Remarks on the Interval Number of Graphs

A. Pluhár *

Abstract

The interval number of a graph G is the least natural number t such that G is the intersection graph of sets, each of which is the union of at most t intervals. Here we propose a family of representations for the graph G, which yield the well-known upper bound $\lfloor \frac{1}{2}(d+1) \rfloor$, where d is the maximum degree of G. The extremal graphs for even d are also described, and the upper bound on the interval number in terms of the number of edges of G is improved.

1 Introduction and Results

It is a very natural idea to represent a graph G as the intersection graph of some sets. That is, we assign a set to each vertex of G so that v is adjacent to w if and only if the common part of the assigned sets is not empty. A t-interval representation is an assignment, where each set consists of at most t closed intervals. The interval number of G, denoted by i(G), is the least integer t for which a t-representation of G exists. Finally, a representation is displayed if each set of the representation has an open interval disjoint from the other sets. Such an interval is called displayed segment.

There are a number of published results concerning bounds on i(G), as well as applications of the interval representations [1-8]. Since for the complete graph K_n (on *n* vertices) i(G) = 1, the main interest lies in finding *upper bounds* in terms of the maximum degree, the number of vertices and the number of edges of a graph G, see in [2], [3], [6] and [8].

Theorem 1 (3) If G is a graph with maximum degree d, then $i(G) \leq \lfloor \frac{1}{2}(d+1) \rfloor$.

The bound of Theorem 1 is sharp, since the equality is attained for example a d-regular, triangle-free graphs G. We shall give a new proof of Theorem 1, which is also useful in investigating the extremal graphs of the degree bound.

Theorem 2 If a graph G has no d-regular, triangle-free component, then $i(G) \leq \lfloor \frac{1}{2}d \rfloor$.

^{*}Department of Computer Science, Attila József University, Árpád tér 2, H-6720 Szeged, Hungary

That is to say, in the case d = 2k the extremal graphs are just the *d*-regular, triangle-free graphs. Unfortunately, one cannot expect to get such a simple result when d = 2k + 1. For example the graph which arise from $K_{1,3}$ subdividing all its edges [7], or C_n , $n \ge 5$ with a chord have interval number 2 with d = 3.

It is possible to bound i(G) in terms of e, where e is the number of edges in G. It was conjectured in [3] that $i(G) \leq \lceil \frac{1}{2}\sqrt{e} \rceil + 1$, which would be best possible because of the graphs $K_{2m,2m}$ for $m \in N$. The best published result is in [6], stating that $i(G) \leq \lceil \sqrt{\frac{e}{2}} \rceil + 1$. We shall improve on the estimations used in [6], and show

Theorem 3 Every graph with e edges has a displayed interval representation with at most $1 + \lceil \frac{2}{3}\sqrt{e} \rceil$ intervals for each vertex.

It is necessary to state one more earlier result in order to prove Theorem 3.

Theorem 4 (2) If a graph G has n > 1 vertices, then $i(G) \leq \lfloor \frac{1}{4}(n+1) \rfloor$, and this bound is the best possible.

2 Proofs

Proof of Theorem 1

We shall construct a displayed representation for the graph G such that at most $\lceil \frac{1}{2}(d(v) + 1) \rceil$ intervals are assigned to each vertex v, where d(v) designates the degree of the vertex v. A walk W in G is just a sequence of vertices W = $\{v_1, v_2, ..., v_l\}$ such that, there is an edge between v_i and v_{i+1} for each i = 1, 2, ..., l -1. Let us partition the edges of G into minimal number of edge disjoint walks $\{W_i\}_{i=1}^j$. Now represent the walk $W_i = (v_1^i, v_2^i, ..., v_{n(i)}^i)$ for $1 \le i \le j$, assigning an I_p^i interval to the vertex v_p^i such that two intervals have intersection if and only if the corresponding vertices are next to each other in the walk W_i . This procedure leads to a displayed interval representation of G. Since a vertex v can be an endvertex of the walks at most two times, if v is represented by l intervals, then $d(v) \ge 2(l-2) + 2 = 2l - 2$. Hence

$$\lceil \frac{1}{2}(d(v)+1) \rceil \ge \lceil \frac{1}{2}(2l-2+1) \rceil = \lceil l - \frac{1}{2} \rceil = l.$$

Proof of Theorem 2

We can assume that d = 2k because of Theorem 1. Let us choose among all partitions of the edge set into a minimum number of edge disjoint walks a partition $\{W_i\}_{i=1}^j$ which also minimizes the size of the set Q of vertices occuring k + 1 times in the walks $\{W_i\}_{i=1}^j$. The representation is the same as in the proof of Theorem 1. If $Q = \emptyset$, we are done. For an $x \in Q$ there exists a $p \in \{1, ..., j\}$ such that $x = v_1^p$, $x = v_{n(p)}^p$ and $x \notin W_l$ for all $l \neq p$. The last statement follows from the minimality

of j, since in case of $x = v_s^l \in W_l$ we could replace the walks W_p and W_l by the walk

$$W^* = (v_1^l, v_2^l, \dots, v_s^l, v_2^p, \dots, v_{n(p)}^p, v_{s+1}^l, \dots, v_{n(l)}^l)$$

For any vertex $y = v_s^p \neq x$ from W_p , we can transform the walk W_p into the walk

$$W_p^* = (v_s^p, v_{s-1}^p, ..., v_1^p, v_{n(p)-1}^p, v_{n(p)-2}^p, ..., v_s^p).$$

That is, by the minimality of Q, y occurs in the walks $\{W_i\}_{i \neq p} \cup \{W_p^*\}$ k + 1 times. Then again, all neighbors of y are in W_p . That is the vertex set of W_p is a 2k-regular component of G. Now we can conclude the proof by showing that if a 2k-regular graph G is not triangle-free, then $i(G) \leq k$. Suppose that u, v and w span a triangle in G. If k = 1, then $G = K_3$, and we are done. For k > 1 there is is an Euler circuit C in G, starting by v, u, w, v, x and finishing at v. But it can be represented by k intervals per vertex as in the proof of Theorem 1, just take the convex hull of the two intervals which represent v at the beginning of the walk. \Box

Proof of Theorem 3

We need the definition of the degree sequence of a graph G first. Let us suppose that $v_1, ..., v_n$ is an order of the vertices of G such that $d_i \ge d_j$ if $i \le j$, where $d_i = deg(v_i)$ denotes the degree of the vertex v_i . Our argument closely follows the one in [8]. The crucial difference is the additional information about the degree sequence of G. It is gained by using Theorem 1 and an idea, which first appeared in [4].

Lemma 1 Let $d_1 \ge d_2 \ge ... \ge d_n$ be the degree sequence of a graph G. If i(G) > t+1, then $d_i \ge 2t-i+1$.

Proof of Lemma 1

Let v_i be a vertex of degree d_i . By Theorem 1

$$\lceil \frac{1}{2}(d_1+1) \rceil \ge i(G) > t+1,$$

that is $d_1 \geq 2t+2$. Now we partition the edges of G into directed forests, represent them one by one and remove the edges of the represented forest from G. The idea is that the representation of the l^{th} forest exhausts all edges adjacent to v_l , and decreases the degree of all vertices in the remaining graph which still has non zero degree. The construction of the first forest F_1 starts with choosing a breadth-firstsearch tree T_1 , rooted in v_1 , all edges directed toward v_1 . If there are vertices outside of T_1 , just pick arbitrary trees in which the edges are directed toward the root. The procedure for selecting F_l is similar, we take v_l , the vertex of degree d_l as a root of a tree, and also take other trees if the remaining graph is not connected. The main point is that F_l is maximal, and all edges adjacent to v_l are in $F_1 \cup \ldots \cup F_l$. For the maximum degree Δ^i in the remaining graph $G^i = G \setminus F_1 \cup \ldots \cup F_{i-1}$ we have show that

$$\Delta^i \le d_i - (i-1)$$

by induction. On the other hand, we can represent the edges of $F_1 \cup ... \cup F_l$ by using at most l+1 intervals for each vertex. First assign intervals I_v to each vertex v of G such that $I_v \cap I_w = \emptyset$ for $v \neq w$. Then, for each $i \in \{1, ..., l\}$ if the directed edge (v, w) is in F_i , assign a small interval to v inside in I_w , which has no common points with the other intervals.

Because of Theorem 1 and the previous representation we have

$$i(G) \leq i + i(G \setminus F_1 \cup \ldots \cup F_{i-1}) \leq i + \lceil \frac{d_i - (i-1) + 1}{2} \rceil.$$

Since $t + 1 < i(G) \le i + \lceil \frac{d_i - i + 2}{2} \rceil$, it follows that

$$t + 3/2 \le i + \frac{d_i - i + 2}{2},$$

that is $d_i \geq 2t - i + 1$.

Now, with a few modifications, we may repeat the argument presented in [8]. First, partition the vertices of G into two classes, A and B. A contains the vertices of degree at least $\lceil \frac{2}{3}\sqrt{e} \rceil + 1$, while the degree of a vertex from B is at most $\lceil \frac{2}{3}\sqrt{e} \rceil$. The edges between the elements of A can be represented by using at most $\lceil \frac{1}{4}(|A| + 1)\rceil$ intervals for each vertex because of Theorem 4. Let us make this system of intervals displayed by adding an isolated interval for each vertex of G in a same way as in the proof of Lemma 1. For each edges between A and B, or inside B, take an endpoint from B, and place a small interval for it into a displayed segment for its neighbor. This procedure produces at most $\lceil \frac{2}{3}\sqrt{e} \rceil + 1$ intervals for an element of B. That is

$$i(G) \leq \max(\lceil \frac{2}{3}\sqrt{e} \rceil + 1, \lceil \frac{1}{4}(|A|+1) \rceil + 1).$$

In order to estimate |A| = k, we need the identity $2e = \sum_{i=1}^{n} d_i$, where $\{d_i\}_{i=1}^{n}$ is the degree sequence in decreasing order. There is nothing to prove if $i(G) \leq \lceil \frac{2}{3}\sqrt{e} \rceil + 1$, so we may assume that

$$d_i \geq 2\lceil \frac{2}{3}\sqrt{e}\rceil - i + 1$$

by Lemma 1. Thus

$$2e = \sum_{i=1}^{\lceil \frac{2}{3}\sqrt{e} \rceil} d_i + \sum_{i=\lceil \frac{2}{3}\sqrt{e} \rceil+1}^k d_i + \sum_{i=k+1}^n d_i,$$

which implies

$$2e \ge \sum_{i=1}^{\lceil \frac{2}{3}\sqrt{e} \rceil} (2\lceil \frac{2}{3}\sqrt{e} \rceil - i + 1) + \sum_{i=\lceil \frac{2}{3}\sqrt{e} \rceil + 1}^{k} (\lceil \frac{2}{3}\sqrt{e} \rceil + 1)$$

Simple computation shows that $k \leq \frac{8}{3}\sqrt{e} - 1$. Plugging in this estimation, one gets the bound

$$i(G) \leq \max(\lceil \frac{2}{3}\sqrt{e} \rceil + 1, \lceil \frac{1}{4}(\frac{8}{3}\sqrt{e} - 1 + 1) \rceil + 1) \leq \lceil \frac{2}{3}\sqrt{e} \rceil + 1.$$

References

- Andreae, T., "On the Interval Number of Triangulated Graph", J. Graph Theory 3 (1987), 273-280.
- [2] Griggs, J.R., "Extremal Values of the Interval Number of Graph, II.", Discrete Math. 28 (1979), 37-47.
- [3] Griggs, J.R. and West, D.B., "Extremal Values of the Interval Number of Graph, I.", SIAM J. Alg. Discrete Meth. 1 (1980), 1-8.
- [4] Scheinerman, E.R., "The Maximum Interval Number of Graphs with Given Genus", J. Graph Theory 3 (1987), 441-446.
- [5] Scheinerman, E.R. and West, D.B., "The interval number of a planar graph: three intervals suffice", *Jour. Combinatorial Theory B* **35** (1985), 224-239.
- [6] Spinrad, J.R., Vijayan, G. and West, D.B., "An Improved Edge Bound on the Interval Number of a Graph", J. Graph Theory 3 (1987), 447-449.
- [7] Trotter, W.T. Jr. and Harary, F. "On Double and Multiple Interval Graphs", J. Graph Theory 3 (1979), 205-211.
- [8] West, D.B., "A short proof of the degree bound on interval number", Discrete Math. 73 (1989), 307-310.

Received May, 1995