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, Abstract 

A program for backtrack seeking is proved here by using deduction rules. 
The problem of whether a chessboard can be moved over by the knight step-
ping on every square once and only once, is studied, and is traced back to the 
theorem of backtrack seeking in two ways. A comparison is made between the 
programs obtained. 

1 Introduction 
The last forty years have seen a rapid development in programming. Initially the 
hardware developed more rapidly than the software technology. For a long time the 
effectiveness of the programs had been the most important factor in programming, 
but the importance of the reliability of the programs became underlined by the 
improving quality of hardware tools and by the demand for producing increasingly 
larger systems. 

The first works of Floyd, Hoare, Dijkstra and others [2,1,11] on proving program 
correctness were published in the 70s: work in this field was continued by Gries, 
Mili, Jackson, Wirth, etc [7,8,9,10,13]. Parallel with the theoretical research the 
results were translated into practice. 

To prove the correctness of existing programs is only one possibility. A better 
approach is: write correct programs. Several programming theorems are proven 

13,8] etc. for solving classes of important problems. In the present paper a program 
or the general problem of backtrack seeking is proved by using deduction rules. 

The problem of whether a chessboard can be moved over by the knight stepping on 
every square once and only once, is studied, and is traced back to the theorem of 
backtrack seeking in two ways. A comparison is also made between the programs 
obtained. 

The most important definitions and theorems that are necessary to understand 
the present paper are available in the literature [3,4,5,6]. 
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2 Theorem of Backtrack Seeking 

2.1 The problem 
Let Ux,. • • , U „ be finite sets. Denote by a,- the number of elements of U,- : 

| V i |= a< V.- G [1, »). 

Let U denote n 
U = * U,. 

t = 1 

Let p : U —• L be a logical function having the following properties: there exists 
a pi(* G [0, n]) sequence of logical functions, for which: 

1. po = TRUE 
2. Pi+i(u) => Pi(v) v » e [ l , n - l ] * 

Vj G [l ,t] : uy = Vj => Pi(u) = Pi{v) 
this means that p,- depends only on the first » component of u. 

4. pn = P 
The problem is to decide whether there exists a u G U, for which p(u) is true. 

If yes, let u G U with the property p being given. 

2.2 The specification of the problem 
Let n 

N = i l l V i ' V i = [ 0 , a , - 1 ] C N 0 V t € [ l , n ] . 

In this case: | N |=| U | . 
Uj can be ordered from 0 to (a,- — 1), Vt G [1, n]. 
Denote by u^ G Ut- the jth element of . 
Let <F> denote a function, which is a bijection between N and U: <F> : N —* U , 

and if i/ G N, then: 4>{v) = ( u U l , . . . , un„ J . 
We can consider the elements of N as numbers encoded in a mixed radix number 

system [12]. Therefore we have defined an ordering on N , and can speak about the 
"follower" of an element. 

Let us denote by F(U) the value of V G N in the decimal system, that is 

/ m = í > * Ü «*)• 
•=1 y=»+l 

If V\ V" E N, then we shall consider V' < V" iff F(U') < }(V"). 
Denote by Co the zero value of N : to = (0 ,0 . . . . , 0) and by EN the unit value 

of N : EN = (0 ,0 , . . . , 1). Moreover Vt' G [1, n - 1], Jeie< = (0 ,0 , . . . , 1 , . . . , 0) G N, 
such that: 

/ ( * ) = n 
J=t+1 
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With the help of these we can write the specification of the problem, 
state space be N x L, and its variables v and I. 

A: N xL 
1/ I 

The precondition of the problem is 
Q:TRUE; 

the postcondition of the problem is 
R : I = ( 3 u' € N : p(<f>(^))) A I =» ( p ( * ( i / ) ) ) . 

2.3 Solution of the problem 
Disregarding the special features of p, the original problem can be solved by the 
theorem of the third variation of linear seeking [3] in the interval [l, | N | ], for the 
property p, and with the stopping-condition /(z/) >| N | —1. 

W e can increment the values in the mixed radix number system by the unit 
value e„ . 

Let €q be the initial value of v, to avoid the problems coming from the use of 
negative values in the mixed radix number system; e<> being the first v € 1№ to be 
interpreted. 

The result is given by 
p r o g r a m { l } : 

I, v,v:= p(4>{v)), f a l s e , e 0 

w h i l e ->/ A -it; l o o p 
v := v © £„ 
* : = / , ( * ( „ ) ) 
u := f(u) >| JT | -1 

e n d l o o p 
e n d 

We can significantly increase the effectiveness of the algorithm by using the 
special features of p, namely, that if pi(<f>(i/)) = true and p,+ i [4>(y)) = false, then 
for every u' € N, which satisfies Vj 6 [l,t + l] : Vj = u'}-, then pi+\(4>{i/')) will also 
be false because of the third property of p. 

So instead of v ® e„ the next possible v € N will be the value v © U+x-
The counting algorithm will be more simple if we amplify u with an overflow 

bit - denoted by c. If the overflow bit changes to 1, it means that we no longer have 
the possibility to change v. 

From these it follows that it is worth supplementing the assignment I := p[<f>{y)) 
by seeking the smallest index for which Pi{j>[v)) = false. 

Using the rules of deduction [3] the following program can be achieved. 
As the invariant of the loop let us use: P : (Vi/ : (0 < f(i/') < f[v)+c * \ N |: 

^p[<t>{u')Al = p(<f>(v))A^l (pm_1(^(i/))A-,pm(^(i/)))A(Vt' € [m+l ,n] : J/,- = 0)) 
If jt = ->/ A (c = 0) is considered as the condition of the loop, then P A ->jr R 

is really completed. 
Let the terminator function be t =1 N I — f(i/) — c * \ N | . Evidently t > 0, 

while P A * is true. The function t will be decreased by increasing v. 

73 

Let the 



74 Judit Nyeky-Gaizler, Mdxta. Konczne-Nagy, Akos F6thi, ¿va HarangozS 

To perform the condition Q ^ P we need adequate initial values for the vari-
ables before starting the loop. 
The Backtrack program will be: 
program {2}: 

v,c,m:=e o,0,1 
SEEK(i/, m, /) _ Q, 
while ->/ A (c = 0) loop 

SUM(i/, m, c) 
SEEK (u,m,l) 

endloop 
end 

To verify Q' => P let us define the SEEK program. Let the specification of the 
SEEK(f , m, /) program be: 

¿ S E E K ^ x N 0 x L 
v m I 

^ S E E K ^ x N 0 
v' rri 

^ S E E K " '= A m - m> A Pm ' - l (^H) 
rSEEKv = v' A 1 = (Vt" e K» nl : Pi(tt")))A 

=• A V« G \m',m) : Pi(4>[v))) A / w - i ( f H ) ) . 

This problem can also be solved by the theorem of the third variation of linear 
seeking [3] bearing in mind that the following two statements are equivalent: (1) 
every element of a set has a certain property, (2) there is no a single element in the 
set without this property. 

Thus, the SEEK program will be 
program {3}: 

I, m := true, m — 1 
while IA (m ^ n) loop 

m := m + 1 
endloop 

end 
Therefore in the main program there will be Q' = K-SEEK A = €°) A ( c = 

and Q' => P simply follows . 
To prove the implication P A w ^ tup(5o,P) we need determine the S U M 

program as well. Let the specification of the S U M ( f , m, c) program be: 

% U M : ^ * N 0 xE 
v m c 

BSVM- ^ X No 
v' m' 

QSUM: v = v' Am = m' 
RSVM' ( / M + c . | JT |= / ( • ) + n,n=m '+i « . ) A m G [0, m']A 

(Vi G [m+ l.m'l : i/,- = 0) A (c = 0 vm ? 0). 
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As the invariant of the loop let us use 

^ S U M : ( / ( " ) + c * n.n=m+i «i = / ( " ' ) + n U . - H û») A m 6 [0,m']A 
(V» 6 [m + 1, m'] : 1/, = 0) A (c = 0 =>• vm ± 0). 

Let us consider ""SUM = ( m ^ 0) A (c ^ 0) as the condition of the loop. 
In this case P g U M A """"SUM R S U M -
Let the terminator function be: ¿SUM = m + c-
Evidently t g U M > 0 ^SUM A ""SUM ^ t r u e -
The function ¿SUM ^e decreased by increasing either m or c. Thus the 

program will be 
program {4}: 

c : = 1 _ Q> 

while (m / 0) A (c ^ 0) loop 
if vm = a m - 1 then i/m := 0 

m := m — 1 
else c := 0 

"m : = Vm + 1 
endif 

endloop 
end 

In this case Q 'guM : = A ( m = m ' ) A (c = 1). Therefore Q g u M ^ 
P S U M • 

To verify P g U M A i r = > W P ( S 0 S U M > P S U M ) w e h a v e t o P r o v e : 

1- P S U M A Jr A (i/m = a m - 1) => wp((i/m := 0; m := m - 1), P g U M ) 
2- P S U M A * A ("»» / a m - 1) => wp((c := 0;i/m := vm + l), P g U M ) 

These are consequences of the definition of the function / (v) using the weakest 
precondition of the assignment statement. 

Having proved the S U M program for the verification of the main program we 
need P A it =>• wp((SUM;'SEEK), P) and this follows from the above. 

3 Solution of a demonstration problem 

3.1 The problem 
The 8 X 8 (n X n) chessboard is given. We have to decide whether it is possible for 
the knight to move over the whole chessboard stepping on each square once and 
only once. If it is possible, we should be able to give a " tour*. 

Two possible solutions of this problem will be given and compared below. 

3.1.1 Specification of the first solution 

Since we have to step on 64 (n2) squares, we can use a vector of 64 (n2) length for 
the storage of the knight's moves. The j " 1 component of the vector denotes the 
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position of the j t h step. Let us number each square of the table line by line from 0 
to 63 (0 - (n3 - 1)) : 

64 
A: NxL * = . * 1 [ 0 , 6 3 ] 

v I 

The precondition of the problem is 
Q:TRUE; 

the postcondition of the problem is 
R : / = (3 i/' e N : p(«/)) AI => (p(«/)). 

Let us denote by LINi = i/j/8 ;and by CO Li = i/t- — 8 * LINi, (in general: 
LINi = Ui/n ; and by CO Li = i/,- — n * LINi ), where the fraction bar denotes 
the division between integers. 

Let p : N —• L be a logical function to be defined as follows: Let p,-(t G [0, n2]) 
be a sequence of logical functions satisfying 

1. Po = Pl = TRUE 
2. PiW = Pi-iM * HiM * liM V» € [2,64] 

Hi(y) — i>i knight-move-distance from Vi-i = 
= (| LINi ~ LINi-1 |= 2 A | COLi - COL{-i |= 1) V 

(| LINi - LINi-i |= 1 A | COLi ~ COLi-i |= 2). 
7i(u) = i>i different from the squares over 

= (V. : 1 < 3 < i : v, ^ »i) 
In this case fi[y) => Pi-i(f) , and obviously: 
3.Vy € [l,t] : i/j = i/y =» Pi(v) = Pi{v')\ that is, p,- depends on the first t 

component of N only. 
4. P64 = P 

3.1.2 The first solution of the problem 

It can be seen that this specification is equivalent to the specification of the general 
Backtrack seeking algorithm, therefore the program for solving it can be used 
with the following way of correspondence: ' 

n = 64 
V»' e [1,64] : U, = (0,1 63}, a,- = 64 
(We shall use a 64 based number system instead of the general mixed radix 

number system.) 
<f> is the identical mapping. 
The program is as follows 

program {5 } : 
i/, c, m := e0i 0,1 
SEEK (j/, m, I) 
while —>l A (c = 0) loop 

SUM(v, m, c) 
SEEK(i/, >7>,/) 

endloop 
end 
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The SEEK program is given by 
program {6 } : 

I, m := true, m — 1 
while / A (m ^ 63) loop 

I ••= P m + l H 
m := m + 1 

endloop 
end 

The S U M program will be 
program{7} : 

c := 1 
while ( m j i O ) A ( c / 0) loop 

if vm = 63 then um := 0 
m := m — 1 

else c ;= 0 
^m := + 1 

endif 
endloop 

end 
We now need the program for the assignment statement I := pm+ i(i/) only. 

As we have defined pm+i(i>) = Pm(") A/im+1(1/) Ai f m + i ( i / ) , consequently the 
precondition of this program is 
Q '• № = Pmiy)} A (i/ = i/') A /'); 

and the postcondition is 
R - {1 = Pm+i(v) A (i/ = 1/')). 

In the state space A this is equivalent to 
R : [h = Mm+iH A /2 = f m + i M A I = (I' A /x A Z2) A (i/ = i / ' ) ) . 

The program realizing this condition is the sequence of states below 
program {8 } : 

h •= / W i M 
h •= Tfm+lH « 
l : = k A l2 

end 
The solution of the assignment I := / i m + 1 ( f ) will be: 

h = (| LINm+1 - LINm |= 2 A | COLm+1 -COLm |= 1) V 
(| LINm+1 - |= 1 A | COLm+1 - COLm |= 2). 
The assignment Z2 := 7 m +i can be solved by the theorem of the third varia-

tion of linear seeking, with the considerations written under the SEEK program. 
The program i2 := fm+i (v) will be 
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program {9 } : 
/ 2 , t := t rue , 0 
while ¿2 A (t / m) loop 

h := vm+i / "i+i 
» ' : = » ' + 1 

endloop 
end 

This completes the first solution. 

3.1.3 Specification of the second solution 
The main idea of the second solution is to take advantage of the fact that we cannot 
step anywhere from a certain square of the chessboard. We can choose only from 
the eight possible moves of the knight. All the moves are represented by a vector 
showing the relative movement of the knight by two components, the first for the 
horizontal (lines) direction, the second for the vertical (columns) direction. 

(-1.2) (1,2) 

Figure 1: The knight moves 

Let us consider these steps as the components of a constant vector called 
" knight-move-vector": 

h =,((1, 2), (2,1), (2, -1) , (1, -2) , ( -1 , -2) , ( -2 , -1) , (-2,1), ( -1 , 2)) 

We use the Backtrack algorithm again with the following correspondence: 
n = 64 
U,- = { (» , / ) | 0 < i,j < 7}, give an arrangement with the enumeration of the 

elements: 
u< = { (0 , o), ( 0 , 1 ) , ( 0 , 2 ) , . . . , (7 ,0 ) , ( 7 , 1 ) , . . . , ( 7 , 7 ) , } 
If we represent the chess-board by a matrix, the elements of U{ will be the 

values of the possible start positions. 
«1 = 64 
Let H denote the eight-element set obtained with the help of the knight-move-

vector h, we define the arrangement on H with the enumeration in h. 
64 

Vi€ (2,64) U< = ff | a.-|=8 U = . « 1 U i 

Using the sets Ut- the actual knight move sequence on the chess-board can be 
given by the function: 
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64 
pos: U — V V = f. « j P P = {LIN, COL) LIN, COL = N 0 

«1 = P ° s ( « ) i = « 1 
Vi = poa(u),- = p o s i u ) , - ! © u,- Vt 6 [2,64] 

© denotes the addition component by component. 
The correspondence between N and U is given by 

63 

N = [ 0 ,63 ] x ( . ^ [ 0 , 7 ] ) 

<t>:N-+U 
Uj = 4>(y)i = (i^i/8, i/i — f i / 8 * 8) (the fraction bar denotes the division between 
integers) 
u< = 4>{v)i = hUi V i e [2,64]. 

The specification with the values above is 
A: N x L 

i/ Z 
Q:TRUE 

R:l=( Bv'eN: p(H"'))) A I => (p(4>H))-
Let p : N —• L be a logical function to be defined as follows: let p,(» G [1,64]) 

be a sequence of logical functions satisfying 
1. px = TRUE 
2- P i { № ) ) = ft-i^MjAwl^MlAli^M) Vi G [2..64] 
where /1,(^(1/)) = the ith move does not move off the chess-board 

= pos[<f>(v))i G [0,7] X [0,7] 
and 1i(<f>(v)) = pos(tf>(i/))i different from the squares over 

= (Vj : 1 < j < i : pos(<f>(v))j ? po«(4(i/))<) 
In this case Pi{<i>{v)) => Pi-i{<j>{v)), and obviously: 
3. V j G [ l , t ] : Vj = v'j => pi(4>(y)) = Pi(<f>(v'))\ that is, p,- depends on the first i 

c o m p o n e n t o f N only . 
4. P64 = P i 

3.1.4 The second solution of the prob lem 

It can be observed, that the function pos given by a recursive formula in the program 
working out the assignment I := p m + 1 can be substituted by a variable, and 
thus its evaluation will be significantly simpler. Let us amplify the state space with 
a component of type V , denoted its variable byu. 

The first m element of v shows then the sequence of actual positions of the 
knight. 

The program obtained is 
p r o g r a m { 1 0 } : 

v, c, m := eO|0,1 
t>i := (0,0) «— startposition 
S E E K ( i / , m , Z) 
while ->l A (c = 0) l o o p 

S U M ( i / , m , c ) 
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SEEK (v,m,l) 
endloop 

end 
Since the SEEK program differs from that written in the first solution in real-

izing the assignment Í := Pm+i (<£(")) only, here we give just the difference. 
The S U M program is changed in comparison with the first solution: 

p r o g r a m { l l } : 
c := 1 
while (m ^ 0) A (c ^ 0) loop 

if (m = 1 A i/m = 63) V (m ^ 1 A vm = 7) then vm := 0 
m := m — 1 

else c := 0 
"m : = Urn + 1 

endif 
endloop 

end 
Let us give the program solving I := p m + i ( j / ) ! 
Since pm + i (^(n)) = pm[4>[y)) A Mm+i(^H) A7m+i(<^(i/)); thus, the precondi-

tion of the program is 
Q : i(l'= pM»'))) A (» = "') Al'); 

the postcondition is 
R : (I = pm+1(f(»)) A («/ = I/'))-

This is equivalent in the state space A with 
R : (h = / W i ( ^ H ) A h = ym+i{4>H) Al=(hA fa) A (v = t/)). 

The program realizing this condition is the sequence of statements below, 
program {12}: 

vm+1 : = " m f f l 
'l := A«m+l(um+l) 
'a := 1Tm+i(w) 
I := h A l2 

end 
The solution of the assignment li := / im+i(vm+i) will be 

h •= (0 < («m+i)i < 7) A (0 < (i>m+i)a < 7) 

The assignment l2 := 1m+i{v) c a n be solved by the theorem of the third varia-
tion of linear seeking, with the considerations written under the SEEKprogram. 

Thus the program l2 := 7m+i(t0 is 
program { IS } : 

l2 , i := true,0 
while l2 A (t t̂  m) loop 

h •= «m+l ^ «<+1 
i :=t + l 
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endloop 
end 

This program is essentially the same as the corresponding one in the first solu-
tion: Thus the second solution is completed. 

3.2 Comparison of the two solutions 
If the two solutions are compared from the viewpoint of execution time, the second 
one is found to be essentially faster. The reason for this lies in the number of 
potential attempts at the first solution 

n1 

»•=i 

The corresponding value at the second solution is smaller by an order of mag-
nitude: 

•=i 

The above example indicates that one should never automatically trace the 
problems back to the various programming theorems, since the innovational way of 
thinking of the expert programmer is essential. 
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