
Acta Cybernetica 12 (1995) 153-166.

Fuzzy Extension of Datalog*

Ágnes Achs * Attila Kiss*

Abstract

In this paper we define the fuzzy Datalog programs as sets of Horn-
formula« with degrees and give their meaning by defining the deterministic
and nondeterministic semantics. In the second part of the paper we show a
possible extension of /DATALOG on fuzzy data.

1 Introduction
In knowledge-base systems there are given some facts representing certain know-
ledge and some rules which in general mean that certain kinds of information imply
other kinds of information. In classical deductive database theory ([CGT], [U]) the
Datalog-like data model is widely spread. Its most general type allows the use of
both function symbols and negation. The meaning of a Datalog-like program is
the least (if it exists) or a minimal model which contains the facts and satisfies the
rules. This model is generally computed by a fixpoint algorithm.

The aim of this paper, which is partially a further development of [AK] and
[K], is to give a possible extension of Datalog-like languages to fuzzy relational
databases using lower bounds of degrees of uncertainty in facts and rules. We give
a method for fixpoint queries. We show that this fixpoint is minimal under certain
conditions.

We define the deterministic and nondeterministic semantics of /DATALOG and
give a possible extension on fuzzy data.

2 The Concept of Fuzzy Datalog Program
To define the idea of fuzzy Datalog program (/DATALOG) we need some basic
concepts.

A term is a variable, a constant or a complex term of the form / (t i , . . . ,tn),
where / is a function symbol and f i , . . . , tn are terms. An atom is a formula of the

"This research was supported by the Hungarian Foundation for Scientific Research Grant
(O T K A) 2149 and O T K A 4281»

t Janus Pannonius University, Pollack Mihály College, Pécs, Boszorkány u. 2, Hungary
^-Eötvös Lóránd University, Budapest, Múzeum krt. 6-8., Hungary E-mail: kiss@tomx.elte.hu

153

mailto:kiss@tomx.elte.hu

154 Agnes Achs, Attila Kiss

form p(t), where p is a predicate symbol of a finite arity (say n) and t is a sequence
of terms of length n (arguments). A literal is either an atom (a positive literal) or
the negation of an atom (a negative literal).

A term, atom, literal is ground if it is free of variables.
An implication operator is a mapping of the form

I(x v) = (1 i t x - y
I f(x,y) O t h e r w i s e

where x,y £ [0,1] and 0 < f(x,y) < 1.
Let D be a set. The fuzzy set F over D is a function F : D [0,1]. Let T(D)

denote the set of all fuzzy sets over D. So F £ T(D).

F U G{d) d= max(F(d), G(d))

F n G(d) d= min (F{d),G(d)) .
We can define an ordering relation: F < G iff F(d) < G(d), for d £ D.
The support of fuzzy set F is a classical set

Supp(F) = {d|F(d) ? 0}.

We can see that (T(D), <) is a complete lattice. The top element of the lattice
is U : D [0,1] : U(d) = 1, for d £ D. The bottom element is: 0 : D [0,1] :
0(d) = 0, for d£D.

Fuzzy sets are frequently denoted in the following way:

F = (J (d , a d) ,
d€D

where (d,ad) £ D x [0,1].
In general the (d, ad) pairs where = 0 are omitted from F, and sometimes

SuppiF) in enlarged with (d, 0) pairs, where d £ D but d £ Supp(F).
Below we will define the fuzzy Datalog language which is a possible extension

of Datalog, using lower bounds of degrees of uncertainty in facts and rules. In this
language the rules are completed with an implication operator and with a level.
We allow for each formula to use any implication operator from a given set. Thus
we fix a set of implication operator. We can infer the level of a rule's head from
the level of the body and the level of the rule and the implication operator of the
rule.

Definition 1 An /DATALOG rule is a triplet (r; I; /3), where r is a formula of the
form

Q*-Qu---,Qn (n > 0)

where Q is an atom (the head of the rule), Qi,..., Q n are literals (the body of the
rule); / is an implication operator and /3 £ (0,1] (the level of the rule).
An /DATALOG rule is safe if

Fuzzy Extension of Datalog 155

• All variables which occur in the head also occur in the body;

• All variables occuring in a negative literal also occur in a positive literal.

An /DATALOG program is a finite set of safe /DATALOG rules. Let A be a
ground atom. The rules of the form (A « - ; 7; /3) are called facts.

The Herbrcmd universe of a program P (denoted by Hp) is the set of all possible
ground terms constructed by using constants and function symbols occuring in P.
The Herbrand base of P (Bp) is the set of all possible ground atoms whose predicate
symbols occur in P and whose arguments are elements of Hp. A ground instance of
a rule (r; / ; /3) in P is a rule obtained from r by replacing every variable x in r by
$(x) where $ is a mapping from all variables occurring in r to Hp. The set of all
ground instances of (r;/ ; /3) are denoted by (ground(r); / ; /3). The ground instance
of P is

ground(P) = U{rj]0)ep(ground(ry, I; /3).

Definition 2 An interpretation of a program P, denoted by Np, is a fuzzy set of
Bp,

Np E T(BP), that is Np = |J {A, a A).
AeBp

Let for ground atoms A 1 > • • •) c*AiA...AAn and a^A be defined in the following
way:

«i4iA...Ai4n = min(a i41 , . . .)a i4„),
def

a^A = 1 - <*A-

Definition 3 An interpretation is a model of P if for each
(ground(r)\ I; ¡3) E ground(P), ground(r) = A A

I((*A1/\...KAn,OtA) > 0

A model M is the least model if for any model N,M < N. A model M is minimal
if there is no model N ^ M such that N < M.

To be short we sometime denote a^j by abody and a a by ahead-

3 The Semantics of Fuzzy DATALOG
We will define two kinds of consequence transformations. Depending on these
transformations we can define two semantics for /DATALOG. In this chapter we
will show that the two semantics are the same in the case of positive programs, but
they are different when the program has negative literals.

Definition 4 The consequence transformations DTP : T(BP) —• T(BP) and
NTP : T(Bp) T(BV) are defined as

DTp(X) = {\J{(A,aA)}\(A Au... ,An,I;P) E ground(P),

156 Agnes Achs, Attila Kiss

(|j4í|j"X.-) 6 X for each 1 < i < n,ctA = max(0,min{7|J(abody,7) > /?})} U l
and
NTP(X) = {(A,aA)}|3(i4<- Au... ,An-I;/3) £ ground(P),

ctAi) e X for each 1 < i < n,otA = max(0,min{7|J(abody,7) > / ? }) } U X ,
denotes p(c) if either A = p(c) or A = ->p(c) where p is a predicate symbol

with arity k and c is a list of k ground terms.

Note: NTP(X) has at most one more element than X while DTP(X) may have
many new elements.

For any T : T(BP) —> T(BP) transformation let

T0 = {u{(A,a^)}|(yl < - ; / ; £) e ground(P),aA = max(0,min{7|/(l,7) >

{(,4,0)13(5 . . . - . A . . . ; / ; /9) € ground(P)} and let
TI = T(T 0)

Tn = T(Tn_o

Tq = least upper bound {T7|7 < <5} if <5 is a limit ordinal.

Proposition 1 Both DTP and NTP have a fixpoint, i.e., there exists X € F{BP)
and Y € T{BP) : DTP{X) = X and NTP{Y) = Y.
If P is positive, then X = Y and this is the least fixpoint. (That is for any
Z = T(Z) :X<Z.)

Proof: As [CGT] and [GS] show, if T is an inflationary transformation over a
complete lattice L, then T has a fixpoint. (T is inflationary if X < T(X) for every
X £ L). If T is monotone (T (X) < T(Y) if X < Y), then T has a least fixpoint
(see in [I/]).

Since DTP and NTp are inflationary and T(BP) is a complete lattice, thus they
have an inflationary fixpoint.

If P is positive, then DTP = NTP and this is monotone, which proves the
proposition. •

We denote the fixpoints of the transformations by lfp(DTp) and lfp(NTp).
We show, that these fixpoints are models of P, so we can define the meaning of

programs by these fixpoints.

Theorem 1 lfp{DTp) and lfp(NTp) are models of P.

Proof:
For T = DTP and T = NTP in ground(P) there axe rules in the following forms:

Fuzzy Extension of Datalog 157

a. (A ; 1,13).
b. (A « - A i , . . . ,AN\/;/3); {A,AA) G lfp(T) and

(|Ai|, AAI) € lfp(T), 1 < i < n.
c. X¿<-Ai,..-,An-,I;0);3i:(\Ai\,aAJé lfp(T). '

It was shown in [AK] that .in all of these cases /(»body, > (3.
This model for function- and negation-free /DATALOG is the least model of P

and this fixpoint can be reached in finite steps as given in [AK]. •

Now we can define the semantics of /DATALOG programs.

Definition. 5 We define lfp (DTP) to be the deterministic semantics and
lfp(ATp) to be the nondeterministic semantics of /DATALOG programs.

The next statement is obvious by Proposition 1.:

Proposition 2 For function- and negation-free /DATALOG, the two semantics
are the same.

We can choose many kinds of implication operators, but we will use only four
of those which were discussed in [AK]. They are:

T (\ _ / * i f x — y t (\ — I * • if 35 < 3/
h{x,y) - | y o t h e r w i s e - | i _ _ y) otherwise

TÍ if £ < 2 / j , , J l i f i < y
W>V>-\ y/x otherwise h{x,y) - | Q otherwise

As the next example shows, if the program has any negation, the two semantics
are different.

Example 1

1. r(a) < - ; I i ; 0.8
2. p(x) < - r (x) , - g (x) ; / i ; 0 . 6
3. q(x) r (x) ; / i ; 0 . 5
4. p(x) < - 9 (x) ; J i ; 0 . 8

Then lfp(£>Tp) = { (r (a) , 0.8); (p(a), 0.6; (q{a) , 0.5)} .
In nondeterministic evaluation we can get different solutions, depending on the

order of applied rules.
If the order of rules is 1., 2., 3., 4. then (lfpNTP) = {(r(a),0.8); (p(a),0.6;

[q(a), 0.5)}, but if the evaluating order is 1., 3., 2., 4. then the lfp(ATp) =
{(r(a), 0.8); (p(a),0.5); (q(a), 0.5)}.

•

158 Agnes Achs, Attila Kiss

The set lfp(DTP) is not always a minimal model as shown in the example above. So
in applying the deterministic semantics it is not certain that the obtained fixpoint
is minimal. In the nondeterministic case however it is minimal under "certain con-
ditions. This condition is the stratification. The stratification gives an evaluating
sequence in which the negative literals are evaluated at first.

To stratify a program, it is necessary to define the concept of dependency graph;
This is a directed graph, whose nodes are the predicates of P. There is an arc from
predicate p to predicate q if there is a rule whose body contains p or ->p and whose
head predicate is q.

A program is recursive, if its dependency graph has one or more cycles.
A program is stratified if whenever there is a rule with head predicate p and a

negated body literal there is no path in the dependency graph from p to q.
The stratification of a program P is a partition of the predicate symbols of P

into subsets Pi,... ,Pn such that the following conditions are satisfied:
a. if p £ Pi and q € Pj and there is an edge from q to p, then i > j
b. if p 6 Pi and q € Pj and there is a rule with the head p whose

body contains q, then i > j.
A stratification specifies an order of evaluation. First we evaluate the rules

whose headrpredicates are in Pi then those ones whose head-predicates are in P2

and so on. The sets P i , . . . ,Pn are called the strata of the stratification.
A program P is called stratified if and only if it admits a stratification.
There is a very simple method for finding a stratification for a stratified program

P in [CGT], [U].
Let P be a stratified /DATALOG program with stratification Pi,... ,Pn. Let

P? denote the set of all rules of P corresponding to stratum P f, that is the set of
all rules whose head-predicate is in Pi.

Let
Li=lip(NTPl)

where the starting point of the computation is To defined earlier.

L2=lfp(JVrp ;)

where the starting point of the computing is Li,

Ln = \fp(NTK)
where the starting point is L n - i -

In other words we first compute the least fixpoint Li corresponding to the first
stratum of P. Once we computed this fixpoint we can take a step to the next
strata.

Note:
lfp(NTp;) = lfp(BTp.).

We will show by induction that Ln is a minimal model of P. For this purpose we
need the next lemma.

Fuzzy Extension of Datalog 159

Lemma 1 Let P be an /DATALOG program such that for each negated predicate
in a rule body there is not any rule whose head-predicate would be the same, but
this predicate can occur among the facts. Then P has a least model:

L = lfp(ATp)(= lfP(£>Tp)).

Proof:
Let p be a negated predicate in a rulé body of P. As there is not any new rule

for p, therefore the degree of p will never change during the computation. For such
P NTP (or DTP) is monotone and therefore lfp(iVTp) is the least model of P.

•
According to this lemma, L\ is the least fixpoint of Pf. Generally L¿ is the

least fixpoint of P*, because due to the stratification of P, all negative literals of
stratum i correspond to predicates of lower strata, so there is not any rule in P*
whose head-predicate would be this one.

From this we get the following theorem:

Theorem 2 If P is a stratified /DATALOG program then L„ is a minimal fixpoint
of P.

Theorem 3 For stratified /DATALOG program P, there is an evaluation se-
quence, in which lfp(jVTp) is a minimal model of P.

Proof:
The above construction gives this sequence. In this sequence Ln = lfp(ATp).

•

4 Connection Between /DATALOG and Fuzzy
Relations

The ordinary Datalog maybe interpreted by relations such, that to every predicate
p with arity k corresponds a relation P with arity k. The rows of P are those for
which the predicate p is true.

Similarly it is possible to associate relations with /DATALOG predicates. The
problem is that in the literature there are different definitions of fuzzy relations.
Below we will deaf with two kinds of fuzzy relations.

Definition 6 A first type fuzzy relation R in D\,..., Dn is characterised by an
h-varíate membership function:

M : ¿ 1 X . . . X D „ - > [0 , 1] .

In other words a first type fuzzy relation is a fuzzy subset of the Cartesian Product
of Du...,Dn.

We will denote this relation by:

, . . . , ! > „) , / m) .

160 Agnes Achs, Attila Kiss

Example 2 The relation (F (X , Y) , f i p) is a first type fuzzy relation, where F
denotes the friends relation:

F: X Y hf
John Tom 0.1
Jim Bob 0.6

•
It is obvious that we can relate a first type fuzzy relation to each predicate of

an /DATALOG program P so that

i = (o i , . . . , o„) e (R{Di,..., Dn) if and only if

(r (o l t . . . , 0 , M f l W) G IfP (DTP) or lfp (NTP).

The first type fuzzy relations show the closeness of the connection among crisp data.
However, sometimes we need to use fuzzy data. So we will define the second type
fuzzy relation and will give a possible extension of /DATALOG on these relations.

Definition 7 Let Di,...,Dn be n universal sets and J~(T)i),..., !F(Dn) be all
their fuzzy sets. Then a second type fuzzy relation R is defined by an n-variate
membership function:

rn • H D i) x . . - X T{Dn) [0 , 1] .

Example 3 Let R be the following:

R : Name Age Salary fiR
John 31 {0.8/3000,0.7/3500} 07T
Tom middle aged 3300 0.8
Ann young {0.6/2000,0.8/2500} 0.9

R is a second type fuzzy relation. •

5 Extension of /DATALOG for Fuzzy Data
We want to extend the /DATALOG programs so that the predicates of the pro-
grams can be related to second type fuzzy relations. Therefore we allow that the
constants be any fuzzy data and the variables can have any fuzzy value.

Formally an /DATALOG rule is the same as above. Evaluating an extended
. /DATALOG program, we would have difficulties with the unification of fuzzy data,
therefore we will complete these rules with similarity predicates, so the unification
will be crisp and the uncertainty is expressed by the similarity.

Definition 8 simo : T(D) x T(D) [0,1] is a similarity predicate if it is reflexive
and symmetric, that is, if simD(z,a:) = 1 and sim.o(a;,2/) = sim£>(y,i).

A similarity matrix is a matrix corresponding to similarity predicate.

Fuzzy Extension of Datalog 161

A similarity is transitive if

sim£>(a:,z) > max{min(sim£)(x,T/),sim£)(?/,z))}.
y€D

Definition 9 An extended /DATALOG program is an /DATALOG program on
fuzzy data completed with similarity matrices.

If we want to evaluate an extended /DATALOG program, we have to trans-
form it to an /DATALOG program. For this purpose we will build the similarity
predicates into the rules. In rewriting predicates there are the following rules:

a. p is the head predicate of a fact

p (a i , . . . , an) «-;/;/?.

Instead of this rule, we get:

p(x!,..., xn) < - p (a i , . . . , a n) , s i m o . J o i . i i) , . . . , simDj!n (an ,x„) ;I ; /3,

where sim/^. denotes the similarity predicate on the domain of X{.
b. X is a variable in the rule

Suppose that x is in the predicates p ,p i l t . . . ,Pik and there is no another oc-
curence of x in this rule:

p (. . . , x , . . .),pix (..., x,.. ,),pik (. . . , x , . . .) .

Instead of this sequence we can write:

p(. . . , x , . . .),Pii (. . . , x i , . . .) , s im D i (x i , x) ,p i 2 (. . . , x 2 , . . .) ,

simDi (x2, x), simDi (x2, x x) , . . . ,
p i f c (. . . ,x f c , . . .) , s i m ^ x ^ x) , s i m c j x ^ x i) , . . . , simDic(xfc,xjfc_i)

independently of whether p is in the head or in the body and independently of the
order of the predicates (because of symmetry of sim).

Then the head of the new and of the original rule will be the same.

c. x is a repeated variable in predicate p:

p (. . . , x,..., x,..., x , . . .) — x occurs k + 1 times.

Instead of this we get:

p(. . ,,x,...,xi,...,xk,...) simDx(xi,x), s im D i (x 2 , x) , . . . ,

sim^(xfc,x), sim£)a ;(xi,x2) , . . . , s im D i (x i ,x f c) , . . . , simDx(xfc.-i,Xfc).
In this case the head of the new rule is the same if p is in the body and it is of the
form p (. . . , x , . . . , x i , . . . , x* , . . .) if p is the head predicate.

162 Agnes Achs, Attila Kiss

Proposition 3 Completing the rewriting of rules we get an ordinary /DATALOG
program.

This program can be evaluated by deterministic or nondeterministic semantics.

Proposition 4 If simD* is transitive then

simD.in,®), s im C l (i 2) a ;) , . . . , s im^ (x k , x), s i m D x (x 2 , x i) , . . . ,

s\mDl{xk,xi),..., simjofc(xk,xk~i)

can be simplified to:

simojxx,!), sim^(x2,x),..., simDi(xk,x).

Proof: We will prove that sim/^ {x2 ,xi) can be ignored. The proof is similar for
other cases. Because of transitivity

sim/j^a^.zi) > min(sim.Dx(x2,x), simDI(i,a;i)).

As in case of the rule A «- Av,..., An abody = minia^j , . . . ,) so it is possible
to leave out s imc^a^z i) - •

We give an algorithm of rewriting an extended /DATALOG program P.

Algorithm:

Procedure rewriting
facts := { the set of facts of P}
rules := { the set of rules of P } - facts
C := { the set of all possible constants }

(that is the union of domains)
V := { the set of variables of P}

while not-empty (facts) do
fact := select (facts)
axglist := { the list of arguments of the fact }
i := 1
body := 0
for a e C do

while a € arglist do
change (a, Xi)

body : = body A simD„(a:»,a)
i := i + 1

endwhile
endfor
facts := facts - fact

endwhile

Fuzzy Extension of Datalog 163

while not-empty (rules) do
rule := select (rules)
variable Jsit := {the list of variables of the rule }
body := { the body of the rule }
for x € V do

if x £ variable-list then
rest-list leave-out (x, variable-list)
i := 1
while a£ rest -list do

change (x,xi)
body := body A s im^ (x*, x)
if non.transitive (sim^) then

for j :=1 to i — 1 do
body := body A sim£>i(xJ, Xi)

endfor
endif
i:=i + 1

endwhile
endif

endfor
rules := rules - rule

endwhile
endprocedure

Example 4

p(a) <- ; / i ;0.7

r(b) < - ; J i ; 0 . 8

q{x) p(x), r(x); I\; 0.9

sim a b c
a 1 0.8 0.1
b 0.8 1 0.7
c 0.1 0.7 1

The rewritten rules:
p{a) <- ; / i ;0.7

r(b) < - ; J i ; 0 . 8

sim(a, a) ; 7j; 1

p(x) p(a), sim(x, a); h; 0.7

r(x) <-r(b), simx, b); I\\ 0.8

164 Agnes Achs, Attila Kiss

q(x) p(xi), sim(ii,i),r(a ;2), sim(:E2,20. sim(a;2, a^); Ii\ 0.9

It is simpler to write the solution in matrix-form, so
lfp(iVTp) = lfp (DTP) :

p: a b c r : a b c q: a b c
" 0 7 0.7 0.1 " 0 8 0.8 0.7 ~0?7 0.7 0.7

and the similarity matrix is the original. •

Example 5

p(a,b) 7i; 0.9

p{c,d) <-; / i ;0.8

q(x,y) p{x,y)\A;0.7

q(x,y) <-p(x,z),q(z,y)-, A; 0.8

sim a b c d e
a 1 0 0.1 0.2 0.8
b 0 1 0.9 0.1 0
c 0.1 0.9 1 0.2 0
d 0.2 0.1 0.2 1 0.1
e 0.8 0 0 0.1 1

The rewritten rules (without facts and similarity matrix):

p(x,y) p(a, b), sim(x, a), sim(y, 6);/i;0.9

p(z,y) p(c,d), sim(x, c), sim(y,6);/i;0.8

?(x,y) «-pfai . f f i) , sim(xi,a;), sim(yi,y);/i;0.7

9(1,y) <-p(i i ,z i) ,g (z 2 ,y i) sim(ii,x), sim(yx,y), sim(zi,z2);/i ;0.8

The fixpoint is:

P • a b c d e 9 : a b c d e
a 0.1 0.9 0.9 0.1 0.1 a 0.2 0.7 0.7 0.7 0.2
b 0.2 0.1 0.2 0.8 0.1 b 0.2 0.2 0.2 0.7 0.2
c 0.2 0.1 0.2 0.8 0.1 c 0.2 0.2 0.2 0.7 0.2
d 0.2 0.2 0.2 0.2 0.1 d 0.2 0.2 0.2 0.2 0.2
e 0 0.8 0.8 0.1 0 e 0.2 0.7 0.7 0.7 0.2

and the original similarty matrix. •

Fuzzy Extension of Datalog 165

Example 6

n(a) <-; Ji;0.9

s(x,x) « - n (i) ; / i ; 0 .8

sim a b c
a 1 0.7 0.1
b 0.7 1 0
c 0.1 0 1

The rewritten rules (without facts and similarity matrix):

n(x) n(a), sim(x,a); / i ;0.9

s (x ,x i) « - sim(xi ,x) ,n(x2) , sim(x2,x), s im(xi ,x2) ; / i ;0 .8

The fixpoint is:

n : a b c s : a b c
0.9 0.7 0.1 a 0.8 0.7 0.1

b 0.7 0.7 0
c 0.1 0 0.1

6 Conclusion
In this paper we gave a possible extension of Datalog-like languages. We defined
the deterministic and nondeterministic semantics of /DATALOG and using the
similarity relations we gave a possible extension on fuzzy data.

References
[AK] Agnes Achs, Attila Kiss: Fixpoint query in fuzzy Datalog, to appear in

Annales Universitatis Scientiarum Budapestinensis Sectio Computatorica,
Budapest

[CGT] S. Ceri G. Gottlob L. Tanca: Logic Programming and Databases,
Springer-Verlag, Berlin, 1990

[GS] Yuri Gurevich, Saharon Shelah:Fixed-point extensions of first-order logic,
IEEEE Symp. on FOCS (1985), 346-353.

[K] Attila Kiss: On the least models of fuzzy Datalog programs, International
Conference on Informaion Processing and Management of Uncertainty in
Knowledge-based system, Mallorca 465-471.

58 Agnes Achs, Attila Kiss

J. W. Lloyd: Foundations of Logic Programming, Springer-Verlag, Berlin,
1987.

Deyi Li, Dongbo Liu: A Fuzzy PROLOG Database System, Researc Stud-
ies Press LTD., Taunton, Somerset, England, 1990.

Vilém Nóvák: Fuzzy sets and their applications, Adam Hilger Bristol and
Philadelphia, 1987.

J.D. Ullman: Principles of database and knowledge-base systems, Com-
puter Science Press, Rockville, 1988.

Received June, 1995

