
Acta Cybernetica, Vol. 12, No. 1, Szeged, 1995

Demonstration of a Problem-Solving Method*

Judit Nyéky-Gaizler * Márta Konczné-Nagy *
/ . / / ,

Akos Fóthi ' Eva Harangozo '

, Abstract

A program for backtrack seeking is proved here by using deduction rules.
The problem of whether a chessboard can be moved over by the knight step-
ping on every square once and only once, is studied, and is traced back to the
theorem of backtrack seeking in two ways. A comparison is made between the
programs obtained.

1 Introduction
The last forty years have seen a rapid development in programming. Initially the
hardware developed more rapidly than the software technology. For a long time the
effectiveness of the programs had been the most important factor in programming,
but the importance of the reliability of the programs became underlined by the
improving quality of hardware tools and by the demand for producing increasingly
larger systems.

The first works of Floyd, Hoare, Dijkstra and others [2,1,11] on proving program
correctness were published in the 70s: work in this field was continued by Gries,
Mili, Jackson, Wirth, etc [7,8,9,10,13]. Parallel with the theoretical research the
results were translated into practice.

To prove the correctness of existing programs is only one possibility. A better
approach is: write correct programs. Several programming theorems are proven

13,8] etc. for solving classes of important problems. In the present paper a program
or the general problem of backtrack seeking is proved by using deduction rules.

The problem of whether a chessboard can be moved over by the knight stepping on
every square once and only once, is studied, and is traced back to the theorem of
backtrack seeking in two ways. A comparison is also made between the programs
obtained.

The most important definitions and theorems that are necessary to understand
the present paper are available in the literature [3,4,5,6].

'Supported by the Hungarian National Science Research Grant (OTKA), Grant Nr.
2045

''Dept. of General Computer Science, Eötvös Loránd University, Budapest, Hungary,
1088 Budapest, Múzeum krt. 6-8., E-mail: nyeky@ludens.elte.hu

71

mailto:nyeky@ludens.elte.hu

72 Judit Nyeky-Gaizler, Mdxta. Konczne-Nagy, Akos F6thi, ¿va HarangozS

2 Theorem of Backtrack Seeking

2.1 The problem
Let Ux,. • • , U „ be finite sets. Denote by a,- the number of elements of U,- :

| V i |= a< V.- G [1, »).

Let U denote n
U = * U,.

t = 1

Let p : U —• L be a logical function having the following properties: there exists
a pi(* G [0, n]) sequence of logical functions, for which:

1. po = TRUE
2. Pi+i(u) => Pi(v) v » e [l , n - l] *

Vj G [l ,t] : uy = Vj => Pi(u) = Pi{v)
this means that p,- depends only on the first » component of u.

4. pn = P
The problem is to decide whether there exists a u G U, for which p(u) is true.

If yes, let u G U with the property p being given.

2.2 The specification of the problem
Let n

N = i l l V i ' V i = [0 , a , - 1] C N 0 V t € [l , n] .

In this case: | N |=| U | .
Uj can be ordered from 0 to (a,- — 1), Vt G [1, n].
Denote by u^ G Ut- the jth element of .
Let <F> denote a function, which is a bijection between N and U: <F> : N —* U ,

and if i/ G N, then: 4>{v) = (u U l , . . . , un„ J .
We can consider the elements of N as numbers encoded in a mixed radix number

system [12]. Therefore we have defined an ordering on N , and can speak about the
"follower" of an element.

Let us denote by F(U) the value of V G N in the decimal system, that is

/ m = í > * Ü «*)•
•=1 y=»+l

If V\ V" E N, then we shall consider V' < V" iff F(U') < }(V").
Denote by Co the zero value of N : to = (0 ,0 , 0) and by EN the unit value

of N : EN = (0 ,0 , . . . , 1). Moreover Vt' G [1, n - 1], Jeie< = (0 ,0 , . . . , 1 , . . . , 0) G N,
such that:

/ (*) = n
J=t+1

Demonstration of a Problem-Solving Method

With the help of these we can write the specification of the problem,
state space be N x L, and its variables v and I.

A: N xL
1/ I

The precondition of the problem is
Q:TRUE;

the postcondition of the problem is
R : I = (3 u' € N : p(<f>(^))) A I =» (p (* (i /))) .

2.3 Solution of the problem
Disregarding the special features of p, the original problem can be solved by the
theorem of the third variation of linear seeking [3] in the interval [l, | N |], for the
property p, and with the stopping-condition /(z/) >| N | —1.

W e can increment the values in the mixed radix number system by the unit
value e„ .

Let €q be the initial value of v, to avoid the problems coming from the use of
negative values in the mixed radix number system; e<> being the first v € 1№ to be
interpreted.

The result is given by
p r o g r a m { l } :

I, v,v:= p(4>{v)), f a l s e , e 0

w h i l e ->/ A -it; l o o p
v := v © £„
* : = / , (* („))
u := f(u) >| JT | -1

e n d l o o p
e n d

We can significantly increase the effectiveness of the algorithm by using the
special features of p, namely, that if pi(<f>(i/)) = true and p,+ i [4>(y)) = false, then
for every u' € N, which satisfies Vj 6 [l,t + l] : Vj = u'}-, then pi+\(4>{i/')) will also
be false because of the third property of p.

So instead of v ® e„ the next possible v € N will be the value v © U+x-
The counting algorithm will be more simple if we amplify u with an overflow

bit - denoted by c. If the overflow bit changes to 1, it means that we no longer have
the possibility to change v.

From these it follows that it is worth supplementing the assignment I := p[<f>{y))
by seeking the smallest index for which Pi{j>[v)) = false.

Using the rules of deduction [3] the following program can be achieved.
As the invariant of the loop let us use: P : (Vi/ : (0 < f(i/') < f[v)+c * \ N |:

^p[<t>{u')Al = p(<f>(v))A^l (pm_1(^(i/))A-,pm(^(i/)))A(Vt' € [m+l ,n] : J/,- = 0))
If jt = ->/ A (c = 0) is considered as the condition of the loop, then P A ->jr R

is really completed.
Let the terminator function be t =1 N I — f(i/) — c * \ N | . Evidently t > 0,

while P A * is true. The function t will be decreased by increasing v.

73

Let the

74 Judit Nyeky-Gaizler, Mdxta. Konczne-Nagy, Akos F6thi, ¿va HarangozS

To perform the condition Q ^ P we need adequate initial values for the vari-
ables before starting the loop.
The Backtrack program will be:
program {2}:

v,c,m:=e o,0,1
SEEK(i/, m, /) _ Q,
while ->/ A (c = 0) loop

SUM(i/, m, c)
SEEK (u,m,l)

endloop
end

To verify Q' => P let us define the SEEK program. Let the specification of the
SEEK(f , m, /) program be:

¿ S E E K ^ x N 0 x L
v m I

^ S E E K ^ x N 0
v' rri

^ S E E K " '= A m - m> A Pm ' - l (^H)
rSEEKv = v' A 1 = (Vt" e K» nl : Pi(tt")))A

=• A V« G \m',m) : Pi(4>[v))) A / w - i (f H)) .

This problem can also be solved by the theorem of the third variation of linear
seeking [3] bearing in mind that the following two statements are equivalent: (1)
every element of a set has a certain property, (2) there is no a single element in the
set without this property.

Thus, the SEEK program will be
program {3}:

I, m := true, m — 1
while IA (m ^ n) loop

m := m + 1
endloop

end
Therefore in the main program there will be Q' = K-SEEK A = €°) A (c =

and Q' => P simply follows .
To prove the implication P A w ^ tup(5o,P) we need determine the S U M

program as well. Let the specification of the S U M (f , m, c) program be:

% U M : ^ * N 0 xE
v m c

BSVM- ^ X No
v' m'

QSUM: v = v' Am = m'
RSVM' (/ M + c . | JT |= / (•) + n,n=m '+i « .) A m G [0, m']A

(Vi G [m+ l.m'l : i/,- = 0) A (c = 0 vm ? 0).

Demonstration of a Problem-Solving Method 75

As the invariant of the loop let us use

^ S U M : (/ (") + c * n.n=m+i «i = / (" ') + n U . - H û») A m 6 [0,m']A
(V» 6 [m + 1, m'] : 1/, = 0) A (c = 0 =>• vm ± 0).

Let us consider ""SUM = (m ^ 0) A (c ^ 0) as the condition of the loop.
In this case P g U M A """"SUM R S U M -
Let the terminator function be: ¿SUM = m + c-
Evidently t g U M > 0 ^SUM A ""SUM ^ t r u e -
The function ¿SUM ^e decreased by increasing either m or c. Thus the

program will be
program {4}:

c : = 1 _ Q>

while (m / 0) A (c ^ 0) loop
if vm = a m - 1 then i/m := 0

m := m — 1
else c := 0

"m : = Vm + 1
endif

endloop
end

In this case Q 'guM : = A (m = m ') A (c = 1). Therefore Q g u M ^
P S U M •

To verify P g U M A i r = > W P (S 0 S U M > P S U M) w e h a v e t o P r o v e :

1- P S U M A Jr A (i/m = a m - 1) => wp((i/m := 0; m := m - 1), P g U M)
2- P S U M A * A ("»» / a m - 1) => wp((c := 0;i/m := vm + l), P g U M)

These are consequences of the definition of the function / (v) using the weakest
precondition of the assignment statement.

Having proved the S U M program for the verification of the main program we
need P A it =>• wp((SUM;'SEEK), P) and this follows from the above.

3 Solution of a demonstration problem

3.1 The problem
The 8 X 8 (n X n) chessboard is given. We have to decide whether it is possible for
the knight to move over the whole chessboard stepping on each square once and
only once. If it is possible, we should be able to give a " tour*.

Two possible solutions of this problem will be given and compared below.

3.1.1 Specification of the first solution

Since we have to step on 64 (n2) squares, we can use a vector of 64 (n2) length for
the storage of the knight's moves. The j " 1 component of the vector denotes the

76 Judit Nyeky-Gaizler, Mdxta. Konczne-Nagy, Akos F6thi, ¿va HarangozS

position of the j t h step. Let us number each square of the table line by line from 0
to 63 (0 - (n3 - 1)) :

64
A: NxL * = . * 1 [0 , 6 3]

v I

The precondition of the problem is
Q:TRUE;

the postcondition of the problem is
R : / = (3 i/' e N : p(«/)) AI => (p(«/)).

Let us denote by LINi = i/j/8 ;and by CO Li = i/t- — 8 * LINi, (in general:
LINi = Ui/n ; and by CO Li = i/,- — n * LINi), where the fraction bar denotes
the division between integers.

Let p : N —• L be a logical function to be defined as follows: Let p,-(t G [0, n2])
be a sequence of logical functions satisfying

1. Po = Pl = TRUE
2. PiW = Pi-iM * HiM * liM V» € [2,64]

Hi(y) — i>i knight-move-distance from Vi-i =
= (| LINi ~ LINi-1 |= 2 A | COLi - COL{-i |= 1) V

(| LINi - LINi-i |= 1 A | COLi ~ COLi-i |= 2).
7i(u) = i>i different from the squares over

= (V. : 1 < 3 < i : v, ^ »i)
In this case fi[y) => Pi-i(f) , and obviously:
3.Vy € [l,t] : i/j = i/y =» Pi(v) = Pi{v')\ that is, p,- depends on the first t

component of N only.
4. P64 = P

3.1.2 The first solution of the problem

It can be seen that this specification is equivalent to the specification of the general
Backtrack seeking algorithm, therefore the program for solving it can be used
with the following way of correspondence: '

n = 64
V»' e [1,64] : U, = (0,1 63}, a,- = 64
(We shall use a 64 based number system instead of the general mixed radix

number system.)
<f> is the identical mapping.
The program is as follows

program {5 } :
i/, c, m := e0i 0,1
SEEK (j/, m, I)
while —>l A (c = 0) loop

SUM(v, m, c)
SEEK(i/, >7>,/)

endloop
end

Demonstration of a Problem-Solving Method 77

The SEEK program is given by
program {6 } :

I, m := true, m — 1
while / A (m ^ 63) loop

I ••= P m + l H
m := m + 1

endloop
end

The S U M program will be
program{7} :

c := 1
while (m j i O) A (c / 0) loop

if vm = 63 then um := 0
m := m — 1

else c ;= 0
^m := + 1

endif
endloop

end
We now need the program for the assignment statement I := pm+ i(i/) only.

As we have defined pm+i(i>) = Pm(") A/im+1(1/) Ai f m + i (i /) , consequently the
precondition of this program is
Q '• № = Pmiy)} A (i/ = i/') A /');

and the postcondition is
R - {1 = Pm+i(v) A (i/ = 1/')).

In the state space A this is equivalent to
R : [h = Mm+iH A /2 = f m + i M A I = (I' A /x A Z2) A (i/ = i / ')) .

The program realizing this condition is the sequence of states below
program {8 } :

h •= / W i M
h •= Tfm+lH «
l : = k A l2

end
The solution of the assignment I := / i m + 1 (f) will be:

h = (| LINm+1 - LINm |= 2 A | COLm+1 -COLm |= 1) V
(| LINm+1 - |= 1 A | COLm+1 - COLm |= 2).
The assignment Z2 := 7 m +i can be solved by the theorem of the third varia-

tion of linear seeking, with the considerations written under the SEEK program.
The program i2 := fm+i (v) will be

78 Judit Nyeky-Gaizler, Mdxta. Konczne-Nagy, Akos F6thi, ¿va HarangozS

program {9 } :
/ 2 , t := t rue , 0
while ¿2 A (t / m) loop

h := vm+i / "i+i
» ' : = » ' + 1

endloop
end

This completes the first solution.

3.1.3 Specification of the second solution
The main idea of the second solution is to take advantage of the fact that we cannot
step anywhere from a certain square of the chessboard. We can choose only from
the eight possible moves of the knight. All the moves are represented by a vector
showing the relative movement of the knight by two components, the first for the
horizontal (lines) direction, the second for the vertical (columns) direction.

(-1.2) (1,2)

Figure 1: The knight moves

Let us consider these steps as the components of a constant vector called
" knight-move-vector":

h =,((1, 2), (2,1), (2, -1) , (1, -2) , (-1 , -2) , (-2 , -1) , (-2,1), (-1 , 2))

We use the Backtrack algorithm again with the following correspondence:
n = 64
U,- = { (» , /) | 0 < i,j < 7}, give an arrangement with the enumeration of the

elements:
u< = { (0 , o), (0 , 1) , (0 , 2) , . . . , (7 ,0) , (7 , 1) , . . . , (7 , 7) , }
If we represent the chess-board by a matrix, the elements of U{ will be the

values of the possible start positions.
«1 = 64
Let H denote the eight-element set obtained with the help of the knight-move-

vector h, we define the arrangement on H with the enumeration in h.
64

Vi€ (2,64) U< = ff | a.-|=8 U = . « 1 U i

Using the sets Ut- the actual knight move sequence on the chess-board can be
given by the function:

Demonstration of a Problem-Solving Method 79

64
pos: U — V V = f. « j P P = {LIN, COL) LIN, COL = N 0

«1 = P ° s («) i = « 1
Vi = poa(u),- = p o s i u) , - ! © u,- Vt 6 [2,64]

© denotes the addition component by component.
The correspondence between N and U is given by

63

N = [0 ,63] x (. ^ [0 , 7])

<t>:N-+U
Uj = 4>(y)i = (i^i/8, i/i — f i / 8 * 8) (the fraction bar denotes the division between
integers)
u< = 4>{v)i = hUi V i e [2,64].

The specification with the values above is
A: N x L

i/ Z
Q:TRUE

R:l=(Bv'eN: p(H"'))) A I => (p(4>H))-
Let p : N —• L be a logical function to be defined as follows: let p,(» G [1,64])

be a sequence of logical functions satisfying
1. px = TRUE
2- P i { №)) = ft-i^MjAwl^MlAli^M) Vi G [2..64]
where /1,(^(1/)) = the ith move does not move off the chess-board

= pos[<f>(v))i G [0,7] X [0,7]
and 1i(<f>(v)) = pos(tf>(i/))i different from the squares over

= (Vj : 1 < j < i : pos(<f>(v))j ? po«(4(i/))<)
In this case Pi{<i>{v)) => Pi-i{<j>{v)), and obviously:
3. V j G [l , t] : Vj = v'j => pi(4>(y)) = Pi(<f>(v'))\ that is, p,- depends on the first i

c o m p o n e n t o f N only .
4. P64 = P i

3.1.4 The second solution of the prob lem

It can be observed, that the function pos given by a recursive formula in the program
working out the assignment I := p m + 1 can be substituted by a variable, and
thus its evaluation will be significantly simpler. Let us amplify the state space with
a component of type V , denoted its variable byu.

The first m element of v shows then the sequence of actual positions of the
knight.

The program obtained is
p r o g r a m { 1 0 } :

v, c, m := eO|0,1
t>i := (0,0) «— startposition
S E E K (i / , m , Z)
while ->l A (c = 0) l o o p

S U M (i / , m , c)

80 Judit Nyeky-Gaizler, Mdxta. Konczne-Nagy, Akos F6thi, ¿va HarangozS

SEEK (v,m,l)
endloop

end
Since the SEEK program differs from that written in the first solution in real-

izing the assignment Í := Pm+i (<£(")) only, here we give just the difference.
The S U M program is changed in comparison with the first solution:

p r o g r a m { l l } :
c := 1
while (m ^ 0) A (c ^ 0) loop

if (m = 1 A i/m = 63) V (m ^ 1 A vm = 7) then vm := 0
m := m — 1

else c := 0
"m : = Urn + 1

endif
endloop

end
Let us give the program solving I := p m + i (j /) !
Since pm + i (^(n)) = pm[4>[y)) A Mm+i(^H) A7m+i(<^(i/)); thus, the precondi-

tion of the program is
Q : i(l'= pM»'))) A (» = "') Al');

the postcondition is
R : (I = pm+1(f(»)) A («/ = I/'))-

This is equivalent in the state space A with
R : (h = / W i (^ H) A h = ym+i{4>H) Al=(hA fa) A (v = t/)).

The program realizing this condition is the sequence of statements below,
program {12}:

vm+1 : = " m f f l
'l := A«m+l(um+l)
'a := 1Tm+i(w)
I := h A l2

end
The solution of the assignment li := / im+i(vm+i) will be

h •= (0 < («m+i)i < 7) A (0 < (i>m+i)a < 7)

The assignment l2 := 1m+i{v) c a n be solved by the theorem of the third varia-
tion of linear seeking, with the considerations written under the SEEKprogram.

Thus the program l2 := 7m+i(t0 is
program { IS } :

l2 , i := true,0
while l2 A (t t̂ m) loop

h •= «m+l ^ «<+1
i :=t + l

Demonstration of a Problem-Solving Method 81

endloop
end

This program is essentially the same as the corresponding one in the first solu-
tion: Thus the second solution is completed.

3.2 Comparison of the two solutions
If the two solutions are compared from the viewpoint of execution time, the second
one is found to be essentially faster. The reason for this lies in the number of
potential attempts at the first solution

n1

»•=i

The corresponding value at the second solution is smaller by an order of mag-
nitude:

•=i

The above example indicates that one should never automatically trace the
problems back to the various programming theorems, since the innovational way of
thinking of the expert programmer is essential.

References
[1] Dahl, O.J., Dijkstra, E.W., Hoare, C.A.R.: Strukturált programozás (Structured pro-

gramming), Mfiszaki Könyvkiadó, Budapest, 1978.
[2] Dijkstra, E.W.: A Discipline of Programming, Englewood Cliffs, 1976, Prentice-Hall

Series in Automatic Computation.
[3] Fóthi A.: Introduction into Programming (Bevezetés a programozáshoz), in Hungar-

ian, manuscript, ELTE TTK, Budapest, 1983.
[4] Fóthi Á.: A Mathematical Approach to Programming, Annales Un*. Set. Budapest, dt

R. Eötvös Nom. Seetio Computatorica, Tom. IX. (1988), 105-114.
[5] Fóthi A., Horváth Z.: The Weakest Precondition and the Theorem of the Specification,

in Proceedings of the Second Symposium on Programming Languages and Software
Tools, Pirkkala, Finland, August 21-23, 1991, Eds.: Kai Koskimies and Kari-Jouko
Ráihá, Uni. of Tampere, Dep. of Comp. Sci. Report A-1991-5.

[6] Horváth Z.: Parallel asynchronous computation of the values of an associative func-
tion, Acta Cybernetiea. 12 (1995) 83-94.

[7] Gries, D.: The Science of Programming, Springer Verlag, Berlin, 1981.
[8] Jackson, M.A. : Principles of Programming Design, Academic Press, New York, 1975.
[9] Mili, A.: A Relational Approach to the Design Deterministic Programs, Acta Infor-

mática, 20 (1983) 315-328.
[10] Mili, A., Desharnais, J., Gagné, J.R.: Formal Models of Stepwise Refinement of

Programs, ACM Computing Surveys, 18 (1986) 231-276.

82 Judit Nyeky-Gaizler, Mdxta. Konczne-Nagy, Akos F6thi, ¿va HarangozS

[11] Mills, H.D.: The New Math of Computer Programming, Comm. of the ACM IS (1975)
43-48.

[12] Szabo, M., S. Nicholas, Tanaka, I. Richard: Residue Arithmetic and its Applications
to Computer Technology, McGraw-Hill Book Company, New Y. - San Francisco -
Toronto, 1967.

[13] Wirth, N.: Systematic programming. An Introduction., Prentice-Hall Inc. 1973.

Received April, 1994

