
Acta Cybernetics, Vol. 12, No. 1, Szeged, 1995

The Optimistic and Cautious Semantics for
Inconsistent Knowledge Bases

John Grant * V.S. Subrahmanian^

Abstract
We develop two alternative semantics, based on maximal consistent sub-

sets, for knowledge bases that (possibly) contain inconsistencies. The opti-
mistic (resp. cautious) semantics correspond to entailment in some (resp. all)
maximal consistent subsets. We develop a Kripke-style model theory corre-
sponding to these two semantics. We further extend these semantics to the
case when knowledge bases contain both explicit and nonmonotonic nega-
tion. Notions of stratification and stability are defined and studied for both
semantics.

1 Introduction
Databases and knowledge bases may be inconsistent for various reasons. For ex-
ample, during the construction of an expert system, we may consult many different
experts. Each expert may provide us with a group of facts and rules which are
individually consistent. However, when we coalesce the facts and rules provided
by these different experts, inconsistency may arise. Such an inconsistency may be
due to various factors such as a disagreement between experts, an error made by
an expert, or a misunderstanding between experts. In any case, we may be forced
to reason in the presence of an inconsistency. Classical logic is not adequate in this
situation because a single inconsistency makes all possible statements true, thereby
trivializing the whole knowledge base.

In a previous companion paper [8], we developed the so-called over-determined
(or OD) semantics for reasoning in inconsistent knowledge bases. However, OD-
semantics is not based on classical model theory: it allows models to make a state-
ment and its negation both simultaneously true. The semantic? we develop in
this paper takes the meaning of an inconsistent knowledge base to be the set of
maximal consistent subsets of the knowledge base. The optimistic semantics de-
duces all statements deducible from at least one maximal consistent subset. In the
scenario involving many experts, the optimistic semantics accepts all statements

'Department of Computer and Information Sciences, Towson State University, Towson,
MD 21204. E-mail: grant@midget.towson.edu.

* Department of Computer Science, Institute for Advanced Computer Studies, and
Institute for Systems Research, University of Maryland, College Park, MD 20742. E-mail:
vs@cs.umd.edu.

37

mailto:grant@midget.towson.edu
mailto:vs@cs.umd.edu

38 John Grant, V.S. Subrahmanian

that at least one expert can deduce and possibly additional statements deducible
from the knowledge of the experts that do not involve any inconsistencies. The
cautious semantics deduces those statements that are deducible from all maximal
consistent subsets. In the scenario involving many experts, the cautious seman-
tics accepts all statements that every expert can deduce and possibly additional
statements deducible from the knowledge of the experts that do not involve any
inconsistencies.

The organization of this paper is as follows: Section 2 contains the basic notation
and definitions. It also includes a specific example that motivates the semantics for
inconsistent knowledge bases. Section 3 provides the definitions and basic results for
optimistic and cautious entailment. In Section 4, a Kripke semantics is developed
for optimistic and cautious entailment and a fixpoint operator is presented for
optimistic entailment. In Section 5, stratification and stability are extended to our
framework, and their relationship is investigated. Section 6 contains a summary
and a discussion of related work.

2 Motivation and Example
We assume that the facts and rules of a knowledge base are expressed as clauses of
the form

Lq «— Sc... & Ln

where each X,, 0 < » < n, is a literal (positive or negative). Initially, only classical
negation (-<) is used, but in Section 5, non-monotonic negation (not) is added. A
clause of the above form is called a generally Horn clause. Note that a generally
Horn clause allows a negative literal in the head of a clause. A knowledge base is
represented in the form of a generally Horn program (GHP, for short), which is a
set, possibly infinite, of generally Horn clauses. A logical language £ generated by
a finite number of constant, function and predicate symbols (and infinitely many
variable symbols) is implicit in our setup. Throughout the paper, we consider ->-<A
to be synonymous with A, i.e. double negations are deleted. We use the notation
grd[P) to denote the set of all ground instances of clauses in P; in fact, usually we
will assume that a generally Horn program is already in ground form.
As usual, the symbol denotes semantic consequence, i.e. P |= L means that L is
a semantic logical consequence of P with respect to the semantics of classical two-
valued logic. In the next section, we will introduce two new notions of entailment:
l~3 for the optimistic semantics, and hy for the cautious semantics.
Next, we present a motivating scenario that exemplifies situations involving incon-
sistencies that arise in law enforcement agencies and in the judicial process:
Bill hosted a dinner at his house on Jan. 26, 1995. The party was attended by Al,
Carl, Dick, Ed and Tom. Tom had to leave during dinner because his daughter had
a medical emergency. After dinner, Bill went to the kitchen to prepare coffee. As
he did not return, Dick and Eld went to the kitchen where they found Bill strangled
to death. At the time of the crime:

• (Fl) Tom was in the emergency room of a hospital. His presence was recorded
by a surveillance camera belonging to hospital security.

• (F2) Bill was in the kitchen.
• (F3) Dick and Ed said they were talking in the living room.
• (F4) Al said he was alone in the bathroom.

The Optimistic and Cautious Semantics for Inconsistent Knowledge Bsises 39

• (F5) Carl said he was alone in the bathroom.

Furthermore,

• (F6) Bill's house has only one bathroom.

• (F7) A1 had been guilty of embezzling money from Bill's accounting firm.
• (F8) Carl was having an affair with Bill's wife. Bill was an intensely jealous

man.

Let us examine the story more carefully. First of all, the story contains a glaring
contradiction: A1 and Carl's stories conflict. This suggests that one of them is lying
and we may further suspect that the person who is lying is the murderer. For lack
of additional information, we are unable to determine which of them is actually the
criminal. In this situation, the police may well decide to forget about Dick and Ed
and look more closely at A1 and Carl. More fantastic scenarios are also possible:
A1 and Carl may have been in cahoots and killed Bill and then both lied so that
a convincing case could not be made against either of them. Alternatively, it is
possible that everybody (except Tom) is lying: A1 may have been in Bill's study
trying to steal documentary evidence of his embezzlement, while Carl may have
been in Bill's bedroom trying to get back his tie which he had left behind during
one of his previous soirees with Bill's wife. While this was going on, Dick and Ed
(both in cahoots) may have teamed up and killed Bill.
Whether one chooses to believe the above scenarios or not, one must admit that
each of them is possible, though some are perhaps more probable than others.
However, whatever version we choose to believe, we would all be agreed that the
general floor plan of Bill's house should be the same in all versions of the story.
Likewise, the fact that Bill was strangled is true in all versions. In other words,
in all versions of the story, certain facts are true. One may accept all these facts
as being "certain" or established. The different versions of the story would tell us
who to believe and who not to believe - in other words, they identify the suspects.
Presumably, Tom would not be a suspect.
A formal logical description of the scenario is given in the Appendix. The
cause of the inconsistency in the above example is the set of sentences Cause —
{13,14,15,16,17}. Maximal consistent subsets may be obtained by dropping any
one of these clauses.

3 Optimistic and Cautious Entailment
Suppose P is a GHP. We say that the success set of P, denoted SS(P) is the set
{L I L is a ground literal such that P (= L}. Note that as P is a first order theory,
p= denotes standard semantical consequence in first order logic.

Example 3.1 Suppose P is the GHP:

P

- "? — P
r*-q

Then SS(P) = {p, -iq}. Neither r nor ->r is in SS(P). In particular, non-monotonic
inference rules such as negation as failure and/or the closed world assumption are
not used here because negation is represented explicitly.

40 John Grant, V.S. Subrahmanian

A set Q C P (where P is a G H P) is said to be maximal consistent iff Q is consistent,
and there is no consistent program Q' such that Q C Q' C P.

Theorem 1 Every GHP P has at least one maximal consistent subset.

Proof . P has at least one consistent subset, viz. the empty set of clauses. Let
CONS(P) be the set of all consistent subsets of P. We show below that every
ascending chain of elements in CONS(P) has an upper bound in CONS(P). The
result then follows from Zorn's Lemma.
Suppose Si C S-2 C 53 C • • • is an ascending sequence of members of CONS(P),
i.e. each Si is a consistent subset of CONS(P). Then S = (J™ j 5,- is an upper
bound for this ascending sequence. Moreover, S is consistent, i.e. 5 G CONS(P).
To see this, suppose S is not consistent. Then, by the Compactness Theorem, there
is a finite subset 5 ' C S such that S' is inconsistent. Let S' = {h, • • • ,1n} for
some integer n. Hence, for each 1 < t < n, there is an integer, denoted c*j such that
1i € •?<,(,). Let a = max{a 1 . . . , a n } . Then S' C Sa. Hence, as S' is inconsistent,
Sa is also inconsistent, thus contradicting our assumption that each S}-, j > 1, is
in CONS(P). •
Note that the above proof applies when P is any set of formulas, not just clauses.
Furthermore, the proof applies even if P is an infinite set of formulas.

Example 3.2 Suppose P and Q are the two programs listed below:

P Q
p — g P « - r
"•p < — " 7

Here, SS(P) = 0, while SS(Q) = {-ip,->r}. Note that Q (= ->r because (p V ->r)
and -<p yiela - r as a logical consequence.

Definition 3.1 Suppose P is a GHP, and F is a formula. We introduce1 two new
notions of entailment, denoted l~g,|-v below:

1. P hg F iff there is some maximal consistent subset P' C P such that P' f= F.

2. P by F iff P' |= F for every maximal consistent subset P' C P.

Example 3.3 Suppose P is the GHP below:
1 : p<-q
2 : ->p 4- q
3 : 1
Clearly P is inconsistent. P has three maximal consistent subsets, viz. Pi =
{ 1 , 2 } , P 2 = { 2 , 3 } , / V = { 1 , 3 } .
S S (PA =
SS (P2\ =
SS P3 = p.?}-

l We are grateful to Professor Newton da Costa for suggesting that I-3 entailment may
be a useful concept. The basic intuition behind hy entailment is not entirely new. The
idea of using maximal consistent subsets for hypothetical reasoning goes back to Rescher
[12] whose work was later adapted to artificial intelligence by Ginsberg [5]. However, the
technical properties of (-3 and hy entailment have not been studied carefully thus far and
this is one of the things we do in this paper.

The Optimistic and Cautious Semantics for Inconsistent Knowledge Bsises 41

Thus, P I-3 p, P hg -ip, P I-3 q and P hg ->g. There is no ground literal L such
that P hv L.

Let us try to get some intuition. In Kg entailment, we adopt an optimistic approach.
If P is inconsistent, then we say that L is true iff L is a consequence of some
consistent subset of P. However, hv is more cautious. It is not easily willing to
admit that anything is true. For us to conclude L using hv entailment, we must,
intuitively, find all possible causes of inconsistency. If, after eliminating the cause
of the inconsistency in all possible ways, it turns out that L is true in each scenario,
only then do we consider L to be true. Intermediate concepts of inconsistency may
also be devised such as the one in [9] where the concept of a "recoverable" literal
is used.

Example S.4 Consider the murder example of Section 2. Intuitively, a formula
is hv entailed iff it is true in all possible consistent scenarios. Thus, for example,
the fact that Bill was alive when dinner was finished is hv entailed by the evidence
because it is true irrespective of whose version of the evidence we choose to believe.
Likewise, the fact that Tom could not have been the murderer is clearly hv entailed
by the evidence.
On the other hand, for each person (except Tom) who had dinner with Bill that
night, there is a scenario in which he could be the murderer. Thus, hg entailment
allows us to conclude, for example, that Carl is the murderer.
In effect, we can use hg entailment in order to identify suspects, rather than to iden-
tify the murderer, hg entailment tells us who we may safely ignore as a candidate
murderer.

There is one feature of Example 3.3 that some readers may find curious. This
concerns hg: Here, P hg p and P hg —>p, but P l/g (p ic -ip). A brief discussion
of this is in order. Even though p is true in some maximal consistent subset of P
and likewise ->p is true in some maximal consistent subset of P, these two maximal
subsets are different. In fact, there cannot be a single consistent subset of P
in which both p and —>p are true. So even though P exhibits this kind of classical
inconsistency with respect of hg entailment, this inconsistency is not trivializing, i.e.
the existence of such an inconsistency does not cause all formulas in our language
to become hg entailed by P.
Formally, some of these properties may be stated below:

Proposition 3.1 Suppose P is a GHP. If P is consistent, then the following sen-
tences are equivalent for all ground literals L:

1. P\=L.

2. P hg L.

S. P h v L. •

Proposition S.2 Suppose P is a GHP (possibly inconsistent) and L,LI,L2 are
ground literals. Then:

1. » / F h g (Li kL2), then Ph3 h and P hg L2.

2. In general, P hg Li and P hg L2 do not imply that P hg (Li k. L2).

S. P hg F for all tautologies F of classical logic.

42 John Grant, V.S. Subrahmanian

Proo f . (1) Suppose P b3 (Li Si L2). Then there is a maximal consistent subset
Q C P such that Q (= Lx Si L2. Hence, Q ^ L\. Thus, P b3 h. Similarly for L2.
(2) Immediate from Example 3.3.
(3) Suppose F is a tautology of classical logic. Then F is a logical consequence of
the empty set, and hence F is a logical consequence of each consistent subset of P. •
The above proposition shows that the tautologies of classical logic hold with respect
to b 3 - entailment. Similar properties hold for by-entailment.

Theorem 2 Suppose P is a GHP, and L, Ltl L2 are ground literals. Then:

1. there is no ground literal L such that P by L and P by ~>L.

£. P b v [Lx Si L2) iff P b y Lx and P b y L2.

S. P by F for all tautologies F of classical logic.

Proo f . (1) Suppose P by L and P by ->L. Hence, for each maximal consistent
subset Q of P, Q \= L and Q (= ->L, which contradicts our assumption that Q is
maximal consistent. This means that there is no maximal consistent subset of P,
which is impossible by Theorem 1.
(2) Suppose P by (¿ i Si L2). Then Li Si L2 is a logical consequence of every
maximal consistent subset Q of P. Hence, each maximal consistent subset Q of P
has L\ and L2 as a logical consequence, i.e. Q by Li and Q by L2.
Suppose P by Li and P by L2. Then L\ and L2 are both true in every maximal
consistent subset Q of P, i.e. P by (L\ Si £2)-
(3) The proof proceeds along the same lines as the proof of Proposition 3.2(3). •
Example 3.5 Let P be:

P - 9 -<p+-q

r <—

1
In this case, P by r. But P l/y q and P l/y p and P l/y -1 q and P l/y -ip.

Thus, unlike b3 which can cause both L and -<£ (but never (LSi~<L)) to be inferred
from a program, by does not allow this. However, by allows very few conclusions
to be drawn. The following result is an immediate consequence of the fact that
CONS(P) is always non-empty.

Proposit ion 3.3 Suppose P is any GHP and L any ground literal. If P by L,
then P b 3 L. •

We now demonstrate b3 and by entailment on a simple example.

Example 3.6 Consider the program P below:
1: b<-a
2: -16 a
3: a*- c
4: a < -
5: c <-
There are four maximal consistent sets: Pi {1,2,3} ,P2 = {1,2,5} , P3 =
{1,3,4 5} and P4 = {2,3,4,5}. S S ^) = { - . a . - c } , SS{P2) = { - .a .c } ,
SS(P3) = {a,b,cj, 55(P 4) = {a,-i&,c}. The literals that are b3-entailed by P
are: {->a, ->c, c, a, b, —>6}. The set of literals by-entailed by P is 0.

The Optimistic and Cautious Semantics for Inconsistent Knowledge Bsises 43

In simple examples, such as Examples 3.3 and 3.6, for any two distinct maximal
consistent subsets Pi, and P2, there is usually a literal I such that I € S S (Pi)
and -<£ 6 SS(P2). The following more complex example shows that this need not
always be the case.

Example 3.7 Consider the set of clauses:

1: - p < -
2: -iq < -
3: p3 « -
4: 93 « -
5: qi < ipi Si ~tp2
6: 9i « - Pi Si ">P2
7: çi * 'Pi Si PQ
8: 92 Pi & ~~'P2
9: 9 2 < - - , P I & P 2
10: g2 < 'Pi Si ~1P2
11: pi -.gi Si ->q2

12: pi « - gi Si -ig2

13: pi « - -igi & g2

14: Pi*- qi Si -iq2

15: p2 « '91 Si 92
16: p2 *— ->qi & ->92
17: p *— plSip2Sip3

18: 9 <— 9i Si 92 & 93

There are several maximal consistent sets here. Let Pi = {1 , . . . , 16,17} and
P2 = { 1 , . . . , 16,18}. Pi and P2 are maximal consistent subsets of P. SS(Pi) =

'Pi ~ P 3 i 93.9i> 92}. SS(P2) = {-'P,-'9,P3, 93.P1.P2}- Note that there is no lit-
eral in SS[PI) whose negation is in SS(P

2
).

Before concluding this section, we briefly observe that the problem "Given as in-
puts, a GHP P, and a literal L, determining whether P by L" is Ilo-complete and
the analogous problem "Given as inputs, a GHP P, and a literal L, determining
whether P hg L" is ES-complete. The former is true because

o-
(((VQ C P)(Q is consistent & (VQ*)(Q c Q ' C P Q* is inconsistent)] Q \= L)

This is a problem because it involves a universal quantification over an NP-
complete problem (viz. checking the consistency of Q, and making a polynomial-
number of inconsistency checks of Q*). The E^-result for optimistic entailment
follows analogously, together with the observation that it involves an existential
quantification over the same NP-complete problem.

44 John Grant, V.S. Subrahmanian

Q 0 Q
Sj s2 Sn

Q
s s

(a) S inconsistent (b) S consistent

Figure 1: Graphical Representation of PK[S)

4 Kripke Semantics and a Fixpoint Operator
In this section, we develop a Kripke-style model theory for optimistic and cautious
entailment. We also develop a fixpoint operator for the optimistic semantics. We
assume that a GHP is a finite set of ground clauses. Given á GHP P, we use
D(P) to denote the set of all ground disjunctions of literals (including the empty
disjunction) expressible using the language of P.

Definition 4.1 An elementary structure of the language of P (e-structure, for
short) is any subset of D(P).

Definition 4.2 An e-structure 5 of a GHP P is said to be a consistent structure
(c-structure, for short) iff S has a model in the sense of classical logic.

Definition 4.S Suppose P is a GHP and S is an e-structure of P. The
paraconsistent Kripke structure (PK-structure, for short) based on S is a pair
(/r»i(S),£dge(S)) defined as follows:

1. If S is a c-structure, then Int(S) = { 5 } and Edge(S) = { (5 , 5) } .

2. If S is not a c-structure, then:

(a) Int(S) = { 5 } U { 5 ' | S' C 5 and 5 ' is a c-structure and there is no
J C S such that J is a c-structure and 5 ' C J}.

(b) Edge(S) = {(5, J) \ J € (/nt(S) - {S})} U {(J, J) \ J e (Int(S) - { 5 }) .

Figure 1 shows a graphical representation of PK(S). In Figure 1(a), Si,... ,Sn are
maximal c-substructures of S.

Example 4.1'Suppose P is a GHP written in the language consisting of three
propositional symbols p,g and ry and S is the e-structure {p, q^q}, then PK(S)
is the pair (IntiS), Edge(S)) where:

/ n i m = { 5 , { p , g } , { p , - g } }
Edge(S) = (the reflexive closure of { (5, {p, q}), (S, {p, - - i }) }) - { (S , 5) } .

The Optimistic and Cautious Semantics for Inconsistent Knowledge Bsises 45

Suppose £ is a first order language. We extend C to a modal language, denoted
£,U defined as follows:

1. Every wff of classical logic is a wff of CM.-

2. H F is a wff of CM, then OF and OF are wffs of CM- (Intuitively, O F is to
be read as *F is possible", while D f is to be read as °F is necessary".)

3. If F and G are wffs of CM, then F K G, F V G, ->F, F G, F *-* G and
(Vz)P and (3z)F are wffs of CM-

CM is interpreted by a PK-structure based on an e-structure S defined as follows:

Definition 4.4 Supposé S is an e-stnicture, and let E = (Int{S), Edge(S)) be
the PK-structure based on S. Let to € Int(S). Then we say that E, w satisfies F,
denoted E, to t-» F as follows:

1. If F is a wff of classical logic, then:

(a) (F an atom) E, w F iff F is a logical consequence of to
(b) (F = -¡G) E, w i-» F iff G is not a logical consequence of to (here, we

assume G is an atom)
(c) (F = G & H) E, to i-» F iff E, w >-> G and E, w <-> H
(d) (F = G V H) E,w F iff E,w G or E,w i-» H
(e) (F = G -* H) E, to t-*'F iff E, to H or E, w >/* G
(f) Satisfaction of formulas whose leading connective is a quantifier is de-

fined in the usual way.

2. Suppose F = Ç>G. Then E, to F iff for some to' such that (w,w') €.
Edge[S), E,w' t-> G.

3. Suppose F = OG. Then E, w (-• F iff for each to' such that (w,w') €
Edge[S), E, to' G.

4. Satisfaction of formulas whose leading connectives are conjuncts, disjuncts,
implications, iff, and the quantifiers are defined in the usual way.

Using the notion of a PK-structure based on an e-structure S, we may define the
model theoretic semantics of the logics corresponding to Hg and hy entailment.

Definition 4.5 Suppose F is a formula of classical logic and 5 is an e-structure.
Let E be the PK-structure determined by S. We say that

1. S |=3 F iff E, S i-» OF-

2. S>=v F iff E, S DF.

Suppose A is a set of formulas. S =̂3 A iff S =̂3 S for all S € A.

In order to show the equivalence of I-3 and (=3, we need a definition.

46 John Grant, V.S. Subrahmanian

Definition 4.6 Given a clause C =

D «- Li ic ... Si Ln

the disjunctive form of C, denoted diaj(C), is the clause:

D V - iX j V ••• V ->£„.

The disjunctive form, disj(P), of a GHP P is the set {disj(C) \ C € P).

Proposition 4.1 Suppose P is a GHP and D is a ground disjunction. Then:
<

1. P l-3 D iff P H D

2. P b v D iff P K D.

Proof . We prove (1) above, the proof of (2) is similar.
Suppose P bg D. Then disj(P) bg D. Hence, there is a consistent subset P1 C
disj(P) such that P1 f= D. Suppose now that I is an e-structure such that I f=g P.
Clearly, disj(P) C I and hence, P' C / . Extend P' to. a maximal consistent subset
of I. This maximal consistent subset of I must make D true;
Conversely, suppose P =̂3 D. Consider the e-structure disj(P). As disj(P) t=g P,
there is a maximal consistent subset /* C disj(P) such that D is true in I . Let
P' = /*. This completes the proof. •
Given a GHP P, we observe that P may entail a ground literal even though there
is no clause in P having an instance containing that ground literal as the head. To
see this observe that the program P below entails ->6:

a*—b
-1 a b

There is no clause in P with ->6 as the head. Now add the contrapositives to P.
-ib < 10 (contrapositive of first clause)
-ib a (contrapositive of second clause)
The expanded program is equivalent to the original program P. The addition of
contrapositives now yields a clause with -ib in the head.
Consider now the program Q below:

p < - o

p - 6

a 16

64 10

We would like to define a fixed-point operator which yields p as a consequence of
Q. Moreover, (a V 6) should also be a consequence of Q.
Based on the optimistic notion of entailment, we now develop a fixed point seman-
tics for bg-entailment. We start by observing that given a clause C, there may
be disjunctions, D, of literals that are logically entailed by the program P, but do
not appear in the head of C. The implicational form of clause C, defined below,
rewrites C in all possible disjunctive ways.

The Optimistic and Cautious Semantics for Inconsistent Knowledge Bases 47

Definit ion 4.7 Suppose C =

L *— Li K... SI Ln

is a clause. The implicational form, IF(C), of C is the set of clauses {L\ V- • vL'm «—
Body | { i ' i , . . . , LL} U K | K G Body} = {L, .., - . £ „ } and m > 0} . The
normal form, NF[P) of a generally Horn program P is then defined to be:

NF(P) = U IF{C).
cep

Note that disj{C) G IF(C) and disj(P) C NF(P). Given a ground disjunction D
and a GHP P, we use the notation sub(Z>, P) to denote the set {C \ C is a clause
in NF(P) such that the head of C subsumes D\. Thus, if D is not subsumed by
the head of any clause in NF{P), then s u b (D , P) = 0.

Definit ion 4.8 Suppose P is a GHP and 5 is an e-structure. We define an operator
that maps e-structures to e-structures. Let TAUT denote the set of all tautologous
clauses expressible in our language.
Vp(S) = TAUT U {D | s u b (D , P) ^ 0 and such that:

1. for all 1 < t < n, there exists a disjunction Ei (possibly empty) of ground
literals such that PK{S), S i - 0 (V ! = i (A " i i (£ y V E^)) where sub(I>, P) =
{ C i , . . . , Cfc} for k > 1 and each is of the form

Ci= D'i^LXSi-kL^

and

2. for all 1 < » < n, the smallest factor of (D[V Ei) subsumes D.

R e m a r k 4.1 When a GHP is a disjunctive logic program in the sense of Minker
and Rajasekar [11], (i.e. clause heads and clause bodies may contain no negated
atoms), our operator is essentially the same as that of Rajasekar and Minker. The
only difference is that in our case, the presence of subsumed clauses is explicit in
Vp(5) , while in the case of Rajasekar and Minker, it is implicit.

To see how Vp works, consider the following example.

Example 4.2 Suppose P consists of the following five clauses:

1: p «— q Si-iq
2: r *— p
3: r< 'p
4: q *—
5: -iq

(Note here that NF(P) contains more clauses, but these are not needed for this
example.) Let S be the e-structure {g, ->9}. Then the set of ground atoms in Vp{S)
is the set {9, —>9, r} . Let us explain two things: (1) why r G Vj^S) and (2) why

(l) Note that sub(r, P) = {2 ,3 } . In particular, using the notation of Definition 4.8,
we may assume the Ei's to be the empty clause. Observe that

P K (S) , S ^ O (p V -,p).

48 John Grant, V.S. Subrahmanian

To see this note that in this case, Int(S) = {5 , {9}, {~<9}}- It is easy to see that
p V ->p is true in both c-structures { i } , ! - 1 ? } that are accessible from world S.
(2) To see why p cannot be in Vp(S)| observe that the only clause with p is the
head is clause (1). The antecedent of clause (1) is a flat contradiction which cannot
be true in either {7} or {->g}.

Intuitively, the operator Vp is supposed to capture the notion of f=g entailment.

Example 4.3 Consider the consistent GHP P below:

p « - a
->p *— a

b >0
->a is a logical consequence of P, and hence b should be a logical consequence of P.
Here, NF(P) is the program:

1. p <— a 4. ->a >p 7. p V ->a *—
2. -ip 4— a 5. ->o p 8. ->p V —>a 4—
3. 6 4 a 6. a 4 >b 9. 6 V a 4—

The least fixed-point of Vp is constructed as follows:
VP t 0 = 0
Vp | 1 contains -<a , 6 V a together with tautologies and subsumed clauses
Vp f 2 contains b, Vp | 1, together with tautologies and subsumed clauses

«

We end this section by proving the soundness and completeness of the computation
captured by the fixed-point operator Vp.

Theorem 3 Suppose P is a GHP and D is any ground disjunction. Then D €
VP t w iff P h3 D.

Proof . We first show that if D & VP | w then P l-3 D.
Suppose D € Vp f u. Then there is an integer n < w such that D € Vp J n. We
proceed by induction on n.
Base Case, (n = 0) Trivial.
Inductive Case, (n = r + l) Suppose sub(Z>, P) = {Ci Cjt} where

Ci = D[*— L\k -• • Sl L*n..

Then, as D G V> J (r + 1), it follows that
k n,

PK(Vp t r), Vp T r ~ <>(V (A te v 30))
.=1 ,=1

where the 2?,'s are ground clauses (possibly empty). Let Mi,..., M, be the maxi-
mal c-structures that are subsets of Vp | r. From the above, we know that there is
a 1 < j < s such that My h-» (V L i i A y i i i ^ v •£.)))> and hence it follows by the
induction hypothesis that there is a maximal consistent subset P}• of P such that

The Optimistic and Cautious Semantics for Inconsistent Knowledge Bsises 49

Pj f= (Vi=i(A"ii(£. v Fi))). As Pj is maximal and consistent, it must also entail
D. Therefore, P h3 D.
To prove the converse, i.e. to show that if P hg D, then D € Vp J w, we proceed as
follows: As P hg D, there is a maximal consistent subset Q of P such that Q \= D.
This is classical logic entailment. Transform Q into a disjunctive logic program (in
the sense of Rajasekar and Minker [ll]) as follows: if

Ai V • • • V An V - .S i V >Bm Di k... k Dr k -<Ei k -k ->E,

is in D, then replace it by the disjunctive clause:
A\ V • • • V An V Ei V • • • V E, «- Bi k • • • k Bm k Di k... k Dr

The resulting program, called Q', is a disjunctive logic program in the sense of
Rajasekar and Minker and hence it has the same logical consequences as D. As the
Vp operator of ours is equivalent to that of Rajasekar's and Minker's for disjunctive
logic programs, it follows by a result of theirs that D € lfp{Vp) and hence D €
Vp f w .
This completes the proof. •

5 Stratification and Stability
So far, we have assumed that negation (the symbol -<) represents a "classical"
form of negation, i.e. in order to conclude ->A for some ground atom A, one must
explicitly establish the truth of -iA rather than reason from the lack of a proof of
A. However, it is now widely accepted that requiring the explicit specification of
negative information causes knowledge bases often to grow very large. However,
as argued by Gelfond and Lifschitz [7] and Kowalski and Sadri [10], in many cases
both classical and non-monotonic modes of negation are required. In this section,
we extend the optimistic and cautious semantics to incorporate non-monotonic
negation. Then we show how the concepts of stratification and stability can be
extended to this framework.

Definition 5.1 If L, Li,..., Ln, L'lt..., L'm are literals, then

L Li k ... k L„ fcnot L'xk ...k not L'm

is called an extended program clause. An extended GHP (called EGHP, for short),
is a finite set of extended program clauses.
Here, the symbol not denotes a non-monotonic mode of negation. As usual, we
deal with the set of all ground instances of clauses in an extended GHP. Now, we
extend the standard definitions of stability to deal with non-monotonic negation
using the optimistic and cautious semantics.

Definition 5.2 Suppose P is an EGHP and X is a set of ground literals. The
transformation of P w.r.t. X is the logic program G(P, X) obtained as follows:

1. if C is a program clause in P of the form
L *— Li k...k Lnk not Hik...k not Hm

such that for all 1 < t < m, Hi £ X, then
L *— Li k.. .k Ln

is in G(P,X).

50 John Grant, V.S. Subrahmanian

2. Nothing eke is in G(P, X).

Definition 5.S Given an EGHP P, we define two operators that map sets of
ground literals to sets of ground literals as follows:
AplX) = {V> I $ is a ground literal such that G(P, X) hy rf>}.
E/>(XJ = {V> f V> is a ground literal such that G[P, X) h3 rj>).

Definition 5.4 A set X of ground literals is

1. an A-answer set for EGHP P iff AP(X) = X

2. an E-answer set for EGHP P iff E/>(X) = X

In general, EGHPs may have sero, one or many answer sets. The notion of an
answer set is similar to the notion of a stable model; however, an answer set need
not be a model of P.

Example 5.1 Consider the program:

a «— not a (1)
->a *— not a (2)

This program has an A-answer set 0, but no E-answer set.

Example 5.2 Consider the program:

a « - not b (3)
->a «— not b (4)

6 4— a Si -<a (5)

This program has an A-answer set 0 and an E-answer set {a, -ia}.

Example 5.S Consider the program:

a 4— not a Si not 6 (6)
b - (7)

- (8)

This program has an E-answer set {b, _ i i }) but no A-answer set.

We may wonder under what conditions an EGHP has a unique E-answer set or
A-answer set. We now study this problem and provide a sufficient, but not neces-
sary condition to guarantee the existence of such answer sets. This is achieved by
extending the concept of stratification to EGHPs.
For logic programs, stratification may be defined in terms of a level mapping of
ground atoms. In our case, a level mapping is a function from the set of ground
literals to the set of non-negative integers. The value of a literal L under level
mapping £ is written as t(L). The levels of a program are assumed to range from
0 to A: for some integer k. The clauses of the program are placed in strata 5,-,
0 < t < k, by placing a clause whose head has level t into 5,-. For the definitions
below, we use the generic clause

L 4— Li Sc.. .Si Ln k not L\Si...Si not L'm.

We start with an (intermediate) definition.

The Optimistic and Cautious Semantics for Inconsistent Knowledge Bsises 51

Definition 5.5 ([8l) An extended GHP P is said to be 0D-stratified iff there .is.a
level mapping £ sucn that for every clause C G grd(P) of the above form, £(£{) <
£(L) and l[L'}) < t[L) for all 1 < » < n and 1 < j < m.

Basically, OD-stratification treats all literals equally and does not allow recur-
sion through non-monotonic negation (not) , but allows recursion through classical
negation (-<).

Definition 5.6 The switched form SF(C) of a (generic) clause C is the set of
clauses {->£,-« 'L SiL\ k... Si Li-1 As L%+1 Si... Si Ln Si not L\Si...Si not L'm}
obtained from C by switching (and negating) the literal in the head of C with a
literal in the body not preceded by not . The switched form SF(P), of an .EG H'P
P is defined as SF(P) = \JG€P SF(C).

Definition 5.7 An EGHP P is called E-stratified iff SF(P) is OD-stratified.

Definition 5.8 An EGHP P is called A-stratified iff P is E-stratified and for every
ground atom A, l(A\ = ¿(-¡A).

Clearly, every A-stratified EGHP is also E-stratified; the latter also implies that
the EGHP is OD-stratified. However, OD-stratification does not necessarily imply
E-stratification, and E-stratification does not necessarily imply A-stratification.

Example 5.4 Let P be:
b *— a Si not -ia.

P is OD-stratified by £(-kx) = ¿(-.6) = ¿(a) = 0 and £(6) = 1. SF(P) in this case
is:

b *— a Si not ->a (9)
-•a <— -ifc¬-xi (10)

SF(P) is not OD-stratified because that would require £(-,a) < £(->a). Hence, P is
not E-stratified.

Example 5.5 Let P be:
-i& «— a Si not 6.

Now SF{P) is:

->b *— a Si not b (11)
-ia « - 6 & not 6 (12)

SF{P) is OD-stratified by £(ol = ¿(b) = 0, £(->o) = £(-«6) = 1. Hence, P is E-
stratified. However, P is not A-stratified because any level mapping £ must have
£(6) < £(->6).

Now we show how stratification provides a sufficient condition for stability in our
framework of non-monotonic negation within inconsistent knowledge bases.

Theorem 4 If P is a function-free E-stratified EGHP, then P has a unique E-
answer set.

52 John Grant, V.S. Subrahmanian

Proof. By the hypothesis, there is a level mapping I for SF(P) such that for every
clause C 6 SF(P), £(£,) < l(L) and t(L') < t(L) for aU 1 < t' < n and 1 < j < m,
where C is written in the standard form (cf. Definition 5.1). Let So,... ,Sn be the
strata generated by this mapping and for 0 < t < n, let Ti = {L | l(L) = »}. We
construct an E-answer set M as follows:

M0 = {L € T0 | S0 h3 L}\
Mi+1 = {L 6 Ti+1 | G(5j,Uy=o Mi) l"3 L) for 1 < » < n;
M = U,"=o Mi.

We need to show that M is an E-answer set. We start by observing that for every
literal L and set of literals V, G(P, V) h3 L iff SF{G(P, V)) h3 L. This is so because
every clause in SF(G(P, V)) is logically equivalent to some clause in G[P, V). Now,
note that SF(G(P,V)) = GiSFiPj .V) because the non-monotonically negated
literals.are not modified by SF. Hence, G(P,V) h3 L iff G(SF{P,V)) h3 L. To
show that M is an E-answer set, we must obtain M = {L \ G(P, M) h3 L), or by
the previous discussion, M — {L \ G(SF(P),M) h3 L}. But the E-stratification of
P implies that

n » - 1
G(SF{P),M) = UG(S„UMy)

¿=0 j=0

where IĴ Cq M}- = 0, because for every clause in strata t, the non-monotonically
negated clauses cannot be added to M at any level greater than or equal to t. The
result follows from the construction of M and the fact that if G(SF(P),M) h3 L,
then there must be a clause in SF(P) with L as the head.

We still need to show that M is the unique E-answer set for P. Suppose M' is
any E-answer set for P. We show that M = M' by showing that M,- = M- for all
1 < t < n where M! = M'n{L\ t{L) = *}.
Base Case. (» = 0) In this case, for every clause in SF(P) in stratum So, there are
no. occurrences of not . Hence, G(S0, M0) = G{S0, M'). Thus, E p(M0) = E p(M{>).
As Mo and Mq must be E-answer sets for S0, M0 = E/»(Mo) = Ep(Af^) = M'0.
Inductive case, (t > 0) Assume that My = My for all j < i. By the E-stratification
of P, G(Si,Mi) = G[Si,M{) and then by reasoning similar to the base case, Mi =
Ep(Mi) = Ep(MI) = M;. •
E-stratification is a sufficient, but not a necessary condition for an EGHP to have a
unique E-answer set. In particular, the program of Example 5.3 is not E-stratified,
but it has {&,-<&} as its unique E-answer set. The next example shows that E-
stratification is not a sufficient condition for an EGHP to have an A-answer set.

Example 5.6 Consider the program:

o not 6 (13)
b - (14)

->b *— noto (15)

This program is E-stratified with ¿(b) = £(->a) = 0, 1(a) = 1, ¿(-.6) = 2. Here,
P = SF(P). However, there is no A-answer set. Note that this program is not
A-stratified.

The Optimistic and Cautious Semantics for Inconsistent Knowledge Bsises 53

Theorem 5 If P is a function-free A-stratified EGHP, then P has a unique A-
answer set.

Proof . The construction of the A-answer set is similar to the construction in
Theorem 4 except for the substitution of l-y instead of hg. The key point in showing
that M is an A-answer set is that for every ground atom A, since ¿(A) = ¿(-"A) = »
for some level t, at that level either A is placed into MI or -*A is placed into MI
or neither A nor ->A is placed into MI. By the definition of A-stratification, it is
impossible to add A at some level and ->A at another level. •
Example 5.1 shows that A-stratification is not a necessary condition for the exis-
tence of an A-answer set. The program of Example 5.1 is not A-stratified, but it
has 0 as its A-answer set.

6 Summary and Discussion
We have developed two semantics for inconsistent knowledge bases. Both seman-
tics are based on the maximal consistent subsets of the inconsistent knowledge
base. The cautious semantics accepts those statements which are true in all max-
imal consistent subsets, while the optimistic semantics accepts those statements
which are true in at least one maximal consistent subset. We study various proper-
ties of these semantics and develop a Kripke-style model theory for the optimistic
semantics. Finally, we extend our approach to include non-monotonic negation.
Within this framework, we extend the concepts of stratification and stability from
logic programming and show that stratification provides a sufficient condition for
stability.
Reasoning with inconsistency in logic programs was first studied by Blair and Sub-
rahmanian [2] whose work was subsequently expanded by Kifer and Lozinskii [9].
These works were grounded in multivalued logics. There are two significant dif-
ferences between those approaches and that studied in this paper: first, when a
database DB is consistent, the semantics of |2,9] may not always agree with the
classical logic meaning of DB\ both the optimistic and cautious approaches de-
scribed here would agree with classical logic when DB is classically consistent.
Second, the work described here includes support for non-monotonic negation via
a stable model semantics. No support for non-monotonic negation was present in
[2,9], though [9] discusses some ways non-monotonicity may occur. In particular,
we present here, two kinds of stratification. Neither [2,9] did this.
A structure similar to maximal consistent subsets arises in the context of database
updates [3,4]. Given a database DB and a new fact, / , to be inserted into the
database, Fagin et. al. [3,4] define a flock to be the set of maximal consistent
subsets of DB U { / } that are supersets of { / } . In other words, priority is given to
/ over formulas in DB. This does not occur in our framework.
Finally, the work reported in this paper has been used as the formal theoretical
basis for combining multiple knowledge bases [1].
A c k n o w l e d g e m e n t s . This work has been supported by the Army Research
Office under Grant Number DAAL-03-92-G-0225, by the Air Force Office of Scien-
tific Research under Grant Number F49620-93-1-0065, and by the National Science
Foundation under Grant Numbers IRI-9200898, IRI-9109755 and IRI-9357756. The
work was also supported in part by ARPA/Rome Labs Contract F30602-93-C-0241
(ARPA Order Nr. A716).

54 John Grant, V.S. Subrahmanian

References

[2

[3

[4

[5

[6

[7

[8

f9

[10

[11

[12

C. Baral, S. Kraus, J. Minker and V.S. Subrahmanian (1992) Combining
Knowledge Bases Consisting of First Order Theories, Computational Intel-
ligence, 8, 1, pps 45-71.

H.A. Blair and V.S. Subrahmanian. (1989) Paraconsistent Logic Programming,
Theoretical Computer Science, Vol. 68, pp 135-154. Preliminary version in:
Lecture Notes in Computer Science, Vol. 287, Dec. 1987.

R. Fagin, G. Kuper, J. Ullman, and M. Vardi. Updating Logical Databases.
In Advances in Computing Research, volume 3, pages 1-18, 1986.

R. Fagin, J.D. Ullman, and M.Y. Vardi. On the Semantics of Updates in
Databases. In A CM SIGA C T/SIGMOD Symposium on Principles of Database
Systems, pages 352-365, 1983.

M. Ginsberg. (1986) Counterfactuals, Artificial Intelligence.

M. Gelfond and V. Lifschitz. (1988) The Stable Model Semantics for Logic
Programming, in Proc. of the 5th Intl. Conf./Symp. on Logic Programming,
pp 1070-1080, MIT Press.

M. Gelfond and V. Lifschitz. (1990) Logic Prog rams with Classical Negation,
in: Proc. of the 7th Intl. Conf. on Logic Programming, pp 579-597, MIT Press.

J. Grant and V.S. Subrahmanian. (1995) Reasoning In Inconsistent Knowledge
Bases, IEEE Trans, on Knowledge and Data Engineering, volume 7, pp 177-
189.

M. Kifer and E.L. Lozinskii. (1989) RI: A Logic for Reasoning with Incon-
sistency, 4-th Symposium on Logic in Computer Science, Asilomar, CA, pp.
253-262.

R. Kowalski and F. Sadri. (1990) Logic Programs with Exceptions, in: Proc.
7th Intl. Conf. on Logic Programming, pp 598-613.

J. Minker and A. Rajasekar. (1990) A Fixpoint Semantics for Non-Horn Logic
Programs, J. of Logic Programming.

N. Rescher. (1964) Hypothetical Reasoning, North-Holland.

Appendix
Formalization of the Murder Example

The various facts relating to the murder mystery are described below:

1. present(al)
2. present(carl)
3. presented)
4. present(dick)
5. inJiospital(tom)
6. -ipresent(X) «— inJiospital(X)

The Optimistic and Cautious Semantics for Inconsistent Knowledge Bsises 55

7. suspect(X) *— preaent(X)
8. -iauspect(X) « >preaent(X)
9. suspect(X) *— embezzler(X)
1 0 . suspect(X) *— havingjaffair(X)
1 1 . embezzler(al)
12. having ja f fair(carl)
13. inJ>athroom(carl)
14. tnJ>athroom(al)
15. -<in-bathroom(Y) «— inJ>athroom(X) k X ^ Y
16. carl ^ al
17. al / carl
18. inJ*vingjroom(dick)
19. inJiwngjroom(ed)
20. -unJcitchen(X) *— inJ)athroom(X)
21. -¿nJritchen(X) *— inJiving.room(X)
2 2 . murderer(al) «— -^murderer(carI)&i-imurderer(ed)&i-imurderer(dick)
23. murderer(carl) * 'murderer(al)&c->murderer(ed)&L-<rmtrderer(dick)
24. murderer(ed) < >murderer(carl)&t-imurderer(al)&i-imurderer(dick)
25. murderer(dick) < >murderer(carl)k-<murderer(ed)&i-^murderer(al)
26. suspect(X) «— murderer(X)
27. -imurderer(X) «— murderer(Y) ScY X.
28. -imurderer(X) *— inJbathroom(X)
29. -imurderer(X) *— indiving.room(X)
30. AXIOMS SAYING that Carl, Al, Ed, and Tom are not equal.

Received June, 1994

