4 >,
[a,AB — AC,q + 3],0)]

= Ims] < a,AB — AC,4> r"Ds"[a, AB — g + 3]t" [m3]

= < a,AB — AC,5 > r'"Ds"[a, AB — AC, q + 3]t"
(< a,AB — AC,4 >—< a,AB — AC,5 >,0, B')]

where my, m; € {(B — B',< a,AB — AC,1>,0)}*,m3 € {(B' = B,< a,AB —
AC,4 >,0)}*, |ms| = |mimz|,” € ((alph(r") — {B}) U {B'})*, 97 (r) — r,¢' €
(aloh(") — {BY) U {B"})",6"1(s') = g7}(") = 5, € ((alph(e") - {B}) U
(B))", 7 (¢) = (") = .

Clearly, ar"Ds"Bt" € g(arDsBt) = g(arDys) = g(y). Thus, there exists
this derivation in G~ : § =* ar"Ds"Bt" = ar'y,s"Bt" [(D — y.,&,0)] where
z1y223 = ar'yzs" Bt" € g(aryzsBt) = g(y1yays) = g(z).

(e) Let a” =< a, AB — AC,1i > forsome AB — AC € Pandi€{},...,4} (see
(iii) - (vi) in Claun 2) By analogy with (d), we can construct the derivation S =*

ar’ Ds'' Bt" = ar'y,s" Bt" [(D — ya,38, O)IJ such that ar'y,s" Bt" € g(y1y2y3) =
g(z) (the details of this construction are left to the reader).

(iti) Let p = AB — AC € P,A,C € Ngr,B € Ngs,y = 1ABy3,y1,y3 €
V* z =y ACy3,y~ = zlAYza,Y € g(B) 2; € g(y;) where 1 € {1,3}. Moreover,
let y; = ar (see Claim 1), z, = a"r",d" E g(a),r"" € g(r). The followmg cases (a)
through (e) cover all possible forms of a"

(a) Let a" = @. Then, by Claim 2, Y = B. By (3) in the construction of G,
there exists the following derivation in G™:

S =" ar'"ABzs
= <a,AB — AC,1 > r" ABuj
[(8 =< a,AB — AC,1> 0,0)]
=tmil < g AB — AC,1> ' ABz;
[mi(B — B,< a, AB — AC,1>,0)]
= <a,AB — AC,2 > r'ABu,
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[(< a,AB — AC,1 >—< a, AB — AC,2 >,0, B)]

= <a,AB — AC,2>r"AB"u;

(B — B",0,B")]
=> <a,AB — AC,3>r'AB"us

[(< a,AB — AC,2 >—< a,AB — AC,3 >,0, B)]
= < a,AB — AC,3 > r'Ala, AB — AC, 1]u;

[(B" — [a,AB — AC,1],< a, AB — AC,3 >,0)]

=>9+2 <a,AB — AC,3 > r'Ala, AB — AC,q + 3|us

[(ls, AB — AC,1] — [a, AB — AC,2],0,

ft(1)[e,AB — AC,1))...

(la,AB — AC, f(A) — 1] — [a, AB — AC, f(4)],0,

F7H(f(A) = 1)[e, AB — AC, f(A) - 1))

((ay AB — AC, f(4)] — [a, AB — AC, f(A) + 1],0,0)

(la,AB — AC, f(4) +1]) — [s, AB — AC, f(4) + 2],0,

f_l(f(A) +1)[a, AB — AC, f(A) +1])...

(la, AB — AC,q] — [a, AB — AC,q+ 1],0,

f7Y(q)[a, AB — AC, q))

(la,AB — AC,q+1] — [a,AB — AC,q+2],0, B’

[a,AB — AC,q + 1))

([a,AB — AC,q + 2] — [a,AB — AC, q + 3],0,

< a,AB — AC,3 > [a,AB — AC,q +2])]
= <a,AB — AC,4 > r'Ala, AB — AC,q + 3)us

[(<a,AB — AC,3 >—< a,AB — AC,4 >,

[a,AB — AC, g + 3],0}]

<a,AB = AC,4 > r"A[a,AB — AC,q+ 3]zz [m2]

<a,AB — AC,5 > r"Ala,AB — AC,q+ 3|z3

[(<a,AB — AC,4 >—+<a, AB — AC,5>,0,B')]
= <a,AB — AC,5 > r"ACz; _
[([a,AB — AC,q+3] = C,< a,AB — AC,5 >,0)]

¢y

where m; € {(B — B',< a,AB — AC,1 >,0)}*,m; € {(B' - B,< a,AB —
AC,4 >,0)}*, |my| = |ma|, us € ((alph(zs) — {B}) U{B'})*, 97} (us) = g7 (z3) =
ys,r' € ((alph(r") = {B}) U{B'})", g7 (r') =g~ (") = .

It is clear that < a, AB — AC,5 >€ g¢(a); thus, < ¢, AB — AC5 > r""ACz; €
g(arACys) = g(z).

(b) Let 6" = a. Then, by Claim 2, Y = B. By analogy with (ii.b) and (iii.a) in
the proof of this claim (see above), we obtain: § ="~! ar"ABz; =*< a,AB —
AC,5 > 1" ACz3 so < a,AB — AC,5 > " ACz; € g(z).

(¢) Let a” =< a, AB — AC,5 > for some AB — AC € P (see (vii) in Claim
2), and let "AYz; € (V — {S})*. At this point, Y = B. By analogy with
(ii.c) and (iii.a) in the proof of this claim (see above), we can construct § ="*1
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ar'"ABz3 =>*< a,AB — AC,5 > r"ACz3 80 < a, AB — AC,5 > r" ACz; € g(z).

(d) Let a" =< a,AB — AC,5 > for some AB — AC € P (see (vii) in Claim
2), and let [a, AB — AC, q+ 3] € alph(r" AYs). By analogy with (ii.d) and (iii.a)
in the proof of this claim (see above), we can construct S =* ar” ABz; and, then,
S =>* ar'"ABzz =*< a,AB — AC,5 > r" ACz3 80 < a,AB — AC,5 > r"ACz; €
oarACys) = o(a).

(e) Let a" =< a, AB — AC,i > for some AB — AC € P,: € {1,...,4}, see
(IT) - (IV) in Claim 2. By analogy with (ii.e) and (iii.d) in the proof of this claim
(see above), we can construct § =>* ar" ACzs, where ar’’ ACz; € g(z).

If: By induction on n, we next prove that
if $ =" vin G~ with v € g(w) and w € V* (for some n > 0),
then S =* win G.

Basis: For n =0, the only vis S as S =>° § in G~. Because {S} = g(S), we have
w=S. Clearly, § =% S in G.

Induction hypothests: Assume the claim holds for all derivations of length n or less,
for some n > 0. Let us show that it is also true for n + 1.

Induction step: For n+ 1 =1 (i.e. n = 0), there only exists a direct derivation of
the form S = aA[(S — &A,0, OS] where A € Ncp U {)A},a €T, and GA € g(aAd).

By (1), we have in P a production of the form S — a4 and, thus, a direct
derivation S = aA.

Suppose n +1 > 2 (i.e. n > 1). Consider a derivation in G~ : § ="*1 &/
where z' € g(z),z € V*. As n+1 > 2, there exist 3 € Wy, A € Nor,y € VT, such
that § = a4 ="~ ! y = 2'|p] in G~, where p € P~,y' € ¢(y), and by induction
hypothesis, S =* y in G.

Let us assume that y' = 21222,y = y1 Dy2,2; € g(y;),y5 € (V — {S})*,7
L2, Zeg(D),DeV -{Sth,p=(Z2 —r',r;,r3) € P,ry=00rry =0,z
217’23, 7' € g(r) for some r € V* (i.e. z' € g(yiry2)). The following cases (i)
through (iii) cover all possible forms of ¥’ = z'[p] in G™.

(i) Let Z € Ncr. By inspection of P~, we see that Z = D,p= (D — r',3,0) €
P~,D —+rePand r=r". Thus, § =* y; By, => y1ry[B — r| in G.

(if) Let » = D. Then, by induction hypothesis, we have the derivation § =*
v1Dy; and y; Dy =y, ry; in G.

(iii) Let p = (Ja, AB — AC,q¢+ 3] — C,< a,AB — AC,5 >,0),Z = [a, AB —
AC,q+3]. Thus, r' = C and D = B € N¢g. By case (VI) in Claim 2 and the form
of p, we have z; =< a, AB — AC,5 >t and y; = au, where t € g(u),< a,AB —
AC,5 >€ g(a),u € (V — {S})*, and a € T. From (3) in the construction of G~, it
follows that there exists a production of the from AB — AC € P. Moreover, (3)
and Claim 2 imply that the derivation in G™ :

S =>ad=>""1y = [

can be expressed in the form

S = aA
=* &thz
= <a,AB — AC,1 > vtBz

[(a +<a,AB — AC,1 >,0,0)]
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=19l < a,AB — AC,1> vBuw,

[6')
= < a,AB — AC,1> vB"w;

[(B — BII, 0, B”)]
=> < a,AB — AC,2> vB"w,

[(a, AB — AC,1 >—< a,AB — AC,2 >,0, B)]
= < a,AB — AC,3 > vB"w,

[(< a,AB — AC,2 >—< a,AB — AC,3 >,0, B)]
= < a,AB — AC,3 > v[a, AB — AC,1]w;

[(B" — |a,AB — AC,1],< a, AB — AC,3 >,0)]
=842 < g AB — AC,3 > v[a, AB — AC,q+ 3|w;
0 .
=> < a[, ,]4B — AC,4 > v[a, AB — AC,q + 3|w,
[(<a,AB — AC,3>—< a,AB — AC,4 >,
[a,AB — AC, g+ 3],0)]
=911 < a,AB — AC,4 > t|a, AB — AC,q + 3]z,

]
= < a,AB — AC,5 > t[a, AB — AC,q + 3|2,

[(< a,AB — AC,4 >—< a,AB — AC,5 >,0, B')]
= <a,AB— AC,5>tCz,;

[(la,AB — AC,q+3] = C,< a,AB — AC,5 >,0)]

* where 0’ € {(B — B’,< a,AB — AC,1>,0)}*{(B — B, < a, AB - AC,1>,0)}
{(B — PB',< a, AB — AC’ 1> 0)} ,g(B) N alph(vw;) C {B'}, g‘l(v)

6 —(0)1(f AB )—» AC’ f(A | = [a, AB — AC, f(A) + 1],0,0)0;([a, AB — AC,q +
1] — [a, AB — AC,q+2] 0,B'ls, AB — AC,q+ )é[a AB — AC,q+ 2] —
[aAB—+AC,q+3]0<aAB—»AC3>[aAB—' ,q+2]
61 = ([a, AB — AC,1] — [a, AB — AC,2],0, f~!(1)[a,AB.— AC 1})
(la,AB — AC,2] — [a, AB — AC, 3},0, f~ 1(2)[a AB — AC,2))..
llacl}? — AC f(4) - 1] — [a,AB - AC,f(A)],O,f‘l(f(A) - 1)[a,AB —
where f 2.4) unphes q1=A,
62 = (la, AB — AC, f(A)+1] — o, AB — AC, f(A)+2],0, f~1(f(A)+1) [a, AB —
AC, f(A) +1]).. ([a AB — AC,q] — [a,AB — AC,q + 1],0, 7 }(q)[a,AB —
AC, g]), where f(A) = q implies g2 = A, 0" € {(B' — B,< a, AB — AC,4 >,0)}*.
The above derivation implies that the rightmost symbol of ¢ must be A. As
te g(u), the rightmost symbol of u must be A as well. That is, t = s'A,u = s4
and &' € g(s) gor some 3 E V —{S})*). By the induction hypothesis, there exists a
derivation in S =* asABy;. Because AB — AC € P, we get S =* asABy, =
asACy;[AB — AC|, where asACy; = yirys.
By (1), (ii), (iii) and inspection of P~, we see we have considered all possible
derivations of the form S ="*! 2/ (in G~) , so we have established Claim 3 by the
principle of induction.
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The equivalence of G and G~ can be easily derived from Claim 3. By the
deﬁnif;ion of g, we have g(a) = {a} for all a € T. Thus, by Claim 3, we have for all
seTt: S=>*zinGif andonlyif S =* zin G~
Consequently, L(G) = L(G™~). We conclude that

CS = prop - SSC(1, 2)
and the theorem holds. Q.E.D.

Corollary 8
CS = prop — SSC(1,2)= prop — SSC = prop -~ SC(1,2) = prop — SC.

We now turn to the investigation of ssc-grammars of degree (1,2) with erasing
productions.

Theorem 9 RE = SSC(1,2).

Proof. Clearly, we have the containment SSC(1,2) C RE; hence, it suffices to
show RE C SSC(1,2). Every language L € RE can be generated by a grammar
G = (V,T,P,S) in which each production is of the form AB — AC or A — z,
where A,B,C €V — T,z € {A}UTU (V — T)? (see [2]). Thus, the containment
RE C SSC(1,2) can be established by analogy with the proof of Theorem 7 (the
details are left to the reader) Q.E.D.

Corollary 10 RE = SSC(1,2) = SSC = SC(1,2) = SC.
Corollaries 2,4, 8, and 11 imply the main result of this paper:
Corollary 11
CF
C
prop — SSC = prop — SSC(2,1) = prop — 8SC(1,2) =
prop — SC = prop — SC(2,1) = prop — SC(1,2) = CS
C
SSC = SSC(2,1) = SSC(1,2) =SC =SC(2,1) = SC(1,2) = RE
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