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Remarks on the Interval Nufnber of Graphs

A. Pluhar *

Abstract

The interval number of a graph G is the least natural number ¢ such that
G is the intersection graph of sets, each of which is the union of at most ¢
intervals. Here we propose a family of representations for the graph G, which
yield the well-known upper bound [$(d+1)], where d is the maximum degree
of G. The extremal graphs for even d are also described, and the upper bound
on the interval number in terms of the number of edges of G is improved.

1 Introduction and Results

It is a very natural idea to represent a graph G as the intersection graph of some
sets. That is, we assign a set to each vertex of G so that v is adjacent to w if and only
if the common part of the assigned sets is not empty. A t—interval representation
is an assignment, where each set consists of at most ¢ closed intervals. The interval
number of G, denoted by (@), is the least integer ¢ for which a t-representation of
G exists. Finally, a representation is displayed if each set of the representation has
an open interval disjoint from the other sets. Such an interval is called displayed
segment.

There are a number of published results concerning bounds on i(G), as well as
applications of the interval representations [1-8]. Since for the complete graph K,
(on n vertices) ¢{{(G) = 1, the main interest lies in finding upper bounds in terms of
the maximum degree, the number of vertices and the number of edges of a graph
G, see in [2], [3], [6] and [8].

Theorem 1 (3) If G is a graph with magimum degree d, then i(G) < [$(d + 1)].

The bound of Theorem 1 is sharp, since the equality is attained for example a
d-regular, triangle-free graphs G. We shall give a new proof of Theorem 1, which is
also useful in investigating the extremal graphs of the degree bound.

Theorem 2 If a graph G has no d-regular, triangle-free component, then i(G) <
[3dl. '
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That is to say, in the case d = 2k the extremal graphs are just the d-regular,
triangle-free graphs. Unfortunately, one cannot expect to get such a simple result
when d = 2k + 1. For example the graph which arise from K, 3 subdividing all its
edges [7], or Cp, n > 5 with a chord have interval number 2 with d = 3.

It is possible to bound i(G) in terms of e, where e is the number of edges in G. It
was conjectured in {3] that i((G) < [3+/€ ] +1, which would be best possible because
of the graphs Ky o, for m € N. The best published result is in [6], stating that
i(G) < [\/£]1+1. We shall improve on the estimations used in [6], and show

Theorem 3 Every graph with e edges has a displayed interval representation with
at most 1+ [2+/e ] intervals for each vertex.

It is necessary to state one more earlier result in order to prove Theorem 3.

Theorem 4 (2) If a graph G has n > 1 vertices, then i(G) < [3(n+1)], and this
bound is the best possible.

2 Proofs

Proof of Theorem 1

We shall construct a displayed representation for the graph G such that at
most [3(d(v) + 1)] intervals are assigned to each vertex v, where d(v) designates
the degree of the vertex v. A walk W in G is just a sequence of vertices W =
{v1,vs, ..., } such that, there is an edge between v; and v;1, foreachi =1,2,...,l—
1. Let us partition the edges of G into minimal number of edge disjoint walks
{Wi}_,. Now represent the walk W; = (v},v3,...,0},) for 1 < 4 < j, assigning
an I} interval to the vertex vy such that two intervals have intersection if and
only if the corresponding vertices are next to each other in the walk W;. This
procedure leads to a displayed interval representation of G. Since a vertex v can
be an endvertex of the walks at most two times, if v is represented by ! intervals,
then d{v) > 2(1 —2) + 2 = 2l — 2. Hence

(5@ + 11 2 [3@1-2+ 1] =1 - 2] =2

Proof of Theorem 2

We can assume that d = 2k because of Theorem 1. Let us choose among all
partitions of the edge set into a minimum number of edge disjoint walks a partition
{W;}!_; which also minimizes the size of the set Q of vertices occuring & + 1 times
in the walks {W;}!_,. The representation is the same as in the proof of Theorem 1.
If Q = 0, we are done. For an z € Q there exists a p € {1, ..., j} such that =z = 7,

T = v‘; (p) and z € W, for all [ # p. The last statement follows from the minimality
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of j, since in case of x = v} € W, we could replace the walks W, and W, by the
walk
!
W* = (v}, v, ..., 0%, 08, ...,vz(p),viﬁ, ...,vfl(,)).

For any vertex y = v? # z from W, we can transform the walk W}, into the walk

p PP » P
= (v, vi_;,. > U1 Vn(p)—1> Un(p) - gs - D).

That is, by the minimality of @, y occurs in the walks {W}izp, U {W;} k + 1
times. Then again, all neighbors of y are in W,. That is the vertex set of W, is a
2k—regular component of G. Now we can conclude the proof by showing that if a
2k-regular graph G is not triangle-free, then i(G) < k. Suppose that u, v and w
span a triangle in G. If k = 1, then G = K3, and we are done. For k > 1 there is
is an Euler circuit C' in G, starting by v, u, w, v,z and finishing at v. But it can be
represented by % intervals per vertex as in the proof of Theorem 1, just take the
convex hull of the two intervals which represent v at the beginning of the walk. O

Proof of Theorem 3

We need the definition of the degree sequence of a graph G first. Let us suppose -
that v1,...,v, is an order of the vertices of G such that d; > d; if i < j, where
d; = deg(v,) denotes the degree of the vertex v;. Our argument closely follows the
one in [8]. The crucial difference is the additional information about the degree
sequence of G. It is gained by using Theorem 1 and an idea, which first appeared
in (4].

Lemma 1 Let dy > ds > ... > d,, be the degree sequence of a graph G. If i(G) >
t+1, thend; > 2t -1+ 1.

Proof of Lemma 1
Let v; be a vertex of degree d;. By Theorem 1
1
(5 +1)] 2i(G) >t +1,

that is d; > 2t + 2. Now we partition the edges of G into directed forests, represent
them one by one and remove the edges of the represented forest from G. The idea
is that the representation of the I** forest exhausts all edges adjacent to v;, and
decreases the degree of all vertices in the remaining graph which still has non zero
degree. The construction of the first forest F; starts with choosing a breadth-first-
search tree 7, rooted in v, all edges directed toward v;. If there are vertices
outside of T}, just pick arbitrary trees in which the edges are directed toward the
root. The procedure for selecting F; is similar, we take v;, the vertex of degree d; as
a root of a tree, and also take other trees if the remaining graph is not connected.
The main point is that, F; is maximal, and all edges adjacent to v; are in FyU...UF;.
For the maximum degree A in the remaining graph G = G\F, U...UF;_; we have
show that
A*<d;—(i~1)
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by induction. On the other hand, we can represent the edges of F} U ... U F; by
using at most [+ 1 intervals for each vertex. First assign intervals I, to each vertex
v of G such that I, N I,, = @ for v # w. Then, for each i € {1, ...,1} if the directed
edge (v, w) is in Fj, assign a small interval to v inside in I,,, which has no common
points with the other intervals.

Because of Theorem 1 and the previous representation we have
-1)+1
H{G) <i+i{G\FIU..UF;;)<i+ f——(lzi]

Since t + 1 < i(G) < i + [45H2], it follows that

t+3/2§z’+§‘21—+,

thatisd; > 2t —1+ 1. ]

Now, with a few modifications, we may repeat the argument presented in [8].
First, partition the vertices of G into two classes, A and B. A contains the vertices
of degree at least [£./e] + 1, while the degree of a vertex from B is at most [ Vel.
The edges between the elements of A can be represented by using at most [ (|A| +
1)] intervals for each vertex because of Theorem 4. Let us make this system of
intervals displayed by adding an isolated interval for each vertex of G in a same
way as in the proof of Lemma 1. For each edges between A and B, or inside B, take
an endpoint from B, and place a small interval for it into a displayed segment for
its neighbor. This procedure produces at most [ Vel + 1 intervals for an element
of B. That is

(@) < maX(I'E\/E] +1, fZ(IAl +1)]+1).
In order to estimate |A| = k, we need the identity 2e = 3., d;, where {d;}", is the

degree sequence in decreasing order. There is nothing to prove if i(G) < [3\/e ] +1,
so we may assume that

d; z2f§\/é1 —i+1
by Lemma 1. Thus

r%ﬁ] k n
Soodit Y dit+ Y
i=1 i=[§\/e_z'|+1 i=k+1
which implies
3vel 9 k 9
2> 3 @rzvel-i++ > (5vel+1)
i=1 1=r2\/g]+1

Simple computation shows that k<8 3ve—1. Plugging in this estimation, one gets
the bound

i(G) S max([3vel +1,[(GVe -1+ 1)1 +1) < [2ve ] +1.



Remarks on the Interval Number of Graphs 129

References

(1] Andreae, T., “On the Interval Number of Triangulated ‘Graph”, J. Graph
Theory 3 (1987), 273-280.

[2] Griggs, J.R., “Extremal Values of the Interval Number of Graph, II.”, Dis-
crete Math. 28 (1979), 37-47.

[3] Griggs, J.R. and West, D.B., “Extremal Values of the Interval Number of
Graph, 1.7, SIAM J. Alg. Discrete Meth. 1 (1980), 1-8.

[4] Scheinerman, E.R., “The Maximum Interval Number of Graphs with Given
Genus”, J. Graph Theory 3 (1987), 441-446.

[6] Scheinerman, E.R. and West, D.B., “The interval number of a planar graph:
three intervals suffice”, Jour. Combinatorial Theory B 35 (1985), 224-239.

[6] Spinrad, J.R., Vijayan, G. and West, D.B., “An Improved Edge Bound on
the Interval Number of a Graph”, J. Graph Theory 3 (1987), 447-449.

[7] Trotter, W.T. Jr. and Harary, F. “On Double and Multiple Interval Graphs”,
J. Graph Theory 3 (1979), 205-211. :

[8] West, D.B., “A short proof of the degree bound on interval number”, Discrete
Math. 73 (1989), 307-310. |

Received May, 1995



