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Invariance groups of threshold functions

E. K. Horvith *

Permutations of variables leaving a given Boolean functien f(z;,...,z,) in-
variant form a group, which we call the snvariance group G of the function. We
obtain that for threshold functions G is isomorphic to a direct product of symmetric
groups.

A threshold function is a Boolean function, i.e. a mapping {0,1}"* — {0, 1} with
the following property: There exist real numbers w;, ..., wy, ¢ such that

f(zli'-',zn) =1iff Zw.-z.- 2t,

=1

where w; is called the wesght of z; fors = 1,2,...,n, and ¢ is a constant called the
threshold value.We can suppose without loss of generality that :

wy <wg<.. <Wn [1],{2]

Throughout this paper, we use the notation: (X) = (z1,...,zn); W =
(w1,.. " wn), Ws Y5y wizi. Let X stand for the set consisting of the symbols
Z1,. eﬁne an ordering on the set X in the following way: z; < z, iff
w; <' w, For any permutation x of X, the moving set of x, denoted by M(~),
consists of all elements z of X satisfying x(z) # z. Denote by Sx the group of
all permutatlons of the set X, and by S, the symmetric group of degree k. If

(X) (p1,- ( ;;n) € {0, 1% and o € Sy, then let o(P) = fr(pl), ,o(pn)) and
ag 11 YAt ]

(h ) be an ordered set. Consider a partition C of X. As usual, we shall

denote the class of C that contains z € X by z. We call C convez if z; 5 z; < 3
and Z; = Z; together imply 2; = ;. For any convex partition C of X, the ordering
of X induces an ordering of the set of blocks of C in a natural way: %; < Z; iff
z; < z5.

Theorem 1 For every n-ary threshold function [ there ezists a partition Cy of X
such that the snvariance group G of f consists of exactly those permutations of Sx
whsch preserve each block of Cy

Conversely, for every partttwn C of X there exists a threshold function fc such
that the snvarsance group G of fc consists of ezactly those permutations of Sx that
preserve each block of C.

Proof. First, consider an arbitrary n-ary threshold function f. Let us define the
relation ~ on the set X as follows: ¢+ ~ j iff ¥ = 5 or f is invariant under the
transposition (z;z;). Clearly, this relation is reflexive, and symmetric. Moreover,
it is transitive because
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(ziz5)(z52x)(2i25) = (ziz)-

Hence ~ is an equivalence relation.
Claim 1. The partition C; defined by ~ is convex.

Proof. If it is not 5o then there exist a Boolean vector D = (dy,...,d,) € {0,1}"
and 1 <1 <5 <k < n with z; ~ z; such that .

d+ wid; + wyd; + widy < ¢, (1)

‘ d + w;d; '-i-w,-d,-+w,,dk 2t, (2)
ifd=3 . xCcedq- Now (1) and (2) imply d; = 0, d; = 1. Since z; ~ zx, from
(1) and (2) we infer:

d+ wide + w,-d,- + wkd,- <t, (3)

d+ widy + wyd; + wid; > t. (4)

Assume di = 0. Then d + wx <t < d+ wy; by (3) and (2), whence wx < w; ,
which is a contradiction. On the other hand, suppose di = 1. Then because of (1)
and (4), d+ w; + wy <t < d+ w; + wy, which is also a contradiction.

For the reason of convexity, the blocks of ~ may be given this way:

Cl = {:i:l,...,z.-l},

C; = {zi|+1r"'rzi'x+iz}:

c = {z"n+t':+...+"t—1+l» RN I e 2 ¥} }

N | .
Every permutation that is a product of some “permitted” transpositions pre-

serves the blocks of Cy, and belongs to G. We show that if a permutation does not
preserve each blocks of C; defined by ~, then it cannot belong to G.

Lemma 1 Let v = (2,25, ... %j,_,YZj, -+ Z5,,) € Sx de a cycle of length-m + 1
withz;, €Cp, 1< s<m,y€Cy,p#4q. Then7¢G.

Proof. Let us confine our attention to the following:
(Y25 ) (Z0 %55 - Tja 1 Y25s - Ti) = (251 %4, -+ 25, ) (9),
80 .
(yzils—n) = (z.ﬁ Tyz - zjm)(zix Ty s oo Tipo1 YZg o - zjm) .

If 4 were an element of G, then (yz;,_,) would be also an element of G, which
contradicts the definition of ~.

Claim 1. If a cycle § € Sx has entries from at least two blocks of Cy, then »
BEG.
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Proof. Given the convex partition C; of (X;<), for any cycle 8 of length k we
construct a sequence of cycles of increasing length, called the downward sequence
of A, as follows: Let Z,, Z, (%, > Z,;) the two greatest blocks of C; for which z,, z,
are entries of 5. We cancel some entries of 8 in such a way that we keep all entries
in Z, and the greatest entry in Z,, and we delete all the remaining entries of . This
results in the initial cycle of the downward sequence f(,) of length r; r > 2. We
do not need to define members of the downward sequence with subscripts less then
r. If we have constructed f(;), we obtain the next member f(;41) of the downward
sequence by taking back the greatest cancelled (and not restored yet) entry of § in
its original place. Thus, the final member of the downward sequence is fx) = B.

Let us denote by zl! (¢ > r), the “new” entry of f(;). If 1 < r, then we do not have
to define zl'l. As an illustration take the following:

X={zlv"')38})

€, = {31, 12})
C: = {zs3,z4},
C:s = {"'5) T6, z"})
Cs = {=zs},

and '
B = (z425Z12723) = (21272324%5).
The downward sequence is;

' B(3) = (z7z42s),

19(4) = (272324%s), alfl = T3,

Bis)(= B) = (z121732435),  2l®l = z,.

It is obvious from the construction of the downward sequence that the weight
of an arbitrary variable occuring in f(;) is not smaller than the weight of ghitil,
By Lemma 1, the initial cycle of the downward sequence (in our example B3))
is not in G. In order to prove that § & G, we show that if there exist Aj;) =
(a(,-)'l, .. .,a(.-),,,) and B(;) = (b(.-),l, . .,b(.-),n) with A;), By € {0,1}" such that
f(A)) = 0 and f(B;)) = 1 and B(;)(A(;)) = Bys), then we are able to construct
A1) = (8@+1),09- -3 8(+1),n) 30d Bpay = (big1),15--+rb(i41),n) With Ay,
B(.‘+1) € {0,1}" satisfying f(A(i+1)) =0 and f(B(i+1)) =1and ﬂ(i+1)(A(i+1)) =
B(i41)- Let us denote with superscripts [I(5)}, and [r(s)] the left, and the right
neighbour of zll in the cycle f(;), respectively. In our example: zl'®) = gz,
zlr(®)] = z; because zl8 = z,. (For the sake of clarity: [r([{(7)])] = ({[r(7)]] = 7;
moreover, zl*)] and 2l are the images of zl/} and zl/()], respectively.) We shall
use this notation for the corresponding components of a concrete Boolean vector
as well, i.e. for example: al(".()’ N and al(zg’ ). We have four possibilities for A(;):

Case 1. a?‘.;'ll =0, am‘“)] = 0.
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Case 3. a[(';.;'l] =1, amiﬂ)l =1.

Case 8. a{';.')H] =1, al(zg"“)] =0.
Case 4. al(';.';” =0, a[(:.§'.+1)] =1

We show that in the first three cases A; is appropriate for A;41. In Case 4 the
only thing we have to do is to transpose two components of A; in order to get a
suitable A;43.

Case 1. af;} ' = 0, af{*V = 0.
4 L]

Even though f;;; bypasses zl*+1l, Bi+1)(Aw) = Buy(A)) holds because
"{'Jl] = “{f-g'“”- I AG+1) = Ag), then By (Au+n) = Bw(Aw) = B
So let us choose B(;4+1) = B(;). Thus f(A(4+1)) = 0, f(Bi+1)) = 1, and
ﬂ(;+1)(A(;+1)) = B(i41) are satisfied.

I [ ZCFOTT 2FF I [ G+

Ag) a%ﬁln 0 0

By | o0 o [bgt
7S B O
Bii+1) 0 o |8

Case 2. a[(';')"ll =1, a%‘“” =1

The situation is the same as in Case 1: at.')"” = am"ﬂ)]. Let Ai41) = Agy)-

Then B(;;1)(A(i+1)) = Bs)(A)) = Bys), hence let us choose B(;41) = B(;). Thus
f(Ai+1)) = 0, f(Bi4r)) = 1, and B(i41)(A+1)) = B(i41) are satisfied for the

reason as in Case 1.

2 3+1)] gt +1] ZIr+I)]

Ag) aiy 1 1
B;) 1 1 bl(:;”'ur
[F{(s+1]] :
Ai+1) S(i+1) 1 . (1+1Ir
ris
B(i+1) 1 1 b(i+1)

Case 8. a{?{ll =1, a%‘“” =0.

Now, A(;) is appropriate for A(;,;) but we cannot guarantee the same for By;)
and B(,‘+1). Let A(i+1) = A(,‘), and B(s'+1) = g(;+1)(A(;+1).). We can get the
Boolean vector B(;4) from B(;) if we transpose bl(:';l and b{".()'“”, ie.:

1(s+1)] _ [s+1] _
brn ' =1, and i) =0,
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while . ]
b((“.()'“" =0, and b‘(;;‘“ =1

furthermore, all the other components of B(;+1) and By;) are identical. Since zli+1l
has the smallest weight in f(;41), we get

n n
E w"b(")’j S E w"b("""l)t-’.’
=1 =1

which means that f(B(;4+1)) = 1. Moreover, f(A4+1)) =0, and B(i41)(A@41)) =
B(i41) are satisfied.

PAUCSRY)) ZI 1] ZITGFI)]
[Is+1]
~ = ] : \ (0+1)]
(s
B {l(0+1)] 1 by
e el : I (O )
ris+
Bty - 0 bi+1)
Case 4. a{';.')H' =0, a{:;"ﬂ)l -1
Let us construct A(;;,) from .A(,-) as follows: Put a{iilll) =1, a[(:(;‘-;)l)] = o,
Bi+1),; = 8(:),; if ag41); # al(".'frlll) or a(i41),; # a{:(;'l")‘”. (Transpose a[(".‘)H]

and a[(:;'.'H)) in the Boolean vector A(;) (and keep all the other components of it

unchanged) to get A(;;,).) Since zl*+1] has the smallest weight in B(i+1), We get

n n
Y wiaee),s £ D wisE).5
=1 5=1

hence f(A(i+1)) = 0. Let B(iy1) = B(i+1)(A(i+1)). With this choice B(i1) = B;,
hence f(Bs4+1)) = 1. .

paLlco2y) e e 22 e e )
Ag) agy v 0 1
By || 1 0 by

A+ || agin) 1 0

Bii+1) 1 0 biea)
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Claim 2 is proved.

Every permutation that is8 a product of disjoint cycles such that any of them
preserves each blocks of C; belongs to the invariance group G of f. We have to
show, that if not all of the factors have this property, then the permutation does
not leave the threshold function f invariant.

Lemma 2 Let x € Sx of the form x = xam;, where 71,72 € Sx, with M(m) N
M(x3)=08andx, €G. Then x € G.

Proof. Suppose that it is not 8o, i.e. * € G. Now 7y, & G means that there exist
Xo,xl € {0, 1}" with f(XQ = O,f(Xl) = 1, and Wl(Xo) = Xl' Let Xg = 71’2(X1),
ie. X3 = w(LXo). Since f(X3) = 1 contradicts the assumption € G, we infer
f(X3) = 0. Let X5 = x,(X3). As M(x;) N M(x;) = @, we have mym; = mamy.
Therefore X3 = x(X,). The assumption r € G implies f(X3) = 1. Looking at the
infinite series of Boolean vectors

Xo, X1,y Xny ...

we can establish in the same way that if s = 2k, k € N, then f(X;) = 0, while if
1 = 2k + 1 then f(X;) = 1. On the other hand,

w(x) = s(x)!" + s(x)1? + s(x)°1,

where S(X)IY = Ez;éM(n)“’:”J’: s = Ez,'GM(ﬂ) wz;, S(X)P =
zzjeM(") w,z;. With this notation: S(Xo)lll < S(Xl)m: S(Xo)m = 5(x,),
S(Xo)P® = S(X,)!%]. For the series of S(X;)!*I:

(6) S(Xo)H < s(x)M = (X)) < (X)W = s(x,)V < ...,

as applying 73 changes only S(X;)!3]; moreover, f(Xzx) =0 and f(Xax+1) = 1
imply W(X3x) < W(Xak+1), hence S(X3¢)!!! < §(Xar41)l2). On the other hand,
if z is the order of xy, then S(Xo)!! = §(X3,)!!] , which contradicts (6).

Claim 8. For » € Sx, let *x = 7, ...7, where 7; are disjoint cycles. If there exists
av; with1<j<randvy; G, then x ¢ G. )

Proof. It is easy to see if there is only one such ;. If there is more, then 7 ¢ G
is an immediate consequence of Lemma 2.

Claim 1, Claim 2, and Claim 3 together provide a proof of the first part of the
Theorem.

For proving the converse of the theorem, we show first that for any n there exist
a n-ary threshold function which is rigid in the sense that its invariance group has
only one element (the identity permutation).

Suppose n is odd. With n = 2k + 1, consider the following weights:

wy w2 cer | Wk | Wil | Wk43 | - Wak Wak+1 (7)
k| -k+1]...1 -1 0 1 | k=1 k

Let t = 0. We prove that for any transposition r of form (z;z;_;) where 2<j<n
there exists a Boolean vector U = (uy,...,u,) € {0,1}" such that f(U) = 1 and
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f(r(U)) =0. Forafixed jlet u; =1, upp1; =1, u;=0if s # 3,1 #n+1—7.
It is obvious that f(U) = 1; however, f s; r(U)) = 0. Hence f is rigid.

If n = 2k, then the welghts can be chosen as
wy wy coc fwr—y | W | Wy | Wey2z | oo | wag—a | wag
“k| —k+1]...] -2 | -1 1 2 | k=11 &

8
Let t = 0. The method is almost the same as before, i.e. consider the followi(ng
U= (ug,..c tp): Fy#k+1thenlet uj=1,uy41-;=1,u;,=0if s # j5,—5.
If = k+ 1 then let ug4y = 1 and u; = 0 ifi #k+ 1 If r = (z;z;-1), where
2< 37 <n,then f(U) =1 while f(r(U)) =
~ " Now, we construct a threshold functlon gg for an arbltrary partition C of an
arbitrary ordered set X of variables. Denote now by ~* the equivalence relation
on X defined by C. First, suppose that C is convex. Let 1;,...,1; denote the
number of elements of the blocks of C, respectively. Consider the ngld function f
of | variables that is defined in (7) or (8) dependmg on the parity of I. Take the
weight w; 1; times, the weight w; i3 times and so on in order to define a threshold
function g of n = ¢; + 3 + ...+ 3; variables. Variables of g with the same weight
are permutable. However, transposltlons o of form (z;x;_,), where 2 < 7 < n and
J #* 7 — 1, are “forbidden” for g because if we consléer the correspondmg U and
construct a Boolean vector V' of dimension n from U by rewriting it in the following
way: instead of u,, (m = 1,...,1), write 0 i, times, whenever u,, = 0; and write
1 (once) then 01, — 1 times otherwnse, then we shall get a Boolean vector V' of
dimension n, for which g(V') = 1 while g(c(V') = 0. If C is not convex, the only thing
we have to do is to reindex the variables 1n order to get a convex partition. After
constructing a threshold function for the rearranged variables with the procedure
described above, put the original indexes back and the desxred threshold function
is ready. Theorem is proved.
" The invariance group Gp of an arbltra.ry Boolean function is not necessarily of
the form

(9) Gp = 8;, X...% 8.

For example, let h be the following: h(zy,...,z,) = 1 iff there exists ¢ such that

=121 =1,2z; =0if  #4,4+1 where @ means addition mod n. The
invariance group of h contains the cycle (%1,...,%n) and its powers but it does not
contain transpomtlons of form (z;zi41).

However, there exist Boolean functions with invariance groups of the form (9),
which are not threshold functions.

Permutable variables of a threshold function does not mean equal weights. Here
is an example: h(a:?x = 212324V Z3z4. This is a threshold function with the following
weights, and threshold value:

w | wy |ws | wg |t
1 2 3 4 |7

The transposition (z;z;) is “permitted” but the others are not.

But the weights can always be chosen to be identical for variables belongmg to
the same equivalence class. If the j-th class C; = {Zi, is+...4ij_141s -+ s iy 4is )
. iptigt..di; Footwi gy
by te notation of (5), then let wy, =Tttt ’_l:; Saslit Uy Replace
Wiy tatotii—1+1s -0y Wiy 4445 by Wi, Since Tiytiat.Hijm1+lre oo Tigdo+i;
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are from the same equivalence class, for fixed =z, ...,z,+.i;,_, and
Tiy4ij+1re -+ Tiy4.ip o the fact that W(X) exceeds t (or not) depends only on
the number r of 1-s among the coordinates z;, +i,+...4i;_y+1,- -+ Tiy +...+i;; MOre-

over, W(X) has a maximum (minimum) if we put all our 18 to places with the
greatest (smallest) weights possible. Obviously

Wit i1t W G 14
r

< wy)s

moreover,
wi;+...i_,-—r +...+ Wy, +..45

r

wjy) <
Hence
Witodeoa bt t oo P Wi e ST S Wi et W

Consequently, after replacing w;; 4454...44;_,+1s- - - » Wiy +...4i; DY W], we still have
the same threshold function.
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