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Some Properties of H-functions 

Ivan Mirchev* Borislav Yurukov* 

1 Introduction 
Some basic results in the theory of separable and c-separable sets were obtained 
in [l]-[7]. In this paper some problems concerning with separable and c-separable 
sets for fc-valued functions are considered. 

We investingate the properties of fc-valued functions when some of their vari-
ables are replaced with constants. The investigations of properties of H-functions 
are connected with separability and c-separability of functions. 

2 Definitions and Notations 
Definition 1 [1] A function f(xi, ...,a:n) on A(\A\ > 2) depends essentially on the 
variable Xi, 1 < i < n if there exist n — 1 constants ci, . . . ,ci_i,cj+i,. . . ,cn such 
that the unary function f(c\, . . . , C j _ i , x , C t + i , ...,cn) takes on at least two different 
values. 

Ess(f) denotes the set of all variables which / depends essentially on. 
F n denotes the set of all functions which depend essentially exactly on n vari-

ables. 

Definition 2 [1] A function / and the functions obtained from / by replacing some 
of its variables with constants are called subfunctions of / (g </ denotes that g 
is a subfunction of / ) . 

Definition 3 [4] The variable i i , 1 < i < n, n > 1 is a H-variable for a function 
/ € Fn if for any two tuples of constants differing only in the i~th component, the 
function has different values. 

Definition 4 [4] The function / is a H-function if all its essential variables are 
H-variables. 

Hf denotes the set of all fc-valued H-functions from Fn. Hp denotes the set 
i n 1 

of all fc-valued H-functions. 
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3 Basic Results 
The following assertion is obvious. 

Statement 1 A function f G Fn, n > 2 is a H-function if and only if all of its 
subfunctions from Fk, 1 < k < n are H-functions too. 

Theorem 1 Let p > 3 be a prime number and let f 6 Fn, n > 2, be a non-linear 
p-valued function. If there exists fi, fi <f, |£ss(/i)| = 1 which as polynomial 

mod p is of degree p— 1 then / ^ H¡n. 

Proof. By Statement 1 it is sufficient to prove that every polynomial 

fi(x) = ao + aix + ... + a p _ ix p _ 1 (mod p), ap_i ± 0 

cannot take on all values from the set {0,1, ...,p — 1}. Consider the polynomial 

g(x) = a\x + a2x2 + .... + a p _ ix p _ 1 (mod p), ap_i ^ 0. 

Let us assume that 

g(i) = bi, i = 1,2, - 1, bi ± bj when i j and 6¿ ^ 0, if i ± 0. 

The determinant of the system 
a\i + a2i2 + ... + a p _i¿ p _ 1 = bj, i = 1,2, ...,p - 1 

is 

1 l 2 IP-1 

2 22 2 p-i 
A = 3 32 3 P _ 1 = 1.2...(p — l ) .W(l ,2 , . . . ,p — 1) 

(P- 1) ( P : 1 ) 2 • • ( P - 1 ) " " 1 

Using the facts that 
W(cl,...,ck) = (ci-cj) 

k>i>j>i 

a n d ( p - 1)! + 1 = 0 (mod p), we have A ^ 0. 

Consequently the system has only one solution. As we know ap_i = , where 

1 l 2 . p - 2 bi 
2 22 2 p - 2 b2 

Ap_1 = 3 32 3p-2 b3 

( P - 1) ( P - 1 ) 2 • • ( P - I ) " - 1 bp-1 
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But 

Ap_! = 

1 l 2 jp-2 bi 
2 22 2p-2 b2 
3 32 3p-2 b3 

Si s 2 Sp_ 2 s 

where 

Sk = lk + 2k + ... + (p-l)k, k = 1,2,..., (p - 2), 

S = bi + b2 + ... + bp-1 = 1 + 2 + 3 + ... + [p - 1) = Si. 

The numbers 1,2, •••,p— 1 axe solutions of the equation x p _ 1 — 1 = 0 (mod p). 
Consequently for the elementary symmetric polynomials Ti,T2, ...,rp_2 of 1,2, ...,p— 
1 we have 

Ti = T2 = ... = Tp_2 = 0. 

On the other hand from Newton's formulas 

SK - N.SK-L + T2-Sk-2 + ( - l ) * - 1 ^ - ! ^ ! + ( - 1 )k.kTk = 0, 

when k < p — 1. 
If A; < p — 1, then Sfc = 0. Consequently A p_i = 0 implies ap_i = 0. This 

contradicts the condition ap_i ^ 0. 
Therefore the values of the polynomials g(x) and fi(x) cannot form a whole 

system modulo p. This completes the proof. • 
Remarks: 

1. If p = 2, then according to Lemma 4.2 [3], Theorem 4.1 [3] and Lemma 4.10 
[3] it follows that / £ if and only if / is a linear function. 

2. When p = 3 this theorem was proved by K. Chimev in [4] and now was 
improved (by Mirchev and Drenski) for p > 3, where p- a prime number. 

3. It is obvious that if / £ Lp then / £ Hpf (Lv denotes the set of all linear p-
valued functions). The converse statement is not valid and this fact is evident 
from the following example. • 

Example 1 Let f(x 1,22) = + (mod 5). For the function / , / € Hj2 but 
f $ L5 (Here x? = Xi.Xi.Xi, i = 1,2). 

Now we will consider some results which give us good possibilities to construct 
catalogues of H-functions modulo 3. 

Definition 5 We will say that f(x\,...,xn) and g(xi, ...,xn) are distinguishable 
everywhere if for each tuple of constants c\,..., cn the relation 

/ ( c i , . . . , c n ) g(ci,...,cn) holds. 
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We denote by f <> g that / and g are distinguishable everywhere. 

Let *(*) = { ¿'. 'x = Y 

If f(xi, ...,xn), n > 2, is a fc-valued function then it is obvious that Vp( 1 < p < 
n) 

fc-i 
f(x i,...,xn) = J t ( x p ) . / ( x i , . . . , a : p - 1 , i , x p + i , . . . , x n ) . 

i=o 

If fi(xi,...,xn-i) = f(xi,...,xn-i,0), 

fk(xi, ...,x„_i) = f(xi, ...,xn-i,k - 1), then 

n 

»=0 

Theorem 2 (Theorem 1 [6]) / £ i i ^ , n > 2, if and only if fc £ and 
fi <> f j fori,j = l,...,k, j. 

According to this result each function f £ Hjn can be derived from fi, f2, /3, 
where for each l < i < 3 , l < j < 3 and i'^ j the relations 

fi £ H3fn i and fi < > f j hold. 

We denote by / = (/1, /2, /3) the fact that f £ Hj is derived from fi,f2,h £ 

Lemma 1 Let f = ( /1 , /2 , /3 ) , 9 = (91,92,93) and f,g £ Hzfn. Then f <> g if 
and only if /1 <> gi, /2 < > 92 and /3 <> g3. 
Proof. 

" =i> " Let / < > g. Then f(x 1, . . . ,xn_i ,0) < > g(xi, ...,xn-i,0), i.e. /1 < > 31. 
Analogously /2 < > g2 and /3 < > S3-

" " Let fi <> gi, i = 1,2,3. Let us* suppose that there exist ci,..., cn so that 
/ ( c i , •••,cn) — g(ci, ...,cn). 

If c„ = 0, then we obtain / i ( c i , . . . , c „_ i ) = gi(ci , . . . ,c„_i) which contradicts 
the condition /1 < > g\. 

If Cn = 1 or c„ = 2 we obtain a contradiction with / 2 < > g2 or /3 < > g3. • 

Theorem 3 If f £ , n >2 then there exist g and h, g <> h and g, h £ , 
such that f <> g and f <> h. 
Proof. 

Let / = ( / i , / 2 , / 3 ) ; 9 = ( /2 , /3 , /1) ; and h = (/3,/1,/2). 
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Since /1) /2 j /3 are pairwise distinguishable everywhere then according to 
Lemma 1, f,g and h are pairwise distinguishable everywhere too. By Theorem 
2 we have 

g E Hfn and h € Hjn. • 

Theorem 4 If f & Hj^ then there exist only two functions g, h £ Hjn, such that 
f , g and h are pairwise distinguishable everywhere. 
Proof. We will prove the theorem by induction on the number of the variables. 

The case n = 1 is trivial. 
Let us assume that for functions from Fn_ 1 the statement is true. 
Let now / G Hj^. By Theorem 3, it is sufficient to prove that there exist only 

two functions g and h. 
Let 

/ = (/1, /2, /3), where f, <> f j when i ^ j ; 

9 = (9i,92,53), where gl < > gj when i ± j; 

h = (hi,h2,h3), where hi < > hj when i j\ 

g,h£H3fn, g <> f, h<> f, g <> h and /¿, ft^G H3fn i, 1 <.i, j < 3. 
Since f,g and h are pairwise distinguishable everywhere then according to 

Lemma 1, fi,g\ and h\ are distinguishable everywhere too. 
By the induction hypothesis on /1 there exist only two functions which are 

distinguishable everywhere from /1. Therefore {31,^1} = {/2, /3}-
Similarly we get: 

{ S 2 , M = { / l , / 3 } , { i ? 3 , M = { / l> /2} . (1) 

Withoutloss of generality we can assume that 

gi = / 2 and hi = / 3 . ( 2 ) 

If we suppose h2 = /3, then from hi = /3 we obtain hi = h2, which contradicts 
the condition hi <> h2. Therefore from (1) we obtain 

52 = /3 and h2 = fi. (3) 

If we assume gz — f2, then from gi = f2 we obtain 51 — g3, which contradicts 
the condition 31 < > g3. Therefore from (1) 

03 = /1 and h3 = f2. (4) 

Consequently g and h are exactly determined by f. • 

Theorem 5 If f,g,h€ Hzu, g ± h, f <> g and f <> h then g <> h. 
Proof. We will prove the theorem by induction on the number of the variables. 

Let n = 1. Then: ' 

/ ( 0 ) = 0 1 , / ( 1 ) = a 2 ) / ( 2 ) = o 3 ; g(0) = a[, 9 ( 1 ) = a'2, g(2) = 
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h(0) = a'{, h( 1) = a'i, h{2) = a i . e. 

/ = (ai a,2 03), where a* ^ aj when i ^ j\ 

g = (a[ a'2 a'3), where a\ / a'j when i ^ j; 

h = (a" a'2 a'3), where a" / a '̂ when i ^ j . 

Let us assume that 9 < > h doesn't hold. Without loss of generality we may 
assume that a[ = a". Then {a'2,03} = {a2,03 }. 

If we suppose that a'2 = a2 then we get a'3 = a'3. Therefore g — h which is a 
contradiction. 

Let us now suppose that a'2 = a'3 and a'3 = a2, i.e., that 

g = (ai a'2 a'3) and h = (a[ a'3 a'2). 

But 02 ^ {a!2, (23} and 03 ^ {03,02} therefore 02 — a3. This contradicts the condi-
tion f &H3fi. 

So, if n = 1 the statement is true. 
Let us assume that the statement is true for all functions from -Fn_i. We will 

prove the statement for the functions from Fn, n> 2. 
Let 

/ = (/1, /2, /3), where f{ <> f j when i ± j\ 

9 = (91,92,93), where gi < > g3 when i ^ j; 
h = (hi,h,2,h,3), where hi < > hj when i ^ j 

and fi,gi,hi 6 (1 < i,j < 3). As we know / < > g, f <> h and g ^ h. 
Consequently gi h\ or 52 i1 h2 or g3 ^ h3. 

Whitout loss of generality we can assume that gi ^ hi. 
From the conditions of the Theorem we obtain /1 < > gi and fx <> hi. But 
fi,gi,hi £ Hjn t . From this fact and our inductive supposition it follows that 

9i <> hi. ' (5) 

Since /1, /2, /3 and fi,gi, hi are pairwise distinguishable everywhere it follows 
from Theorem 4 that 

{ / 2 , / 3 } = { » l , M . 

Let us assume now that 

fli = /2 and hi = / 3 . 

Since pi , <72,33 and /1, /2, /3 are pairwise distinguishable everywhere and gi = / 2 

it follows from Theorem 4 that 

{92,93} = {fufs}-

Similarly as above, we have 

{h2,h3} = {fi,f2}-
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If we suppose that g2 = h2 or g2 = h3 then we obtain 

92 £ {/1, /3} H { / i , /2} = { / i } -

Therefore g2 = /1, <73 = /3, which contradicts 33 < > /3. 
If we suppose that g3 = h3 — /1 then we have h2 = f2, which contradicts 

h2 < > /2. Consequently g3 = h2 = flt g2 = f3, h3 = f2 which implies 

Finally we note, that some algorithms, computer programs and catalogues for 
H-functions are given in [3]. 
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g2 <> h2 and g3 <> h3. 

From Lemma 1, (5) and (6) it follows that g <> h. 

(6) 

• 

Received April, 1994 


