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On graphs with perfect internal matchings* 

Miklós Barthat Éva Gombás* 

Abstract 

Graphs with perfect internal matchings are studied as underlying objects 
of certain molecular switching devices called soliton automata. A perfect 
internal matching of a graph is a matching that covers all vertices of the 
graph, except possibly those with degree one. Such a matching is called a 
state of the graph. It is proved that for every two states there exists a so 
called mediator alternating network which can be used as a switch between 
those two states. As a consequence of this result it is shown how transitions 
of soliton automata can be decomposed into a sequence of simpler moves. 
Elementary graphs having a perfect internal matching axe defined through an 
equivalence relation on their edges. Another equivalence relation on the set 
of vertices is introduced to characterize the well-known canonical partition of 
elementary graphs in the new generalized sense. 

1 Introduction 
The results of this paper were motivated by the developments of a research aiming 
to construct a computer based on molecular switching components. Molecules 
exhibiting a switching behavior have long been investigated by chemists, cf. [4], 
but it was not until recently that the first mathematical model of a switching 
molecular device was introduced in [5] under the name soliton automaton. 

The underlying object of a soliton automaton is a so called soliton graph, which 
is a finite undirected graph modeling the topological structure of a molecule. Atoms 
are represented by vertices and chemical bonds by edges. The multiplicity of bonds 
(single or double) is set by a weight assignment to the edges of the corresponding 
soliton graph. It is assumed that the molecule consists of carbon and hydrogen 
atoms only, and that among the neighbors of each carbon atom there exists a 
unique one to which the atom is connected by a double bond. This latter property 
can nicely be captured by the concept of matching in graphs. 
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The above topological model of molecules has already been used earlier to study 
some other properties of a chemical compound. The reader is referred to [10, Sec-
tion 8.7] for a detailed discussion on Hiickel graphs, which are models of molecules 
having the same alternating pattern of single and double bonds that we are con-
cerned with in this paper. The only essential difference between Hiickel graphs 
and soliton graphs in terms of matching theory is the following. Hiickel graphs 
are generally supposed to have a perfect matching, whereas in soliton graphs only 
the internal vertices (i.e. those with degree greater than one) are required to be 
covered by an appropriate matching. Such a matching is called a perfect internal 
matching. Vertices with degree one are considered to be external in soliton graphs. 
The collection of such vertices is treated as an interface for the internal part of the 
graph, so that these vertices need not be covered by a perfect internal matching. 

A state of a soliton automaton is a perfect internal matching of the underlying 
soliton graph. State transitions are induced by directing a particle (electron, soli-
ton) from one external vertex of the graph to another or even the same external 
vertex along an alternating walk. Making the walk will then result in a new state 
by switching all the bonds to the opposite throughout the walk in a dynamic way. 
For more details, see e.g. [5]. 

The aim of this paper is to develop a suitable mathematical arsenal for the study 
of soliton automata. There has already been some previous work done towards this 
goal. Soliton automata with some special properties have been investigated in [6], 
[7] and [8]. In [1], an algebraic framework has been introduced to provide a new 
calculus for dealing with finite undirected multigraphs. Concerning matchings, 
the Gallai-Edmonds Structure Theorem has been proved for maximum internal 
matchings in [2]. This theorem plays a central role in the algebra of graphs having 
a perfect internal matching, which has been described in [3]. Although the present 
paper is self-contained, some familiarity with [10] will be helpful for the reader. 

2 Review of basic concepts and notations 
By a graph we mean, throughout the paper, a finite undirected non-empty graph 
with loops, and multiple edges allowed. If G is a graph, then V{G) and E(G) will 
denote the set of vertices and the set of edges of G, respectively. An edge e G E(G) 
connects two vertices vi,v2 6 V(G), which are called the endpoints of e, and e is 
said to be incident with vi and V2• If vi = V2, then e is called a loop around ui. 
Two edges sharing at least one endpoint are said to be adjacent in G. 

For a vertex v in graph G, we define the degree of v to be the number of 
occurrences of v as an endpoint of some edge in E(G). By this definition, the 
endpoints of a loop are considered to be two different occurrences of the same 
vertex. The vertex v is called isolated if its degree d(v) is zero, external if d{v) = 1 
and internal if d(v) > 2. An edge e 6 E(G) is an internal edge if both endpoints of 
e are internal. External edges are those that are incident with at least one external 
vertex. 

A matching of/iri graph G is a subset M C E(G) such that no vertex of G 
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occurs more than once as an endpoint of some edge in M. Again, it is understood 
that loops, having themselves two occurrences of the same endpoint, cannot be 
present in M. The endpoints of the edges contained in matching M are said to 
be covered by M. A matching M is called perfect if it covers all of V(G). A 
perfect internal matching is one that covers all the internal vertices of G. An edge 
e 6 E(G) is allowed (mandatory) if e is contained in some (respectively, all) perfect 
internal matching(s) of G. Forbidden edges are those that are not allowed. A 
perfect internal matching in G will also be referred to as a state of G. 

In graph G, a trail is a sequence a = e i , . . . ,e„ (n > 0) of distinct adjacent 
edges EI 6 E(G), i E. [n] = { 1 , . . . , n} such that no vertex of G occurs more than 
twice as an endpoint of some e .̂ The integer n is said to be the length of the trail 
a. If, in addition, en is adjacent to e\, or n = 0, then a is called a cycle, otherwise 
a is a path. In the latter case, if ei and en are both external edges, then a is 
said to be a crossing. Note that every trail a in G can be uniquely specified as an 
appropriate connected subgraph of G if we are not concerned about the way A is 
actually traversed. Moreover, if a is non-empty, then this subgraph can be uniquely 
identified with the set of edges contained in a. Two trails are said to be disjoint if 
they are such as subgraphs of G. Since in this paper, except for Section 5, we shall 
not be interested in the traversal of trails, we shall often refer to a non-empty trail 
a = e i , . . . ,e„ as a set, i.e. as a = { e i , . . . , e n } , without causing any confusion. 
Note, however, that disjointness of two trails is ambiguous in general under this 
assumption. 

Let M be a perfect internal matching of G. A trail a = e\,..., e„ is an alternat-
ing trail with respect to M (M-alternating trail, for short) if for every i s [n — 1], 
ei € M iff ei+i $ M. An M-alternating trail a is called complete if a is either 
a crossing or it is a non-empty even length cycle. An alternating network with 
respect to M (or M-alternating network) is a set of pairwise disjoint, complete 
M-alternating trails. Observe that if two complete alternating trails are running 
on disjoint sets of edges, then they must be disjoint as subgraphs of G, too. Thus, 
identifying complete alternating trails with the set of their edges does not cause 
ambiguity regarding the disjointness of such trails. Also note that, although an 
M-alternating network T consists of non-empty trails only, the network F itself can 
be empty. 

Let M be a state (i.e., a perfect internal matching) of graph G and a be a 
complete alternating trail. By making a in state M we mean exchanging the status 
of the edges in a regarding their being present or not present in M. It is easy to 
see that this process results in another perfect internal matching of G, which will 
be denoted by SG{M,O) or simply by S(M,A) if G is understood. Making an M -
alternating network T in state M means making all the trails of F simultaneously 
in M. Since the trails contained in T do not intersect each other, the resulting 
state, denoted SQ{M, T), is well-defined. 
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3 Characterizing state transitions by alternating 
networks 

Our starting theorem relates two arbitrary states of a graph by means of a suitable 
alternating network that takes the one state into the other. This theorem also 
manifests the basic inductive proof technique applied in the paper: to obtain a 
simpler graph, cut an internal edge of the graph at hand and make a correspondence 
between the complete alternating trails of the original graph and those of the cut 
graph. Thus, the induction eventually goes by the number of internal edges. 
Theorem 3.1 For any two states Mi, M2 of graph G, there exists a unique Mi -
alternating network T for which SQ (MI , T) = M2 . 
Proof. We prove the existence of T by induction on the number of internal edges 
of G. If G has no internal edges, then all of its components are either star graphs 
or single edges connecting two external vertices. In such components we can switch 
from one state to another by making a straightforward crossing. 

Suppose now that G has at least one internal edge e, and assume that the 
assertion holds true for all graphs having fewer internal edges than G. Let v\ and 
V2 denote the two endpoints of e. We cut e by replacing it with two new external 
edges ei and e2 that are incident with v\ and i>2, respectively. Let G' denote the 
resulting graph. Obviously, G' has fewer internal edges than G and it has a perfect 
internal matching. Moreover, the perfect internal matchings of G are in a one-
to-one correspondence with those perfect internal matchings M' of G' for which 
d € M' iff e2 6 M1. Applying the induction hypothesis for graph G' and states 
M j , M 2 corresponding to the states Mi ,M 2 of G, we obtain an M[-alternating 
network T' = {a ' j , . . . , in G' satisfying Sc,"(M[, T') = M'2. If neither e\ nor 
e2 is present in any of the trails of T', then by putting T = T' we are through. 
Otherwise one of the two cases below is met. 

Case 1. There exists a unique j G [k] such that a'j is a crossing which connects 
ei to e2. See Fig. la. Since M[ corresponds to state Mi of G, we have e\ e M{ 
iff e2 € M[. This implies that the length of a'j is odd. Remerging ei with e2 then 
gives rise to an alternating cycle ctj in G with respect to M\. Moreover, making 
a'j in G' and remerging ei with e2 after has the same effect as making ctj directly 
in G. Making the network r = T' — a'j U aj in G will therefore take state Mi to 
state M2 as required. 
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e e 

Figure 1. 

Case 2. There exist two different crossings a'^., i = 1,2, ji 6 [k] such that 
ei 6 a'j.. See Fig. lb. In this case the remerging of ei and e2 results in an M\-
alternating crossing a in G. Using the same argument as in Case 1, the desired 
alternating network is obtained as T = r" - {a'^, a^2} U a. 

To prove the uniqueness of T we need the following lemma. 
Lemma 3.2 For a graph G, let C = {C\,... ,Cn} and V = {D\,...,Dm} be two 
sets of pairwise disjoint connected subgraphs of G. If UC = UV, then C = V. 

Proof. By symmetry it is sufficient to prove that for every j £ [m] there exists 
some i € [n] such that Dj = Cj. Since the subgraphs contained in C are pairwise 
disjoint and Dj is connected, Dj is a subgraph of some Ci. i €. [n]. But then Dj 
must be equal to Ci, otherwise Ci would be covered by more than one subgraph 
taken from V, contradicting the fact that C, is connected. • 

Now we turn back to the proof of Theorem 3.1. Let us assume that F and A are 
complete alternating trails such that S(Mi,T) = S(Mi, A) = M2. Obviously, both 
u r and UA consist of exactly those edges e € E(G) for which e £ Mi iff e $ M2. 
Therefore u r = UA, and by Lemma 3.2, T = A. 

• 
Observe that Theorem 3.1 is symmetric in Mi and M2, for T is an alternating 

network with respect to Mi iff it is one with respect to M2 = 5g(Mi, T). In other 
words, 

Ml = S G ( S G ( M i , r ) , r ) . 
The network T is called the mediator alternating network between states Mi and 
M2 , and is denoted by Med (Mi, M2). 

Let us fix a graph G having a perfect internal matching for Sections 3 and 4. An 
edge e € E(G) is said to be constant in state M of G if no complete M-alternating 
trail passes through e. 
Corollary 3.3 An edge e is constant in some state of G iff e is either forbidden 
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or mandatory. 
Proof. By Theorem 3.1, e is constant in some state of G iff it is such in all states 
of G. • 

Now we recall the concept of impervious edge from [5]. Although our definition 
is different from [5, Definition 4.2], it is easy to see that the concepts captured by 
the two definitions are essentially the same. 
Definition 3.4 An edge e € E(G) is viable in state M if there exists an M -
alternating path e i , . . . , en from some external vertex of G to one of the endpoints 
of e such that 

(i) e / e ; for any i € [n]; 
(ii) en and e are M-alternating in the sense that en 6 M iff e ^ M. 

The edge e is impervious if it is not viable (in state M). 

Intuitively, e is viable in state M if there exists an M-alternating path that 
starts from an external vertex, reaches one endpoint of e without passing through 
e itself, and it can be continued on e in an alternating fashion. This continuation, 
however, need not be a path as shown by Fig. 2. In Fig. 2, double lines indicate 
edges belonging to the matching M rather than multiple edges in the graph G. The 
reader is referred to [5, Figure 11] for examples of impervious edges in graphs that 
are connected and have external vertices, too. 

Corollary 3.5 An edge is impervious in some state of G iff it is impervious in all 
states of G. 

Proof. It is sufficient to prove that if e € E(G) is viable in some state Mi , then 
it is viable in any other state M2. Assuming that e is viable in state Mi , let us 
cut e as described in the proof of Theorem 3.1 to obtain a graph G' with two new 
external edges ei,e2 . Again, let M[ and M2 be the states of G' corresponding to 
Mi and M2, respectively. By assumption, there exists an M[-alternating crossing 
a1 in G' containing exactly one of ei and e2. It follows that exactly one of e\ and e2 

will be present in some crossing of Med(M2, Sc (M[, a')). From this crossing, after 
remerging ex with e2, we obtain a suitable M2-alternating path in G that reaches 
one endpoint of e and can be continued on e in an alternating fashion. • 
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4 Elementary equivalence and canonical parti-
tion of elementary graphs 

Recall from [10] that a graph G is elementary if it has a perfect matching and its 
allowed edges form a connected subgraph. If G has only a perfect internal matching, 
then consider the equivalence relation e on E(G) by which e\ e e2 iff either ei = e2 or 
e\ and e2 are in the same connected component of the restriction of G to its allowed 
edges. Our aim is to characterize the relation e in terms of complete alternating 
trails. 
Definition 4.1 Two complete alternating trails a and ß with respect to the same 
state M of G are conjugated if Med (S(M,a) , S(M, ß)) is a singleton. 

It is immediate by the above definition that if a and ß are conjugated, then they 
must intersect each other without being identical themselves. Indeed, if a and ß are 
complete alternating trails, then a f1/3 = 0 implies that Med (S(M,a) , S(M, ß)) = 
{a,ß} and a = ß implies that Med (S (M,a ) ,S {M,ß ) ) = 0. (Remember that all 
complete alternating trails are non-empty, by definition.) 
Lemma 4.2 Let a and ß be two complete alternating trails with respect to the 
same state M. Then, for every edge e £ ß — a there exists a complete alternating 
trail 7 with respect to some M 6 {M,S(M,a)} passing through e such that a and 
7 are either conjugated or disjoint. 
Proof. Let riß(a) be the number of edges contained in ß — a. The proof is an 
inductive argument on nß(a). The basis case n.ß(a) = 0 is trivial. 

Let np(a) > 1, and assume that the assertion of the lemma holds for all triples 
(a', ß', M') such that a' and ß' are complete alternating trails with respect to state 
M', and nßi(a') < nß(a). Choose ß' to be the complete alternating trail of the 
network r = Med(S(M, a),S(M, ß)) containing e. Since the trails of T are running 
exclusively on those edges of a and ß that are not contained in their intersection, 
riß: (a) < nß(a). Moreover, nß'(a) = nß(a) iff either ß1 = ß is disjoint from a or T 
is a singleton, in which cases there is nothing to prove. If, however, nß< (a) < rip (a), 
then the induction hypothesis can be applied for a' = a and ft', which are complete 
alternating trails with respect to state M' — S(M,a). To complete the proof, one 
must take into account that S(S(M,a),a) = M. 

• 
Corollary 4.3 Let a be a complete alternating trail in G with respect to state 

M, and let e 6 E(G) be an allowed edge adjacent to some edge in a. Then for 
every e' € a there exists a complete alternating trail 5 with respect to some M E 
{M,S(M,a)} which contains both e and e'. 

Proof. We can assume that e fca. If e were mandatory, then every edge adjacent 
to e would be forbidden, contradicting the fact that all the edges of a are allowed. 
Thus, by Corollary 3.2, there exists a complete alternating trail ß with e £ ß — a. 
Applying Lemma 4.2 we obtain a complete alternating trail 7 with respect to some 
M 6 {M,S(M,a)} which also contains e and, moreover, a and 7 are conjugated. 
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It is now clear that the required complete alternating trail 6 can be chosen either as 
S = 7 or as S = Med(S(M,a),S(M,j)), depending on whether 7 passes through e 
or not. 

• 
Now we redefine the relation of elementary equivalence introduced at the be-

ginning of this section. 
Definition 4.4 Two edges ei,e2 are elementary equivalent if either e\ = e2 or 
there exists a complete alternating trail with respect to some state of G containing 
both e\ and e2. 

The relation of elementary equivalence will be denoted by e. 
Theorem 4.5 Elementary equivalence is an equivalence relation on E(G). 

Proof. We only have to address transitivity of e. Let ei, e2, be such that ei e e2 

and e2ee3. Then there exists a complete Mi-alternating trail a joining e\ to e2 

and a complete M2-alternating trail joining e2 to e3, where Mi and M2 are some 
states of G. It follows that can be reached from some vertex lying on a by a 
path r consisting of allowable edges only. Using Corollary 4.3, a straightforward 
induction on the length of r shows that there exists a complete alternating trail <5 
with respect to some state M3 which contains both e\ and e$. Thus, e\ eez, which 
was to be proved. 

• 
It turns out from the proof of Theorem 4.5 that if ei and e2 are adjacent edges 

in G, then either eiee 2 or one of e\ and e2 is forbidden. This means that the 
relation e coincides with the one that we intended to characterize at the beginning 
of this section. Spelling this out, the equivalence classes of e that are different from 
a single forbidden edge are exactly the connected components of the restriction of 
G to its allowed edges. 

Consider the relation ey on V(G) by which vx ey v2 iff either v\ = v2 or Wj 
and V2 can be connected by a complete alternating trail with respect to some 
state of G. By virtue of Theorem 4.5, ey is also an equivalence relation. Slightly 
modifying the original definition given in [10], we call G elementary if ey is the 
universal relation on V(G). Note that if G is elementary, then the relation e is not 
necessarily universal on E(G), for G might contain some forbidden edges as well. 

For the rest of this section we shall assume that G is elementary. Our goal is to 
find the analog of the canonical partition V(G) of V(G), where G is a graph with 
a perfect matching, for the case when G has just a perfect internal matching. The 
partition V(G) has been described in [10, Theorem 5.2.2] in many different ways, 
based on the concepts of extreme set and barrier. Unfortunately, we have not been 
able to generalize these concepts for graphs with perfect internal matchings yet, 
but we can still characterize V(G) by the following very simple relation 

Definition 4.6 For two vertices V\,V2 € V(G), vi ~ w2 if an extra edge e connect-
ing vi and V2 becomes forbidden in G + e (i.e. in the extension of G by e). 

According to part (b) of [10, Theorem 5.2.2], if G does not contain loops and 
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external vertices, then ~ is an equivalence relation and V(G) is the partition in-
duced by Here we prove that ~ is an equivalence anyhow. 
Theorem 4.7 The relation ~ is an equivalence on V(G). 

Proof. Since loops are forbidden edges, ~ is reflexive. It remains to show the 
transitivity of Let ~ t>2 and v? ~ for distinct vertices Vi,«2,«3 € V(G). 
We have to prove that an extra edge e connecting v\ with v3 becomes forbidden in 
G+e . Assume, on the contrary, that e is allowed. It is clear that e is not mandatory, 
hence G + e is still elementary. Moreover, due to the elementary property, there is 
an allowed edge e' incident with i>2 such that eee' holds in G + e. Therefore, by 
Theorem 4.5, there exists a complete alternating trail a with respect to some state 
M of G + e containing e and reaching V2 on the way. We distinguish two cases. 

Case 1: a is an even length cycle, see Fig. 3a. 
Since each of the edges (ui, V2) and (1^2,̂ 3) would become forbidden when adding 

them to G, the subpaths of a connecting v\ with v2 and v2 with v3 are of even 
length. Thus, together with e, the length of a turns odd, which is a contradiction. 

Case 2: a is a crossing that connects two external vertices x,y, see Fig. 3b. 
Without loss of generality we may assume that v\ lies between w2 and V3 on a 

and that e $ M. Again, the length of the subpath of a connecting v\ and is 
even, for V\ ~ w2. 

Consequently, the crossing x,..., V2, V3,..., y is M-alternating in G + (w2, u3), con-
tradicting the assumption that u2 ~ v3. 

• 
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5 Connection to soliton automata 
According to [5], a soliton graph is a pair (G,ui), where G is an undirected graph 
and to is a weight function from B(G) into the set of positive integers such that 
these data satisfy the following conditions: 

(a) G has no loops or multiple edges; 

(b) every connected component of G has at least one external node; 

(c) for every v £ V(G), d(v) < 3; 

(d) for every internal vertex v, w(v) = d(v) + 1, where w(v) stands for the sum 
of the weights of all edges incident with v, 

(e) if v is an external vertex, then w(v) £ {1,2}. 

Conditions (d) and (e) imply that the weight of every edge in G is either 1 or 2, 
and for every internal vertex v there exists exactly one edge e incident with v such 
that w(e) = 2. Let M C E{G) consist of those edges which have weight 2. Clearly, 
M is a perfect internal matching of G. Conversely, every perfect internal matching 
of G corresponds to a suitable weight function w satisfying (d) and (e) above. Hence 
our approach to soliton automata based on matching theory. Conditions (a), (b) 
and (c) impose restrictions on the graph structure only, so that they are irrelevant 
as far as matchings are concerned. We believe that the concept "soliton graph" 
should be independent of the particular weight function (perfect internal matching) 
chosen for it, that is why we would rather define a soliton graph simply to be a 
graph having a perfect internal matching. 

Now we quote the definition of soliton path from [5]. Note that the terminology 
of the authors of [5] differs from ours in that they call a path what we defined as a 
walk in Section 2. Moreover, since their discussion excludes graphs with loops and 
multiple edges, it was sufficient for them to specify a path as a sequence of vertices 
rather than a sequence of edges. 

Thus, according to [5], a partial soliton path in a soliton graph (G,w) is a path 
vq , vi,..., Vk satisfying the following conditions: 

(a) wo is an external vertex; 
(b) V\,V2, • • • ,Vk-i are internal vertices; 
(c) there is a sequence (G,wo),..., (G,Wk) of weighted (not necessarily soliton) 

graphs 
that are constructed as follows: 

( c l ) w0 = w; 
(c2) for i = 0 ,1 , . . . , k — 2, the function Wi+i is defined iff Wi is defined 

and \wi(vi,vi+1) - Wi{vi+i, i>i+2)| = 1- In this case, for all edges 
(v,v')eE(G), 

,»>• r „ - / w * ( v > v ' ) i f ( v ' v > ) ( w » . « i + i ) wl+1(v,v)~ | 3_wi{vuv.+i) if („,„') = 
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(c3) Wk is defined iff Wk-\ is defined. In this case, for all (v,v ' ) £ E(G), 

(w^ivy) 
{ 3-wk-i(u 

'0 if {v,v') # (Vk-l,Vk) 
(Vk-i,Vk) if (v,v') = (Vk-l,Vk). 

A partial soliton path is called a (total) soliton path if above is an external 
vertex. 

Intuitively, a soliton path (walk) is an alternating walk with respect to some 
state M of the graph G that starts and ends at an external vertex. However, the 
status of each edge in the walk regarding its presence in M changes dynamically step 
by step while making the walk. More precisely, this status changes to the opposite 
right after having traversed the edge. Thus, by the time the walk is finished, a new 
state M' of G is reached. See [5, Lemma 3.3] for a proof of this last statement. 

Here we provide a somewhat simpler definition of soliton walks using our own 
terminology. For the sake of convenience and unambiguity, we shall specify a walk 
of length n in graph G as a sequence a = v0:e\,... ,en,vn of alternating vertices 
and edges, indicating also the starting point i>o £ V(G) of a and the vertex Vj, 
j € [n], that the walk has reached after traversing the j-th edge e3. For every 
j 6 [n], na(j) will denote the number of occurrences of the edge ej in the prefix 
vo , e i , . . . ,ej. By a backtrack in a walk we mean the traversal of the same edge 
twice in a consecutive way. 

Let us again fix a graph G having a perfect internal matching for the rest of 
this section. 

Definition 5.1 A soliton walk in G with respect to state M is a walk a = 
«o, e i , . . . , en , vn subject to the following two conditions: 

(a) i>o and vn are external vertices with n > 1; 
(b) for every j £ [n — 1], na(j) and na(j + 1) have the same parity iff e3 and 

ej+1 are 
M-alternating, i.e., ej £ M iff ej+\ £ M. 

It is left to the reader to check that, for soliton graphs in the sense of [5], Defini-
tion 5.1 is equivalent to the above definition of soliton path with the only difference 
that we allow soliton walks to make a backtrack on external edges, too. Any back-
track in a soliton walk is, however, a redundant move as shown by Proposition 5.2 
below. Making the walk a in state M means creating a new state M' — S(M, a) 
by setting for every e € E(G) 

In the light of [5, Lemma 3.3] it should be clear that S(M,a) is indeed a state. 

e 6 M and e occurs an even number of times in a 
e € M' iff < or 

e £ M and e occurs an odd number of times in a. 

Proposition 5.2 For every soliton walk a with respect to some state M there ex-
ists a backtrack-free soliton walk (3 with respect to M such that S(M, a) = S(M, 0). 
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Proof. Obvious induction on the number of backtracks contained in a, omitted. 
• 

Now we reformalize the definition of soliton automata [5] in our matching the-
oretic framework. 

Definition 5.3 A soliton automaton with underlying graph G is a finite state 
nondeterministic automaton 

.4(G) = (S{G),X x X,S) 

subject to the following conditions: 

(a) G has a perfect internal matching and has at least one external vertex; 

(b) S(G), the set of states of .4(G), is the set of all states of G; 

(c) X x X is the input alphabet, where X C V(G) denotes the subset of all 
external vertices. 

(d) <5 : 5(G) x (X x X) -> 2S(°) is the transition function defined as follows. 
For every state M and external vertices v\,v2 E X(G), M' E 6(M, (vi,v2)) 
if there exists a soliton walk a from vi to v2 with respect to M such that 
M' = S(M,a). 

Let a be a soliton walk in G with respect to state M. From Theorem 3.1 we 
know that making a is equivalent to making an appropriate alternating network T 
with respect to M. The network T will consist of a number of alternating cycles 
Pi,.. • ,(3n, and, in the case when the two endpoints of a are distinct, an additional 
crossing 7. We are going to prove that the cycles f3\,..., 0n can be made separately 
one after the other as suitable soliton walks from the starting point of a back to 
the same vertex in such a way that making these walks and then finishing up with 
7 has the same effect as making a directly in state M. This result will admit a 
decomposition of the transitions of the automaton A(G) into simpler ones. 

Lemma 5.4 For any state M of G let T be an alternating network consisting of 
a number of cycles. Furthermore, let vo be an external vertex and v E V(G) be 
arbitrary. If there is an alternating path from VQ to v with respect to M, then there 
is also one with respect to S(M,T). 

Proof. This lemma is in fact a consequence of Corollary 3.4. Let a be an M-
alternating path from vo to v. Without loss of generality we can assume that a 
is non-empty, i.e., vq v. Then the last edge e of a is incident with v and it is 
viable in state M. Therefore, by Corollary 3.4, e is viable in state S(M,T), too. 
Let v' denote the other endpoint of e. By checking the proof of Corollary 3.4 the 
reader can verify that the alternating path a' demonstrating that e is viable in state 
S(M, T) will consist of those edges only that are either in a or in ur . Consequently, 
since u r does not contain any external edges, the path A' will connect VQ with either 
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v or v', and it will have an alternating continuation on e. From this point the proof 
is obvious. • 

Let v be an external vertex of G. A soliton walk a is called a v-saucepan if it 
can be decomposed in the form a(5a~x, where a is an alternating path from v to 
some internal vertex u, p is an alternating cycle starting and ending at u such that 
P does not go through any vertices covered by a, and a - 1 is the reverse of a. See 
Fig. 2 for an example of a saucepan. 

Theorem 5.5 Let Pi,...,pn be disjoint alternating cycles with respect to state 
M that are reachable from an external vertex vo of G by a suitable M-alternating 
path. Then for every i € [n] there exists a vq-saucepan <5 with respect to state 
S(M, {Pi,... ,/3j_i}) such that 

S(S(M, {Pi,.. .,Pi-i}),6i) = S(M, {pi,.. .,Pi}). 

Proof. Induction on n. The basis case n = 0 is vacuously true. Assuming that the 
statement holds for some n > 0, let Pi,. • • ,Pn+1 be alternating cycles satisfying 
the conditions of the theorem. By assumption, there exists an M-alternating path 
a to some vertex v lying on Pn+i which starts from vq and does not go through any 
vertices lying on Pn+i • Lemma 5.4 then implies that there is another alternating 
path a' with respect to S(M, {Pi,... ,Pn}) having the same properties. Therefore 
we can compose the required uo-saucepan 5l+\ by going down to v from vo on a', 
making the cycle Pi+i, and returning to VQ on the reverse of a'. • 

Corollary 5.6 Every transition of A{G) on input (vi,v2) can be decom-
posed into a sequence of simpler transitions induced by suitable soliton walks 
Pi,... ,Pn,Pn+1 such that Pi is a Vi-saucepan for every i £ [n], and, in the case of 
Vi ^ v2, Pn+i is a crossing from i>i to v2 • 
Proof . Immediate by Theorems 3.1 and 5.5. • 

6 Conclusion 
We have made a few simple observations on graphs having a perfect internal match-
ing and on soliton automata. The heart of our results is Theorem 3.1, which spec-
ifies the relationship between two perfect internal matchings in a graph in terms 
of alternating paths and cycles. We have also introduced two equivalence relations 
e and For a graph G, the relation e can be used to isolate elementary compo-
nents within the restriction of G to its allowed edges, while the equivalence ~ tells 
which of the vertices contained in the same elementary component are or could be 
connected by a forbidden edge in G. Finally, we devoted a section to specify the 
connection between our work and the study of soliton automata. We would like 
to use the main result of this section, Theorem 5.5, to provide a decomposition of 
soliton automata in the spirit of [9]. 

It is not only the mere fact that we are dealing with perfect internal matchings 
instead of perfect matchings which makes our results different from the correspond-
ing existing or nonexisting ones in classical matching theory. The difference also 
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appears in the technique by which we prove these results. Rather than using the 
trick of deleting an appropriate vertex or several vertices in a graph, which seems 
to be dominant in the classical approach, we almost exclusively rely on the oper-
ations of cutting and remerging the edges of graphs. This technique makes our 
approach edge-oriented as opposed to the vertex-oriented classical approach. Our 
way of thinking about matchings is based entirely on the method of dealing with 
alternating paths and cycles, and it fits into the algebraic framework outlined in 
[1] and [3]. 
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