
Acta Cybernetica, Vol. 12, No. 1, Szeged, 1995 

Towards Computer Aided Development of 
Parallel Compilers Running on Transputer 

Architecture* 

János Toczki * 

Abstract 

In this paper we state requirements for a software environment for com-
puter aided development of parallel compilers executable on transputers. The 
structure of a compiler-compiler which generates parallel compilers from at-
tribute grammar specifications is described. Problems of distributed attribute 
evaluation using dynamic load balancing are discussed. 

Keywords: attribute grammars, compilers, transputers, parallel processing. 

1 Introduction 
Several types of parallel machines have become more and more popular recently. 
Various parallel algorithms have been developed to get more efficient softwares for 
several problems. An important application field is developing parallel compilers. 

Attribute grammars are an efficient compiler specification method. Most of 
compiler-compiler systems are based on attribute grammars. A survey of sequential 
attribute evaluation methods can be found in [7] and [2]. A review of compiler-
compiler systems based on attribute grammars is presented in [6]. 

Most of the positive experiences with developing parallel semantic evaluators 
are connected with non-distributed architectures with shared memory. Reviews of 
using parallel attribute evaluation and experiences developing parallel compilers 
can be found in [l], ]4]. [16] and [10]. A blueprint of a parallel compiler generator 
system is presented in [3]. 

On the other hand, there is no shared-memory available in transputer machines; 
each processor uses its own memory. Processors are connected through channels. 
Channels are used not only for synchronization, but also for sending data between 
processors. According to the practical experiences, the main problem with using 
transputers for parallel attribute evaluation is the large amount of inter-processor 
communication [17], [1]. It causes the inefficiency of these algorithms. 

'This research is involved in the research project "Large Parallel Databases" financed 
by the European Communities, project number 93: 6638, and partly supported by the 
research found OTKA and the Ministery of Education and Culture, grant number F12852 
and 434/94 

^Department of Computer Science, József Attila University of Szeged 

95 



96 János Toczki 

However, there are some practical applications efficiently implemented on trans-
puters. For example, a database management system processing large databases 
implemented at Sheffield -University on IDIOMS machine J12]. The input lan-
guage of the system is the standard SQL/1. Users of IDIOMS requires some 
extension to SQL: it needs a precompiler which transforms queries to standard 
SQL. It is a natural demand that the precompiler should run on the same machine 
instead of the host computer. 

In this paperjwe consider the problems of efficient evaluation of attribute gram-
mars on distributed architectures from a practical point of view. Which evaluation 
methods can be used, which other facilities are needed to get a compiler-compiler 
or an environment for developing parallel compilers? 

This paper is composed as follows. We summarise preliminaries and motiva-
tions in the next section. We repeat some of the basic definitions and notations, 
however we suppose that the reader is familiar with the following topics: attribute 
grammars and evaluation strategies,, compiler-compilers, transputer architectures. 
The summary of requirements for a parallel compiler-compiler running on trans-
puters is found in section 3. Our suggestions to meet these requirements and the 
preliminary design of a compiler-compiler system is given in section 4. A short 
summary of future research is found in the last section. 

2 Motivations and Preliminaries 
2.JL Motivations 
Parallel machines are classified as synchronous and asynchronous machines. In 
synchronous machines all processors execute the same code at the same time. In 
asynchronous architectures processors may execute different code, synchronisation 
should be controlled directly by using semaphores and/or sending messages. 

On the otheri hand, we can distinguish between tightly coupled and loosely cou-
pled (distributed) architectures. In tightly coupled machines, all processors have 
access to the same shared memory, while in distributed machines each processor 
has its own memory. Processors can communicate by sending messages. 

Transputers, which are asynchronous distributed machines have become more 
and more popular recently. Processors - nodes - of a transputer are usually con-
figured along a more or less regular topology (a line, hypercube, polygon, etc.). 
Each processor has four channels for communication. Software connections can be 
configured in a flexible way via connecting channels. The number of nodes and 
the physical topology should be as irrelevant as possible from the point of view 
of transputer software. However the speed and efficiency of an algorithm usually 
strongly depends on the topology. 

Usually the most expensive part of transputer software is the inter-processor 
communication. Consequently, in general, an "effective" algorithm should avoid 
large amounts of communication. There are some "typical" transputer applications. 
One of these areas is processing large distributed databases^ If we connect a data 
storage device to each node and we distribute queries at an early stage, we get 
efficient data retrieving algorithms. 

IDIOMS machine developed at NTSC, University of Sheffield is a special par-
allel machine for processing large distributed databases using parallel methods [12]. 
The user surface of the system is standard SQL/1 language. 

Parsing user instructions, evaluation and distribution of queries is a usual for-
mal language parsing and semantic evaluation problem. There are three possible 
solutions to perform this task. 



Towards Computer Aided Development of Parallel 97 

• We can use a sequential compiler running on the host machine. 

• We can use a sequential compiler running on a single transputer node and 
benefit only from the parallelism between the larger components of the soft-
ware architecture. 

• We can use a parallel compiler running on the transputer itself. 

The advantage of the first two solutions is that the theory and practice of developing 
sequential compilers is a well-researched topic of computer science. On the other 
hand, the host machine is the only connection between the transputer and the outer 
world. The host machine will be very busy with transfering results of queries. It is 
a natural demand to use the inner part of the system instead. 

Another advantage of the last method is that - using parallel algorithms - we can 
speed up the compilation process itself. For example Gross achieved 3 to 6 typical 
speed-up with a hand-written compiler running on 9 independent workstations 
benefiting only from parallel compilation of independent functions (blocks) [8]. It 
does not exclude running the compiler in parallel with some other components, as 
well. 

2.2 Parallel Compilation 
The first hand-written parallel compilers were developed in the early 1970s. Most of 
these compilers run on vector processors and based on parallel execution of certain 
phases of compilation. The first significant investigation into parallel semantic 
evaluation made by Schell [22]. Schell's method - in essence - is the same as 
Jordan's one reported in [10]. 

The most natural way to build a parallel compiler is to run different compilation 
phases as separate processes and form a pipeline. The maximal possible speed up 
is the number of phases (usually 3 or 4). However, it is a hard work to balance the 
different phases. Miller and LeBlanc compared sequential and pipeline versions of 
a Pascal compiler having 4 phases and they got 2.5 speed up as an average [20]. 
This result shows the limitations of pipelining. 

Another possible way to construct a parallel compiler is to split the source pro-
gram into smaller independent parts and compile these parts concurrently. Lipkie 
was the first who suggested the combination of pipelining with source fragmenta-
tion [19]. Vandevoorde [27] and Seshardi [23] used the same approach developing 
compilers running on different architectures. Seshardi investigated the concurrent 
processing of declarations as well. 

These experiences shows the importance of pipelining as well as the necessity 
of concurrent semantic evaluation. In this paper we concentrate to the phase of se-
mantic evaluation. Concerning the phase of lexical and syntactic parsing, pipelining 
with immediate fragmentation seems to be a proper solution. We also concentrate 
to more general methods ¡which can be used in an automatic compiler development 
tool. 

2.3 Automatic Compiler Construction 
Compiler-compiler systems generate executable compilers from formal specifica-
tions. Most recent compiler writing systems are based on attribute grammars. Ex-
periences with compiler construction proved feasibility and efficiency of attribute 
grammars for compiler specification. A survey of attribute grammar based compiler 
generation can be found in [6]. 



98 János Toczki 

The compiler generator system PROF-LP [21] developed in Szeged has been 
used for generating various practical compilers, for example [25], [5j. We refer to 
our experiences at appropriate places in the next section. We mention that these 
experiences and suggestions for development in the case of sequential compilation 
are summarized in [26]. 

2A Attribute Grammars 
Various compiler-compiler systems have been developed to generate compilers from 
formal specifications. Most of these systems are based on attribute grammars [15l. 

In this section we recall some basic notions of attribute grammar theory. We 
give only informal definitions instead of formal ones. We feel that it is enough to 
make clear our concepts. More complete definitions can be found in the literature 
for example [2], 17]. 

Let G = \N, T, S, P) be a context-free grammar, where N is the set of nonter-
minal symbols, T is the set of terminal symbols, S E. N is the start symbol, and P 
is the set of context-free productions. 

We associate a set of attributes to each nonterminal symbol. There are two types 
of attributes. The values of inherited attributes are evaluated top-down (from the 
start symbol to the terminals) and the values of synthesized attributes are evaluated 
in the opposite direction. 

Attribute values are determined by semantic functions associated to the synthe-
sized attribute occurrences of the left-hand side nonterminal and to the inherited 
attribute occurrences of the right-hand side nonterminals of each production. The 
arguments of semantic functions are the other attribute occurrences of the same 
production. 

An abstract syntax tree of the grammar G is said to be decorated if all its 
attribute instances have their own values. We say that a decoration of a syntax 
tree 8 is correct iff the values of all attribute instances of s satisfy corresponding 
semantic rules. 

Attribute instances in a syntax tree s depend on each other. We say that an 
attribute instance A(N) depends on an attribute instance b(M), if the value of 
b(M) is needed to evaluate the semantic rule computing the value of a(N), i. e. if 
it occurs as a parameter of the semantic function. 

In this paper we consider only non-circular attribute grammars. An attribute 
grammar is non-circular iff there cannot exist any circular dependencies among the 
attribute instances in any syntax tree. In this case all attribute instances can be 
evaluated in a definite order constrained by the dependencies of the given syntax 
tree. 

2.5 Parallel Attribute Evaluation 
Usually there are some independent attribute instances in a syntax tree. In the 
case of sequential evaluation, a linear order is constructed, evaluating independent 
attribute instances in a more or less ad hoc order. In general, it is possible to 
evaluate independent attribute instances in parallel. 

Kuiper [16], [18] defined the concept of distributor as an algorithm to distribute 
attribute instances among evaluation processes. He defines two basic types of dis-
tribution: 

o A tree based distributor allocates all attribute instances of a subtree of the 
syntax tree to the same evaluation process. The syntax tree is splitted at 
selected nodes. Selected nodes determined by the production applied at the 



Towards Computer Aided Development of Parallel 99 

node - production based distribution - or by the left hand side nonterminal 
of that production - nonterminal based distribution. The distribution can 
be either nested or non-nested. In the case of nested distribution subtrees 
containing selected nodes are splitted again, while in the case of non-nested 
distribution, the syntax tree is splitted only at the selected nodes closest to 
the root. 

A typical application of tree-based distribution is the fragmentation of a block-
structured programming language. Disjoint blocks are usually independent to each 
other. We can allocate attribute instances of different blocks to different processes 
using a nested nonterminal based distributor. 

• An attribute based distributor allocates all instances of an attribute to the 
same process. The distributor can not distinguish between different instances 
of an attribute. It means a strict limit on potential parallelism. If we combine 
it with a tree based distributor, we get a combined distributor. 

A typical application of attribute based distribution is to allocate independent 
tables of a compiler to different processes. For example, symbol tables and label 
tables are usually independent. 

• Jordan introduced third kind of distributors. A dependency based distributor 
allocates all attribute instances of a connected part of the dependency graph 
to the same process;. The allocation is not predefined. An evaluation order 
containing parallel execution of new processes is generated from the depen-
dency graph. In this sense this method is more "dynamic" than Kuiper's 
distributors. 

Dependency based distributors are capable of handling more complicated situ-
ations, when neither tree based nor attribute based distributions are inefficient. 

o 

3 Parallel Compilation on Transputers 
3.1 Assumptions 
A transputer is a loosely-coupled parallel machine having no shared memory. Pro-
cessors communicate via channels. Channels serve not only for synchronization but 
for data exchange, as well. Process loading and channel connections are flexible. 
The only physical bound is the amount of memory and the number of hardware 
connections (usually 4). Peripherals are handled by a host computer which is con-
nected to the processor network via channels. 

In this paper we concentrate on the semantic part of compilers. We suppose 
that the complete syntax tree is available on the host computer or on a transputer 
node. In the case of source fragmentation, before syntactic parsing different parts of 
the syntax tree may be produced by different processes running on different nodes. 
This situation can be handled by appropriate process level distribution, see in 4.1. 
The result of semantic evaluation, the decorated syntax tree, is sent back to the 
host. In the case of a semantic error, an error message is sent to the host and the 
evaluation process is stopped. In some applications, it would be better to pass the 
result to another application. It is only a technical point. 

We suppose a static evaluation method driven by the dependency graphs of 
productions. Among others OAG [11] and ASE [9] are feasible strategies. These 
classes of attribute grammars are large enough in practical cases. 



100 Jinos Tocski 

We suppose availability of a block structured high level algorithmic program-
ming language - we have chosen parallel C - and availability of a flexible CDL 
(configuration description language) usual on transputers. 

3.3 Distribution 
The most important feature of transputers from the point of view of attribute 
distribution is that there is no shared memory available. Although it is possible 
to run more than a single process on the same processor, we should allocate them 
to as many different processors as possible to increase " real" parallelity of the 
compiler. On the other hand, attribute values have to be sent among processors. 
As inter-processor communication is the most expensive task on transputers, we 
should decrease *.he amount of sending data among processes allocated to different 
processors. 

Some attributes - as symbol tables - are extremely large, while others are very 
small. Some attributes have the same or similar meaning. For example most of the 
tables of compilers are represented with a pair of a synthesized and an inherited 
attribute. Usually tables are stored in dynamic data structures, i.e. lists, trees, 
stacks and the attribute values are only pointers to these tables. It means that 
the basic operations "send the value of an attribute to a process" or "compute a 
semantic function" may have quite different expenses. 

Only the author of a compiler knows the size of attributes, the complexity 
of semantic functions. The author has enough information on potential selected 
nonterminals - in the case of tree based distribution - and on "logically" independent 
attributes - in the case of attribute based distribution. 

We can state now the following basic requirements: 
o The user should choose between tree based and attribute based distribution. 

Probably he/she will choose a combined strategy. 

o The user should declare selected and non-selected nonterminals in the case 
of tree based distribution and declare the set of attributes evaluated by the 
same process in the case of attribute based distribution. 

On the other hand there are efficient algorithms to find independent attribute 
instances of an attribute grammar. For example, see Kuiper's algorithm [16]. An 
intelligent system can help the user's decision and check its correctness using these 
algorithms. 

o The system should help and check the user's decision on distribution using 
dependency analysis. 

3.3 Process Loading 
Most of transputer operating systems include some load balancing mechanisms. It 
means that the system distributes processes among processors on the bases of their 
current status. On the other hand the user has the possibility to describe her/his 
own configuration using CDL (Configuration Description Language). 

Automatic load balancing assumes a farmer-workers architecture, while the user 
can use (almost) any other architecture. It gives a large amount of flexibility. On 
the other hand, it is much easier to program an automatically balanced system. 

Another important question that we should answer is: should we develop a 
general evaluation process which contains all the semantic functions and run it on 
all processors or should we develop several smaller processes? Execution time of 



Towards Computer Aided Development of Parallel 101 

semantic functions and the number of attribute instances evaluated by a process 
may be quite different. Furthermore scheduling many small processes causes too 
much overhead time. It is more efficient to run a general evaluator on all processors 
and implement evaluation processes as tasks rather than real physical processes. 
In this approach a task means evaluation of all attribute instances allocated to a 
logical process. Each task has a set of output attribute instances - the attribute 
instances which are computed - and a set of tnput attribute instances - values of 
which are needed for the computation. 

In this case, we cannot use the automatic load balancing mechanism of the 
operating system: load balancing means allocating tasks to processes, and not 
allocating physical processes to processors. The dynamic load balancing method 
described in [24] is applicable for any decomposable problem. Although attribute 
evaluation is not a decomposable problem, we can associate a home processor to 
each attribute instance. The value of an attribute instance is sent back to its home 
processor after evaluation. More detailed description of process loading can be 
found in the next section. 

4 Developing Parallel Compilers 
In this section we describe the structure of a software environment for developing 
parallel compilers based on the requirements stated in section 2. First we discuss 
the features of a metalanguage for specifying a parallel compiler and describe the 
general structure of the generated compiler. After that, we sketch the structure of 
the development environment including a generator tool. Finally we consider some 
technical questions. 

4.1 Parallel Compiler Specification 
The specification of a parallel compiler is an attribute grammar completed with eval-
uation instructions and with the implementation of semantic functions. We start 
from the metalanguage of PROF-LP [21]. This metalanguage has the following 
features. 

• The set of synthesized and inherited attributes are declared. The domain of 
an attribute is given by a data type of the implementation language. 

• The set of nonterminals with the list of their attributes is declared. The 
generated compiler is modular, a module is formed from a set of nonterminals. 

• The set of terminals is declared. Some terminals, called tokens, may have 
input attributes. The lexical structure is described separately. 

• Productions are listed together with semantic functions. A semantic function 
is given by an expression or by a subroutine written in the implementation 
language. 

• The description is completed with one or more program modules written in 
the implementation language including attribute types, semantic functions 
and any other elements as constants, variables, subroutines. This makes 
it possible for the user to implement dynamic data structures and global 
program objects. 



102 János Toczki 

We mention here that an augmented metalanguage is defined in 26] containing 
such elements as regular right hand side productions (sometimes called as extended 
cf grammar), augmented semantic functions for such productions, global table def-
initions, structured dynamic data type declarations embedded in a block structured 
modular metalanguage. 

• The metalanguage of PROF-LP augmented with modularity and block struc-
ture is applicable. 

• We introduce four levels of modularity: 

Metalanguage level. A module is a usually large part of the attribute 
grammar described in one input file and processed at the same time. 
A module is formed from a set of nonterminals. 

Process level. A module is a - possibly different - part of the generated 
compiler implemented in one process. The user may develop some other 
processes containing the same elements as it is usual in PROF-LP. 
Configuration of these physical processes are up to the user. 

Tfcee level. A tree module is a connected part of the syntax tree determined 
by selected nonterminals. It is the basis of tree based distribution. Tree 
level modularity should be compatible with source fragmentation. 

Task level. A task is an elementary part of evaluation, target of automatic 
load balancing. A task is a set of attribute instances defined by the user. 

The first two levels are applicable only in large systems. These two levels are 
incomparable, either a metalanguage module may contain more processes or 
a process may be composed from more modules. 

• Production descriptions are applicable in their original form. 
• We do not consider the lexical description here. 

Formal consistency of the specification can be checked in the same way as it is 
usual in the case of sequential compilers. Checking correctness of semantic functions 
against the requirements of the implementation language is left to the compiler. 

4.2 General Structure of the Generated Parallel Compiler 
The generated compiler consists of three parts: A static kernel contains basic rou-
tines, the attribute evaluator is generated from the specification, user supplied parts 
are copied into the system without any change. 

• The kernel contains the following routines. 

Input-output and distribution. In this paper we do not deal with the 
syntactic parser part of the compiler, so we suppose that the syntax 
tree is available. As we use a dynamic load balancing method, the whole 
syntax tree should be sent to each processor first. The result - the values 
of synthesized attribute instances of the root symbol - are sent to the 
host. 

Task scheduler and load balancer. The dynamic load balancer given in 
[24] can be applied as follows. A task means evaluation of a set of 
attribute instances. Two attribute instances N.a and M.b are in the 
same set if and only if the following conditions hold: 



Towards Computer Aided Development of Parallel 103 

— The nodes M and N are in the tame tree module, that is, there are 
not selected nonterminals along the path between N and M in the 
syntax tree. 

— Attributes a and b are in the same attribute set declared by the user. 
— The attribute instances N.a and M.b are dependent on each other. 

As it is very hard to check this condition, we can use another con-
ditions instead. 

* We can use Kuiper's algorithm [16] which decides whether any 
two instances of two attribute occurrences may be dependent. 

* We ca:i use Jordan's dependency based dynamic distributor [10]. 
In its original form it is based on local dependencies of a single 
production. It is easy to extend it to check dependencies of a 
subtree (tree module). 

We suggest a more simple method instead. We can use Jordan's 
method to form elementary tasks. The problem is that only at-
tribute instances evaluated in the same production are allocated to 
the same task. After that we can form the unions of these - small 
- tasks using tree based distribution. 

The same universal evaluator algorithm is running on each processor. 
The load balancer distributes tasks among processors. The evaluation 
starts on a single processor with tasks belonging to the root of the parsing 
tree. When a task has become executable - that is, all its input attribute 
instances are available - the processor sends this task to the one of its 
neighboring nodes. The node is selected on the numbers of other tasks 
waiting for execution. Leaving a tree module means that virtually all 
tasks evaluating attribute instances of the module just entered are sent 
away. 
Executing a semantic function may need an extremely long time, others 
may be divided into smaller parts. Rutins handling tasks - insert a new 
task to the waiting list, declaring input and output parameters, etc. -
are available for the user. 

Error handling routines. All error messages are sent to the host com-
puter. ; 

• The evaluator contains a branch for each task containing semantic functions 
evaluating the set of attribute instances belonging to this task. It may start 
other tasks, as well. An evaluator is generated from a process level module. 
The evaluator is called by the load balancer whenever a task is started. 

• The routines containing user written semantic functions are simply copied 
into the system. They may send tasks for the load balancer for execution. 

4.3 Compiler Development Environment 
The compiler development environment contains the following modules. 
Metalanguage parser: checking the formal correctness of the specification. 
Dependency analyser: computing attribute dependencies and checking its prop-

erties against the requirements of the evaluation strategy. 
Distribution analyser checking dependencies among tree modules, attribute sets 

and tasks. It can hilp the user choosing a proper distribution strategy. 



104 János Toczki 

Code generate?: generating the evaluator. 
Developer utilities: helping the user developing semantic functions. 
Execution utilities: helping the user configuring and executing the generated 

system. 
The development process can be run on the host compiler. We mention that some 
suggestions to develop parallel compiler-compilers can be found in [3]. As can be 
seen, the structure of the compiler-compiler is very similar to the structure of a 
sequential system. 

&A Technical Issues 
We have started the implementation of the parallel compiler development envi-
ronment with developing a small prototype for semantic check of a simple block 
structured language. Using the prototype, we get a statement by statement specifi-
cation of the generated system as well as the kernel of the compiler. We implement 
it in parallel C running on a network of 16 T8000 processors. 

Meanwhile an attribute grammar specification of the metalanguage is under 
development. We will generate the metalanguage parser from this specification 
using the compiler generator PROF-LP. The whole system will run on IBM PC 
under DOS, the implementation language is Turbo Pascal. As the host computer 
of our transputer is a Unix machine we have to transfer the generated compiler to 
the host. It may cause some technical problems. 

The implementation of the whole system needs a lot of time and manpower. 
Practical experiences will be available after the completion of the implementation. 

5 Final Remarks 
In this paper we considered the problem of developing parallel compilers running 
on transputer architecture. Our most important conclusion is that we should give 
a lot of freedom to the user during developing such compilers. Only the user has 
enough knowledge to make basic decisions on attribute distribution. However some 
steps of development can be done automatically. Moreover we can help the user's 
work with the results of some test algorithms. 

We stated the most important requirements for a compiler-compiler for devel-
oping parallel compilers. The basic structure of the compiler and the compiler-
compiler has been described. 

The first version of the system is under implementation now. Moreover we 
should consider the following questions in the future. 

o How our generated semantic analyser can be combined with parsing? The 
results of Klein and Koskimies [13], [14] also may help solving this problem. 

o Which meuhods and algorithms can be used in parallel compilers? For ex-
ample what kind of symbol table handling methods are suitable? Have these 
methods any consequence for the structure of the compiler? 

o The basic motivation of our research was to contribute in developing softwares 
for IDIOMS machine. We should go on in this direction as well. 

o It is also important to find other application fields, where a compiler running 
on transputer is suitable and efficient. 

Finally we thanks to Lajos Schrettner for his valuable remarks and suggestions. 



Towards Computer Aided Development of Parallel 105 

References 
[1] Akker, R., H. Alblas, A. Nijholt, P. O. Luttighuis, K. Sikkel: An annotated 

bibliography on parallel parsing, updated version, Technical Report, Dept. 
of Computer Science, Univ. of Twente, 92-84, 1992. 

[2] Alblas, H.: Attribute evaluation methods, in Proc. of SAGA, Prague, 1991. 
LNCS 545., pp 48-113. 

[3] Alblas, H.: A blueprint for a parallel parser generator, Technical Report, 
Dept. of Computer Science, Univ. of Twente, 92-65, 1992. 

[4] Alblas, H., R. Akker, P. O. Luttinghuis, K. Sikkel: A bibliography on 
parallel parsing, in ACM Sigplan Notices, Vol. 29, No. 1., 1994. pp 54-65 

[5] Almási, J., T. Horv&th, M. Medvey, J. Toczki: On the implementation of 
cellular software development system, in Proc. of PARCELLA 88, Berlin, 
1988. 

[6] Deransart, P., M. Jourdan, B. Lorho: Attribute grammars, systems and 
bibliography, LNCS 323., 1988. 

[7] Engelfriet, J.: Attribute grammars: Attribute evaluation methods, in 
Methods and tools for compiler construction, Cambridge Univ. Press, 1984, 
pp. 103-138. 

[8] Cross, T., A. Zobel, M. Zolg: Parallel Compilation for a Parallel Machine, 
in Proc. of SIGPLAN "89, SIGPLAN Notices 24, 7 (1989), pp 91-100. 

[9] Jazayeri, M., K. G. Walter: Alternating semantic evaluator, In Proc. of 
ACM 1975 Annual Conf., 1975., pp. 230-234. 

10] Jourdan, M.: A survey of parallel attribute evaluation methods, in Proc of 
SAGA, Prague, 1991., LNCS 545., pp 234-254. 

11] Kastens, U.: Ordered attribute grammars, Acta Informática 13, 1980, pp. 
229-256. 

12] Kerridge, J. M.: The design of the IDIOMS parallel database machine, in 
Proc. of British National Conf. on Databases 9, 1991. 

13] Klein, K., K. Koskimeies: Parallel one pass compilation, in Proc of WAGA, 
Paris 1990, LNCS 461., pp 76-90. 

14] Klein, K., K. Koskimies: How to pipeline parsing with parallel semantic 
analysis, Structured Programming 13, 1992., pp 99-107. 

15] Knuth, D. E.: Semantics of context-free languages, Math. Systems Theory 
2, 1968., pp. 127-145, correction Math. Systems Theory 5, 1971. pp 95-96. 

16] Kuiper, M. F.: Parallel attribute evaluation, Ph. D. Thesis, Fac. of Infor-
matics, Univ. of Utrecht, 1989. 

17] Kuiper, M. F., A. Dijkstra: Attribute evaluation on a network of trans-
puters, in Wexler (ed.): Developing transputer applications, Amsterdam, 
1989., pp 142-149. 



106 János Toczki 

[18] Kuiper, M. F., D. Swierstra: Parallel Attribute Evaluation: Structure of 
Evaluators and Detection of Parallelism, in Proc. of WAG A 90, Paris, 1990., 
LNCS 461, pp. 61-75. 

[19] Lipkie, D. E.: A compiler design for multiple independent processor com-
puters. Ph.D. Th. Dept. of Computer Science, Univ. of Washington, Seattle, 
1979. 

[20] Miller, J. A., R. J. LeBlanc: Distributed compilation: a case study, in 
Proc. of the Third Int. Conf. on Distributed Computing Systems, (1982), 
pp. 548-553. 

[21] PROF-LP User's Guide, Research Group on Theory of Automata, Szeged, 
1987. 

[22] Schell, R. M.: Methods for constructing parallel compilers for use in a 
multi-processor environment, Ph.D. Th., Rep. No. 958, Dept. of Computer 
Science, Univ. of Illinois at Urbana-Champaign, 1979. 

[23] Seshardi, V., D. B. Wortman: An investigation into Concurrent Semantic 
Analysis, Software, Practice and Experience Vol. 21. No. 12. (1991) pp. 
1323-1348. 

[24] Schrettner, L., J. Toczki: Dynamic Load Balancing for Decomposable 
Problems, Proc. of Workshop on Parallel Processing in Education, Impact 
Tempus JEP/Hungarian Transputer Users Group, Miskolc, 1993. 

[25] Toczki, J., T. Gyimothy, G. Jahni: Implementation of a LOTOS precom-
piler, in Proc. of PD 88, Budapest, 1988. 

[26] Toczki, J.: Attribute grammars and their applications, (in Hugarian), Dr. 
Univ. Thisis, Depts. of Informatics, József Attila Univ. of Szeged, 1991. 

[27] Vandervoorde, M. T.: Parallel Compilation on a Tightly Coupled Multi-
processor, SRC Reports No. 26, Digital Systems Research Center, 1988. 

Received October, 1994 


