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On isomorphic representation of 
nondeterministic tree automata* 

B. Imreh * 

Abstract 
In this paper we deal with isomorphically complete systems of finite non-

deterministic tree automata with respect to the general product and the cube-
product. In both cases characterizations of isomorphically complete systems 
are presented which imply that the general product and the cube-product are 
equivalent regarding isomorphic completeness. 

In the theory of finite automata it is a central problem to characterize such 
systems from which any automaton can be represented isomorphically or homo-
morphically under a given composition. Such systems are called isomorphically, 
respectively, homomorphically complete with respect to the composition consid-
ered. FVom the practical point of view, finite complete systems have great impor-
tance. The first composition admitting finite isomorphically complete systems was 
introduced by V. M. Glushkov in [71, who gave a characterization of the isomor-
phically complete systems. Later F. Gécseg [2] introduced a product hierarchy, the 
»¿-products, t = 0,1, . . . , and Z. Ésik [1] proved that, from the point of view of ho-
momorphic completeness, Glushkov's composition is equivalent to the »¿-product 
for t > 2. Regarding isomorphic completeness, it turned out that there is no finite 
isomorphically complete system with respect to any of the Qj-products. A system-
atic account of the results on »¿-products including the ones mentioned above can 
be found in the monograph [3]. 

The first generalization of Glushkov's result to tree automata was given by M. 
Steinby in [10]. The generalization of the notion of finite automata to trees has a 
rigorius mathematical discussion in [6]. Another generalization of Gluskhov's result 
to nondeterministic automata is given in [4]. In this paper we extend this result 
to nondeterministic tree automata. Namely, we define the Glushkov-type product 
of nondeterministic tree automata and characterize the isomorphically complete 
systems with respect to this composition. Our characterization implies the existence 
of finite isomorphically complete systems of nondeterministic tree automata with 
respect to this product. 

The cube-product, which is a simpler composition than Glushkov's one, was 
introduced in [8] where a characterization of the isomorphically complete systems 
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with respect to this product was presented as well. From this characterization 
it follows that the Glushkov-type product and the cube-product are equivalent 
regarding isomorphic completeness. 

The generalisation of the cube-product to tree automata and the characteriza-
tion of the isomorphically complete systems with respect to it is given in [9]. A sim-
ilar generalization and characterization for nondeterministic automata is presented 
in [5]. In both cases the characterization of the isomorphically complete systems 
implies that the Glushkov-type composition and the cube-pruduct are equivalent 
regarding isomorphic completeness. Here we generalize the cube-product to non-
deterministic tree automata and give a characterization of the isomorphically com-
plete systems with respect to it. Our characterization shows that the cube-product 
and the Glushkov-type product are equivalent regarding isomorphic completeness 
for the class of nondeterministic tree automata, too. 

To start the discussion, we introduce some notions and notations. By a set 
of relational symbols we mean a nonempty union E — E i U ^ U " - ! where E m , 
m = 1,2, . . . , are pairwise disjoint sets of symbols. For any m > 1, the set E m 
is called the set of m-ary relational symbols. It is said that the rank or arity of a 
symbol < 7 € E i s m i f < r € E m . Now let a set E of relational symbols and a set R of 
positive integers be given. R is called the rank-type of E if for any integer m > 0, 
E m ^ 0 if and only if m € R. In the sequel we shall work under a fixed rank-type 
R. 

Now let E be a set of relational symbols with rank-type R. By a nondetermin-
istic H-algebra A we mean a pair consisting of a nonempty set A and a mapping 
that assigns to every relational symbol <r 6 E an m-ary relation aA C Am, where 
the arity of a is m. The set .A is called the set of elements of A and aA is the real-
ization of a in A. The mapping a —» aA will not be mentioned explicitly, we only 
write A — E). For any m 6 R, a S E m , ( o i , . . . , o m _ i ) e we denote by 
( o i , . . . , am-i)<rA the set {o : o 6 A & <rA (a i , . . . , a m _ i , a)}. If ( « i , . . . , am-i)aA 

is a one-element set {a} , then we write ( o i , . . . , am_i)crA = a. 
It is said that a nondeterministic E-algebra A is finite if ¿4 is finite, and it is 

of finite type if E is finite. By a nondeterministic tree automaton we mean a finite 
nondeterministic algebra of finite type. Finally, it is said that the rank-type of a 
nondeterministic tree automaton A — (A, E) is R if the rank-type of E is R. 

Let A = [A, E) and B = (B, E) be nondeterministic tree automata with rank-
type R. B is called a subautomaton of A if B C A and, for all m € R and a S E m , 
aB is the restriction of aA to Bm. A one-to-one mapping fi of A onto B is called 
an isomorphism of A onto B if oA(a\ am) if and only if aB ( / i (o i ) , . . . , / i (am)) , 
for all m £ R, ( o i , . . . , o m ) € Am, a 6 Em . In this case it is said that A and 
B are isomorphic. It is easy to see that fi is an isomorphism of A onto B if and 
only if ( o i , . . . ,am-i)aAfi = (/i(a1),...,Ai(am_i))crB holds, for all m € R, a e E m , 
(o1,...,am_1) e Am~K 

Now let us denote by Ua the class of all nondeterministic tree automata with 
rank-type R. A composition of nondeterministic tree automata from il R can be 
represented as a network in which each vertex denotes a nondeterministic tree 
automaton and the actual relation of a component automaton may depend only on 
those automata which have a direct connection to it. 

In order to define this notion of composition let X) denote an arbitrary nonempty 
fixed set of finite directed graphs. We assume that the vertices of any graph in V 
having n vertices are denoted by the numbers 1 , . . . , n. Let A = (A, E) 6 llji and 

€ Ur , j = 1 , . . . , n. Furthermore, take a family ty of mappings 
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$nj:(A,x...x4)m-1xEB^i:W meB, l < j < n . 

It is said that the nondeterministic tree automaton A is a®-product of the automata 
Aj, j = 1 , . . . , n, with respect to ¥ if the following conditions are satisfied: 

(i) a = IIUa> 

(ii) there exists a graph D = ( { 1 , . . . , n}, E) in 3) such that for any m € R, 
j 6 { l , . . . , n } and ( ( a U ) . . . ) o i „ ) , . . . , ( o m _ i i a m _ i „ ) ) e A m _ 1 , the 
mapping Vlmj is independent of the elements (H,,t = 1 , . . . , m— 1, if (a, j) & E, 

(iii) for any m 6 Í , a 6 E m and 

((<»11 <*ln) ( O m - l l i • • • I °m—In) ) € Am~l, 

((<»11» • • • , Oln) ( « » m - l l i • • • I a m - i n ) ) ( T A = 

( a i i . - . - . a m - i i ) ^ ? 1 X . . . X ( a 1 „ , . . . , a m _ l f l ) < T ^ 

where 

<Ty = ^,»>((<»111 •• a l n ) > •• •> ( a m - l l , • • • I a m - l n ) | f ) i j = 1, . . . , n . 

We shall use the notation 
n 

i-1 
for the product introduced above. In particular, if Aj, j = 1 , . . . , n, are identical 
copies of some nondeterministic tree automaton B, then we speak of a general power 
and we write S"(E, D) for I]"=i £)• 

Let 33 be a system of nondeterministic tree automata from 11 R. It is said 
that 03 is isomorphically complete for UR with respect to the V-product if any 
nondeterministic tree automaton from IL R is isomorphic to a subautomaton of a 
$ -product of nondeterministic tree automata from 03. 

In the sequel we shall need a special two-state nondeterministic tree automata. 
For every m G R, let us assign a symbol to each m-ary relation on {0,1}. Let E m 
denote the set of these symbols and let £ = UmEfl Define the nondeterministic 
tree automaton Q = ({0,1}, 2 ) such that, for every m e R and a € £ m , is the 
corresponding m-ary relation. 

Now let V be the set of all finite directed complete graphs having as vertices the 
sets {1, . . . , n } , n = 1,2 Then the V -product is equal to the Glushkov-type 
product which is also called general product. We note that in this case the finite 
directed complete graphs are considered as possible networks. Since n determines 
the corresponding complete graph uniquely, we omit the graph component from 
the notation of the general product. 

Regarding the general product, the following statement can be proved easily. 
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Lemma. Let A = ( A , E ) G Xy = ( A y , E<J>) G i l « , j = 1 n, and 
Bit = ( B y t , E ( , < ' ) G UR, t = l , . . . , t ' y , j = 1, ...,n. If A is isomorphic to a 
subautomaton of a general product Ily=i an^> for eac^ 3 e Oi • • • >n)' 
is isomorphic to a subautomaton of a general product fltsi then A 
is isomorphic to a subautomaton of a general product of the nondeterministic tree 
automata Syt, t= 1 , . . . ,ty, j = 1 , . . . , n. 

The following theorem provides necessary and sufficient conditions for a system 
of nondeterministic tree automata from U^ to be isomorphically complete for lift 
with respect to the general product. 

Theorem 1. A system ® of nondeterministic tree automata from is iso-
morphically complete for UR with respect to the general product if and only if, for 
all m G R and i = ( ¿ i , . . . , » m ) G \0, l } m , ® contains a nondeterministic tree 
automata A = (A'1 ' , E'1 ') satisfying the following conditions: 

(1) A& has two different elements Oq^ and aft, 

(2) there exists a 9} G with (aj a ' ^ J ^ flrfUP} = {*£}. 

(3) for all u G R and B = ( s i , . . . , s u _ i ) G {0, l } " - 1 , there is a aj B G e(,1) for 

which {al^.al1'} C (oii',..., ai^.i)^!1' provided that u / 1, and there is a 

at G E p with { a ^ ' . a ^ } C a.**"' if 1 G R and u = 1. 

Proof . In order to prove the necessity, let us suppose that B is an isomorphically 
complete system of nondeterministic tree automata for Ur with respect to the 
general product. Then there are AJ = ( A y , G Ur, J = 1, . . . , n , such that § 
is isomorphic to a subautomaton A = (A, 2) of a general product Ily=i 
Let /i denote a suitable isomorphism and let 

M(0) = (ooi i " - .oon) and a»(1) = ( a 1 1 , . . . , o l n ) . 
Let us denote by K the set {A:: 1 < k < n &i ao* ^ aifc}- Obviously, K ^ 0. Now 
let 

m G R and (t'i, < * > ,t'm) G {0, l } m be arbitrarily fixed elements. We distinguish 
two cases depending on m. 

First let us suppose that m / 1. By the definition of Q, there is a 9 G £ m with 
(»x,.. .,im-i)9& = im. Since n is an isomorphism, this yields 

( f i ( i 1 ) , . . . , / l ( i m - i ) ) 9 A = M ( » m ) . 

Therefore, Ojmfc G ( a , - , . . . , * holds, for all A: G K, where 

9k = ^mfcUaiji, • • • >a»,n)i • • • i ( ^ „ - i i i • • • >Oim-inli 
But then there exists at least one index I G K such that 
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Now let 1 ^ u e R and 8 = ( s i , . . . , a „ - i ) € {0 ,1 } U _ 1 be arbitrary. By the 
definition of Q, there exists a <r8 G S u with (a i , . . . , au_i)<7g = {0,1}. Since p is 
an isomorphism, this implies 

{m(0),M(1)}. 

Then {a0fc, a ^ } C ( a , ^ , . . . , a , ^ ^ ) ^ holds, for all A; G i f , where 

fs . fc = ^ u f c ( ( o . , l , • • • I « ( , n ) ( a « . - i l . • • •) <*t*- in) ,<7s)-

Therefore, {oo/ ,ou} C (a , , / , . . . , o«._ li)a8,'c If 1 £ and u = 1, then, by the 
definition of there is a a* e £ i with a* = {0,1}. But then a*A = (/i(0), /x(l)}, 
and so, {a0fc,aifc} C a*Ak, for all k 6 K, where tr^ = iik((7*). Thus {ooi ,ou} C 
<r^Al. This ends the proof of the necessity in the case m / 1. 

Let us assume that m = 1. By the definition of Q, there is a 9 e with 
= t*i. But then 9A = /¿(t'i). Therefore, a^fc € is valid, for all k 6 K, where 

9k = From this it follows that there exists at least one I e K such that 

Now let u 6 R and a = ( « i , . . . , s u - i ) £ {0, l } " - 1 be fixed arbitrarily. In a similar 
way as above, it is easy to see that there is a aB<i € £ „ ' such that {a0(, an} C 
(a , , / , . . . , a4._,i)(7g'( if u / 1, and there is a trj € E ^ with af A ' = (0,1} if u = 1. 
This ends the proof of the necessity. 

In order to prove the sufficiency, let us suppose that 03 satisfies the conditions 
of Theorem 1. The isomorphic completeness of <8 is proved in two steps. 

First we show that Q is isomorphic to a subautomaton of a general product of 
nondeterministic tree automata from 03 . For this reason let us denote by W the set 
|Jmeyj{0, l } m and let \W\ = n. Moreover, let -F denote a one-to-one mapping of 
the set { 1 , . . . , n} onto W. By our assumption on 03, for any / e { l , . . . , n}, there 
exists an yfW») = ( a M H . E M H ) e 03 satisfying conditions (1), (2) and (3) with 
i = 1 (j) . Form the general product Ily=i (£, i ' ) in the following way. 

Let A = { ( a ^ » . . . . . « ^ ) ^ * ! ) ) fl(,W>)}. Since a(,(/)) ^ a( , ( i))| 
J — 1 , . . . , n, we obtain that = 2. Let us define the mapping FI of {0,1} onto A 
by 

M(0) = ( a ^ 1 " 8 < l W 1 ) and M(1) = ( a ^ 1 » a™"»). 

Now let 1 / m G R, a G £ m , (a| t7 (1) ),..., a ^ 1 ) G A, t = 1 , . . . , m - 1, be 
arbitrarily fixed elements and let i* denote the vector (t ' i , . . . , t m _ i ) . Then, for any 
j G { l , . . . , n } , let 
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* n (w (-T(l)) 
»1 ' 

7 id) 
7*»(j).i* 

fiU) 

• > *m 

) (•£?.". = 

if I V 5 = tm and 7( j ) = (t'x,. 
if VaS = tm and 7 ( j ) (n , . 
if i * ^ = {0,1}, 
if I V * = 0 and (7(7) = ( i t , . . 
or l(j) = (*li • • • 1 *m—li l))i 
i f i V « = 0 and 7 ( ; ) / ( » ! , . . . 

and 1 ( j ) ^ ( » i > - > * m— 11 *•)• 

• , » m - l , 0 ) 

, » m _ l , 0 ) 

In all other cases when 1 / m 6 R, let the value of be an arbitrarily fixed 
element of Em' ' " . 

If 1 € R and m = 1, then the mappings VIJ, j = 1 , . . . , n, are defined in the 
following way. For any a G £1, let 

= 

i f f f 5 = » ' i and 7( j ) = (n), 
if a9 = t'i and 7 ( j ) ± (t'i), 
if <r9=0 and (7 ( j ) — (0) or 7( j ) = ( l ) ) , 
otherwise. 

Now consider the subautomaton A = (A, E) of the general product 
Ily=i which is determined by the set A. It is easy to show that /i 
is an isomorphism of Q onto the subautomaton A. 

As a second step, we prove that an arbitrary nondeterministic tree automaton 
from is isomorphic to a subautomaton of a general power of For this rea-
son let C = iC, E) € llfl be arbitrary with C = { c i , . . . , c r ) . Let us take all the 
r-dimensional column vectors with components 0, 1, and order them in lexicograph-
ically increasing order. Let Q' r) denote the matrix formed by these column vectors. 
Then Q'r> is a matrix of type r X 2r over {0,1} and its row vectors are pairwise 
different. Moreover, let us observe that for any subset V of the set { l , . . . , r}, there 
exists exactly one index k £ { l , . . . , 2 r } such that for all t e { l , . . . , r } , t e V if 
and only if = 0. Let us define the one-to-one mapping v of { c j , . . . , c r } onto 
the set of the row vectors of by f(c<) = . . . , g,-^), * = 1, . . . , r . Let 
A = (i/(c,) : » = l , . . . , r } . Then A C {0,1}2\ Now we define the general power 
Q2 (E, i ) in the following way. 

Let 1 ^ m € R, a € E m , (gf'j,- • •, £ A, t = 1 , . . . , m — 1, be arbitrary 
elements. In this case f(c,-t) = (gj^j, • • •, g j^ ) ) * = 1 — 1. Let us suppose 
that ( C i l , . . . , c im_, )ac = { C < 1 , . . . , c „ }. Then 0 < I < r. For each j € { 1 , . . . , 2 r } , 
let us denote by Vy the set { g ^ . , . . . , 9^]}. Obviously, Vy C (0,1}, j = 1 , . . . , 2r. 
Thus, by the definition of Q, there exists a <7y S £ m with (<7,-'y,..., 9<^_1y)°'y = Vr 
Let us define the mappig '9m)- by 

» M » 
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In all other cases when 1 ^ m e R, let the value of be an arbitrarily fixed 
symbol from £ m . 

If 1 6 R, a € Hi, j € { l , . . . , 2 r } , then the mappings ¥iy, j = l,...,2r, are 
defined as follows. Let us assume that ac = \ctl,... ,c„} and define the sets Vy, 
j — 1 , . . . , 2r, in the same way as above. Again, by the definition of there is a 
a*- € Si with a*9 =Vj. We put 

Now let us consider the subautomaton A = (A, E) of the general power 
£ 3 ' (E , ¥). Then it is easy to see that v is an isomorphism of C onto A. By 
our Lemma, the above isomorphic representations imply the sufficiency of the con-
ditions which ends the proof of Theorem 1. 

Remark. If R = {2}, then li{2} is the class of all nondeterministic automata. 
In this case our theorem gives a characterization of the isomorphically complete 
systems for the class of nondeterministic automata with respect to the general 
product. Therefore, Theorem 1 in [4] can be obtained as a corollary of our theorem. 

In [8], n-dimensional hypercubes are used as possible networks. Now we de-
fine the product related to these networks for nondeterministic tree automata and 
characterize the isomorphically complete systems with respect to this product. 

To introduce the formal definition of cube-product we need some preparation. 
Let n > 2 be an arbitrary integer and consider the n-dimensional hypercube. The 
set of vertices of this hypercube is Sn = {0,1}" . Define the mapping An on this set 
as follows: for any vector (si s„) G Sn, let 

n 
A„(« ! , . . . ,< „ ) = 1 + 5 3 « t •2№~l. 

« = i 

Then A„ is a one-to-one mapping of Sn onto the set { 1 , . . . , 2 n } . 
Let us form the graph Dn = ( {1 , . . . , 2"} , 2?„), where for any 1 < i,j < 2", 

(t,y) £ En if and only if A~1 (t) is adjacent to A~1(j). For any j € {1,...., 2 n } , let 
us denote by the set of all ancestors of j in Dn. Then C { 1 , . . . , 2 n } . 

It is easy to see that for any n > 2 and integer j > 1, 
(4) |jj.B)| = n i f l < i ' < 2 » , 

( 5 ) J ( - + i ) = / ^ ) u 0 > 2 - } i f l < y < 2 - , 
3 \{l + 2n:le J ; " , 2 » } u { y - 2 n } if 2n < y < 2n+1. 

Now let n > 2 be an arbitrary integer and let A = (A, E) € l is , A}- = 
(Ay, E^^) 6 UR, y = 1 , . . . , 2". In addition, take a family ¥ of mappings 

tfroy:(AiX,...,xA2.)m-1xEm^E£\ me R, l<j<2n. 

It is said that the nondeterministic tree automaton A = (A, E) is a cube-product 
of Aj, j = 1 , . . . , 2", with respect to ¥ if the following conditions are satisfied: 
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W A = 

(b) for any m 6 R, a £ E m and (o j j , . . . , a,-2») 6 IIy=i >* = 1» • • •»m — 1» the 
mapping is independent of the elements at,, t = 1 , . . . , m— 1, if a ^ Jj"\ 

(c) for any m 6 i , a £ E m and ( (an , . . . , o i 2 » ) , . • •, (om-xx, • • •, Om-12»)) G 
Am~l, 
( (an, • • • 1 «12») (orn-11 am_i2»))cr* = 

(®lli • • • , " m - x x j ^ i 1 X . . . X (012», . . . , am_i2»)<T2»" > 

where 

<ry = i m y ( ( o n , . . . ,012»), . . . , ( a ^ - i i . . . . ,o m _ i 2») ,o , ) ) j — 1 , . . . , 2". 

2* 
Since n determines the hypercube uniquely, we use the notation 11/= 1 ^/(^i for 
the cube-product just introduced. 

Now we are ready to prove the following statement. 

Theorem 2. A system ® of nondeterministic tree automata from Ur is iso-
morphically complete for with respect to the cube-product if and only if, for all 
m £ R and i = ( » i , . . . t m ) € {0, l } m , ® contains a nondeterministic tree automata 
/{W = (A'1 ' , E'1 ' ) satisfying the following conditions: 

(6) has two different elements a^,1' and a^, 

(7) there exists a aj £ with ( o f f , . . . , a g j a ^ ' a ? } = { a g } , 

(8) for all U £ R and B = (ai , . . . , « „_ i ) € {0 ,1 } U _ 1 , there is a <tj g € E^ 

for which (a^1', a'j1'} C (a i ' ' , . . . , provided that u / 1, and there tj 

a? £ E ^ with { a ^ . a p } C aTA(1) if 1 £ R and u = 1. 

Proof . The necessity follows from the proof of Theorem 1. In order to prove the 
sufficiency, let us denote by W the set Umeie{®>^}m an<^ W = X(»i, - - • > *m) : 
(t'i tm ) G W ic im = 0). Let = n and let 7 denote aone-to-one mapping of 
the set {1 n} onto W. Then, by our assumption on © , for any p £ { l , . . . , n), 
there exists a nondeterministic tree automaton = (.A^^)', £ <8 
satisfying conditions (6), (7) and (8) with i = ( t i , . . . , t m ) = l(p), where t m = 
0. For the sake of simplicity, let us denote by 0, 1 the elements ag1^^, 
respectively, for all p £ { 1 , . . . , n}. 

Now consider the matrices Q' f c ' , k = 2,3,. . . , introduced in the proof of Theo-
rem 1. In our argument we make use of some properties of these matrices. First 
let us observe that 
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(9) Q(fc+1) = (q°) Qw) 

where 0 and 1 denote the costant vectors of size 1 x 2 * with components 0 and 1, 
respectively. On the other hand, it can be seen (cf. [8] or [9]) that 

(10) for any A; > 2 and 1 < j < 2k, the k + 1-tuples (¿J*, g j j j , . . . , qjV), 
t = 1 , . . . , k, are pairwise different where { / i , . . .,]k} = J^ • 

Now using (5), (9) and (10), it is easy to see that 

(11) for any Jb > 2, k > s > 1, 1 < j < 2k, the Jfc-tuples (qltV,..., 
t = 8 + 1 , . . . , k, are pairwise different where { j i , . . . , jk} = J^. 

Now let C = ( { c i , . . . , c r } ,E ) be an arbitrary nondeterministic tree automaton 
from UR. We prove that C is isomorphic to a subautomaton of a cube-product of 
nondeterministic tree automata from 03 . 

For this purpose, let us denote by s the least positive integer with n < 2". Let 
k = r + 8. Delete the first a rows of Q W . Then, by (9), the resulting matrix 
consists of 2* copies of Q ' r ' in its partitioned form. Let Q denote this matrix. For 
the sake of simplicity, let us denote by qi}-, t = 1 , . . . , r, j = 1 2fc, the elements 
of Q. Then from (11) it follows that 

(12) for any 1 < j < 2h, the fc-tuples (qt}l,..., qt)k), t = 1 , . . . , r, are pairwise 
different where = {ji, • • •, jk}-

Let us define the one-to-one mapping ft of { c i , . . . , c r } onto the set of the row vectors 
of Q by n(ci) = qi2k), i = 1 , . . . , r, and let B = {/i(c<) :»' = 1 , . . . , r} . 

Form the cube-product 
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;J(T(1)) X . . . X yjW1)) X . . . X ^("»("M X . . . X >ji"»(n)) X 
2 ' time» 2r times 

X ¿t^t1» X X Allll)\{i:, 
2*-n2' *i«nes 

in the following way. Observe that 
BCA = 

= A^ 1 » x ... x A^ 1 » x . . . x A^<">) x ... x A ^ " » x A^ 1 » x ... x A«"»«1» . .. ' > •• N -. ' 

Now let 1 ji m € R, a e S m , ( f c . j , . . . , qit2k) <= B, t = 1 m - 1, be 
arbitrary elements. Then /¿(c,-,) = . . . ). t = 1 , . . . , m — 1. Let us assume 
that (ci4 c,m_,)ff c = { c „ , , . . . ,c0 ( } . Then 0 < I < r. By the structure of Q, 
there exists exactly one integer d S { 1 , . . . , 2 r } such that for each p € { 1 , . . . , 2*}, 
the following assertion is valid: 

for all t e (1 , . . . ,r} , 9t,(p-i)2'+d = 0 if and only if t € {t>! t>j}. 
On the other hand, let us observe that the column vectors of Q with indices (p — 
l)2r + d, p — 1, . . . ,2*, are identical copies of some r-dimensional vector over 
{0,1}. Therefore, the vectors (^„(p-ija'+d 9im_1.(p-i)2'+<i)i P = 1 . - . 2 ' , 
are the copies of an (m — l)-dimensional vector (¿ i , . . . , i ' m - i ) over {0, l } . Now let 
i = (*'i> • • • i*m_D 0). Since i 6 W', there exists one and only one po e { l , . . . , n } 
with Tf(po) = i- Let jo = (po - l)2r + Then for each j e { 1 , . . . , 2fc}, the mapping 
¥my is defined by 

*my((9ul, • • • . 9ii2fc)i • • •»(ftm_, l, • • •. <Hm.l2>'), <?) = 

In all other cases when 1 ^ m £ i , ¥my can be defined arbitrarily in accordance 
with the definition of the cube-product. 

Now let us suppose that 1 6 R. Let a £ Ei be arbitrary and ac = { c 0 l , . . . , cvi}. 
Then there exists again exactly one integer d 6 { 1 , . . . , 2 r } such that the following 
statement holds for each p 6 { 1 , . . . , 2 ' } : 

for all t e {1 , . . . , r } , gt,(p_i)2'+d = 0 if and only if t e { u i , . . . , « ( } . 
In this case (0) G W', and so, there is one and only one po € { l , . . . , n } with 
Tf(po) = (0). Let j0 = (po ~ l)2r + d. For each j e {1,..., 2fc}, let us define the 
mapping i i y as follows. 

2r times V times 2*-n2r times 

m— 1 

if j = jo, 
) if j Jo and (p - l )2 r < j < p2' 

for some p € { l , . . . , 2*} . 

if J = JOi 
<T*M if j i jo and (p - l)2r < j < p2r for some p € { l , . . . , 2 ' } . 
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By (12), the mappings m e R, 1 < j < 2k, are well-defined. On the 
other hand, it is easy to see that the mapping P is an isomorphism of C onto 
that subautomaton of the defined cube-product which is determined by the set B. 
Therefore, ® is isomorphically complete for 11 R with respect to the cube-product. 
This ends the proof of Theorem 2. 

Remark. In the case R — {2} we obtain a characterization of the isomorphi-
cally complete systems for the class of nondeterministic automata with respect to 
the cube-product. Therefore, the main result of [5] can be obtain as a corollary of 
Theorem 2. 

Notice that the necessary and sufficient conditions stated by Theorem 1 and 
Theorem 2 are the same which gives us the following corollary. 

Corollary. A system of nondeterministic tree automata from Ur is isomor-
phically complete for 11 R with respect to the general product if and only if it is 
isomorphically complete for with respect to the cube-product. 
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