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Some Remarks On Generating Armstrong And
Inferring Functional Dependencies Relation*

Janos Demetrovics! Vu Duc Thif

Abstract
- The main purpose of this paper is to give some results concerning algo-
‘rithms for generating Armstrong relation and inferring functional dependen-
cies ( FDs for short ). Firstly, we present some algorithms for solving these
two problems. In the second part of the paper some NP-complete problems .
related to generating Armstrong relation and inferring FDs are given.
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1 Intrbduction

Problems that construct a relation r such that r is an Armstrong relation of a
given relation scheme ( generating Armstrong relation ) and a relation scheme s
such that FDs of s hold in a given relation ( inferring FDs ) have been applied for
for database design, query optimization, and artificial intelligence. These problems
have been investigated in a lot of papers [3,9,12,16,17,18].

In this paper we give some results related to generating Armstrong relation
and inferring FDs. The paper is structured as follows. In Section 2, we present
some characterizations of the Armstrong relation of a given relation scheme, and
construct an algorithm for finding all minimal transversals of a given hypergraph.
From these and the results, presented in [9], we construct algorithms for generating
Armstrong relation and inferring FDs.

Section 3 gives some NP-complete problems related to generating Armstrong
relation and inferring FDs. ' _

Let us give some necessary definitions and results that are used in the next
sections. The concepts given in this section can be found in [1,3,4,6,7,8,10,11,13,19].

Let R = {ai,...,a,} be a nonempty finite set of attributes. A functional
dependency is a statement of the form A — B, where A, B C R. The FD A > B
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holds in a relation 7 = {h, ..., hm} over R if Vh;, h; € r we have hi(a) = hj(a) for

all a € A implies h;(b) =-hj(b) for all b € B. We also say that r satisfies the FD

A— B. -
Let F, be a family of all FDs that hold in r. Then F = F; satisfies

(1) Ao A€F,

(2) A-BeF,B>Ce€F)=>(A>CE€F),

3 (A-BeF,ACC,DCB)=(C—>DeF),

4 (AoBeF,C—»>DeF)y= (AUC>BUDEF)

A family of FDs satisfying (1)- (4) is called an f-family ( sometimes it is called
the full family ) over R.

Clearly, F, is an f-family over R. It is known [1] that if F is an arbitrary
f-family, then there is a relation r over R such that F, = F.

Given a family F of FDs, there exists a unique minimal f-family F* that contains
F. It can be seen that F* contains all FDs which can be derived from F' by the
rules (1)-(4).

A relation scheme sis a pair < R, F >, where Risa set of attributes, and F is
a set of FDs over R. Denote A = {a: A - {a} € F*}. A" is called the closure of
A over s. It is clear that A - Be Ft iff BC AT,

Clearly, if s =< R, F > is a relation scheme, then there is a relation r over R
such that F,. = F* ( see, [1] ). Such a relation is called an Armstrong relation of s.

Let r be a relation, s =< R, F > be a relation scheme. Then A is a key of r ( a
key of s)if A—> R€ F.( A— R € F*). A is a minimal key of r(s) if A is a key
of 7(s) and any proper subset of A4 is not a key of r(s).

Denote K,.(K) the set of all minimal keys of r(s).

_Clearly, K, K, are Sperner systems over R, i.e. A,B € K, implies A ¢ B.

Let K be a Sperner system over R. We define the set of antikeys of K, denoted
by K1, as follows: °

“1_{ACR:(BeK)=>(BZA)and(AcC) = (3B € K)(BCC)}.

It is easy to see that K ! is also a Sperner system over R.

Let R be a nonempty finite set, P(R) its power set, and I C P(R), R € I, and
ABel = ANB € I Iis called a meet- sem11att1ce over R. Let M C P(R)
Denote M+ = {nM' : M' C M}. We say that M is a generator of I if M+ = I.

" Note that R € M but not in M, by convention it is the intersection of the empty
collection of sets.

Denote N={AeIl:A#n{A el:AC A'}}.

It can be seen that N is the unique minimal generator of I.
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2 Algorithms

It is known [3,9,17] that the worst-case time complexities of generating Armstrong
relation and inferring FDs are exponential. In this section we present some char-
acterizations of the Armstrong relation of a given relation scheme. An effective
algorithm finding all minimal transversals of a given hypergraph is also given.
These results and the results, presented in [9], are used to construct algorithms
for generating Armstrong relation and inferring FDs.

‘Let s =< R,F > be a relation scheme. A FD A — {a} € F* is called
the primitive maximal dependency ( PMD for short ) of s'if a ¢ A and for all
A'CA: A > {a} € F* implies A = A’

Denote T, = {A : A — {a} is a PMD of s}. It can be seen that {a},R ¢ T,,
and T, is a Sperner system over R. It is possible that T, = 0.

Let s =< R, F > be a relation scheme, a € R. Set K, ={AC R A — {a},
AB: (B — {a})(B C A)}. K, is called the family of minimal sets of the attribute
a.

Clearly, R¢ K,,” {a} € K, and K, is a Sperner system over R. It is easy to
see that K, {a} To.

Based on the results, presented in [9], we show some characterizétions of the
Armstrong relation of a given relation scheme.

Lemma 2.1 [9] Let F be an f-family over R, a € R. Denote Lr(A) = {a

€ R:(A,{a}) € F},Zr = {A: Lp(A) = A}. Clearly, R € Zp, A,B € Zr = ANB
€ Zp. Denote by Np the minimal generator of Zp. Set M, = {A € Nr:a ¢ A,

BB € Nr:a € B, A C B}. Then M, = MAX(F,a), where MAX(F,a) = {A C
R : A is a nonempty maximal set such that (4, {a}) & F}.

Let r be a relation over R. Clearly, F, is an f-family over R. Denote Lp_(A) =

{aER:A—){a}EF} Zp, ={A: L, (A) = A}. Put
E,={E;; :1<i<j<|r|}, where E;; = {a € R: hi(a) = h;(a)}. B, is called

the equality set ofr.

From E, we compute N = {A € E, : A# n{4 € E, : A C A'}}. It can be
seen that IV is the minimal generator of Zf, . Then for each a € R we have

M,={AeN:ag¢ A BBeN:ACB}

It can be seen that M, = {A€ E,:a ¢ A, BBE E, : AC B}.

It is known [5] that an arbitrary full family of FDs can be uniquely determined
by its primitive maximal dependencies.

From the result, presented in [9] ( see, Remark 2.9 ), and Lemma 2.1 we obtain
K;! = M, for all a € R. Clearly, if K is a Sperner system, then K and K~!
uniquely determined by each other. Consequently, the next proposition is clear
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Proposition 2.2 Let s be a relation scheme, and r a relation over R. Then r is
an Armstrong relation of s if and only if for every a € R

K'=M,.

Now we present the concept of hypergraph that is in [4].

Let R be a nonempty finite set and P(R) its power set. The family H =
{E:: E; € P(R),i = 1,...,m} is called a hypergraph over R if E; # . ( In [4]
author requires that the union of E;s is R, in this paper we do not ).

A hypergraph H is simple if E; C E; implies ¢ = j, i.e., H is a Sperner system
over K.

The elements of R are called vertices, and the sets Ey, ..., Ey, are the edges of
the hypergraph H.

It is easy to see that a simple graph is a simple hypergraph with |E |=2.

Let H = {E,,..., En} be a hypergraph over R. Set

m(H) = {E; EH AE; e H:E; C E;}.

It can be seen that m(H) is a simple hypergraph, and the family H uniquely
determines the family m(H).

Let H be a hypergraph over R. A set A C R is called a transversal of H
(sometimes it is called a hitting set ) if E € H implies AN E # 0.

The family of all minimal transversals of H is called the transversal hypergraph
of H, and denoted by tr(H). Clearly, tr(H) is a simple hypergraph.

Remark 2.3 Let K be a Sperner system over K. Based on the deﬁmtlons of K1
and tr(K) we can see that tr(K) = {R—- A: Ae K1} :

Denote N, = {R— A: A € M,}. From Proposition 2.2 and Remark 2.3 we have

Proposition 2.4 Let r be a relation, and s a relation scheme over R. Then r is
an Armstrong relation of s iff for all a € R

tr(K,) = N,

It is known [4] that if H, H' are two simple hypergraph over R, then H = tr(H')
iff H' = tr(H). From this and Remark 2.3, we can see that if K is a Sperner system,
then tr({R— A: A € K7'}) = K. According to the definitions of the set of all
antikeys, the family of all minimal transversals, and Proposition 2.2 we obtain

Proposition 2.5 Let r be a relation, and s a relation scheme over R. Then r is
an Armstrong relation of s iff for alla € R

N, ={B:R- Be€ K,}.

Clearly, from Proposition 2.4 we have
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Proposition 2.6 Let r be a relation, and s a relation scheme over R. Then .r is
an Armstrong relation of s iff for all a € R

K, = tr(N,).

It is obvious that a € R — A, where A € M Clearly, T, = K, — {a}. Thus,
from the definition of the tra.nsversa.l hypergraph we obtain T, = tr({(R —-a)—A:
A€ M,}) for all a € R(x).

Let r be a relation over R. A FD A — {a} € F; is called the primitive maximal
dependency of r if a ¢ A and for all A’ C A: A" — {a} € F; implies A = A"

Denote V, = {A: A— {a}isaPMDofr},and N, = {(R—a)— A: A€ M,}.
By (*) and according to the definitions of F,, and F'* we have

Proposition 2.7 Let r be a relation over R. Then for all a € R, V, = tr(N',).

Proposition 2.7 was independently discovered in (18].

In this paper, we consider the comparison of two attributes as an elementary
step of algorithms. Thus, if we assume that subsets of R are represented as sorted
lists of attributes, then a Boolean operation on two subsets of R requires at most
|R| elementary steps.

Now we construct an algorlthm that finds all minimal transversals of a given
hypergraph.

Algorithm 2.8 ( Finding all minimal transversals ).

Input: Let H = {E,,...,En} be a hypergraph over R.

Output: tr(H). .

Step 1: Set Ly = {{a}:a € E,}. It is obv1ous that Ly = tr({Er}).

Step q+1 (g <m):

Assume that Ly = S;U {B1,..., By}, where BiNE;; =0,i=1,...,t, and
S,={A€eL, AnEq+1 ;60}

For eachi (i = 1,...,t,) construct the set {B;Ub:b € E,y,}. Denote them by

L AL (=1, q) Let

Lyy1 =S,U{AL: A€ S, = A¢ A, 1<i<t, 1<p<r}.
Set tr(H) =L

Theorem 2.9 For every q (1 < ¢ <m), Ly =tr{{E,...,Eq}), ie., Ly = tr(H).

Proof. We prove this theorem by induction. It is obvious that L, = tr({E;}).
We have to show that Ly41 = tr({E1,...,Eq41}). For this using the inductive
hypothesis Ly = tr({E1, ..., Eg}).

Firstly, assume that D is the minimal subset of R such that DN E; # 0 (¢t =
1,...,q + 1). By the inductive hypothesis, there is a X € L, such that X C D.

If X €S,,then XNE, #0 forallt=1,...,9+1. Because D is the minimal
subset of R such that E;ND #0(t=1,...,9+1), we have X = D. Hence, D € S,
holds. Consequently, we obtain D € Lgy;.
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If XN E;41 =0, then X = B; holds for someiin {1,...,t,}. By DNEg¢; #0
we have B; C D. Thus, (D — B;) N Eg41 # 0 holds. According to the construction
of Lg41, we have AL C D for some p in {1,...,7;}. Clearly, Ay, N E; # § for all
l=1,...,g+1, ie, A} is a transversal of the family {E,,...,E;,1}. By D €
tr({E:, ..., Eq+1}) we obtain D = Aj. Because D does not contain the elements of
Sy, we have D € Lgy,.

Conversely, assume that D € Lgy,. If D € Sy, then DNE, #0(p=1,...,q) and
D is minimal for this property, and at the same time D N E,41 # 0. Consequently,
we have D € tr(Ey,...,E;41).

Let D € Lyt — S,. Clearly, there is an A5 (1 < i < t; and 1 < p < r;) such
that D = A}, Our construction shows that EyN A} #@foralll=1,...,¢+1. By
the construction of algorithm we obtain A} = B; U {b} for some b € Eqy;.

Suppose that C is a proper subset of At, and C € tr({Ey, ..., Eq41}). Clearly,
b € C holds. According to the definitions of the transversal and the family of
all minimal transversals, C is a transversal of the collection {E,...,E;}. By the
inductive hypothesis (Lgy = tr({Ey, ..., Eg})), if there is A € S, such that A C C,
then we have A C Aj. This contradicts A ¢ A}, for all A € S,. If there is B; (1 <
J < tg) BN Egyy = 0 such that B; C C, then b ¢ B; and B; C B;. This conflicts
with the fact that L, is a simple hypergraph. Hence, D € tr({En, ..., E441}) holds.

Thus, Lgy1 = tr({E1,...,Eq41}). Hence, Ly, = tr(H) holds. The theorem is
proved.

It can be seen that the hypergraph H uniquely determines the family ¢r(H),
and the determination of tr(H) based on our algorithm does not depend on the
order of Ey,..., En,.

Remark 2.10 Denote Ly = S; U{By,...,By,}, and {;(1 < g < m — 1) is the
number of elements of Ly. It can be seen that the worst-case time complexity of
our algorithm is :

m-—1
O(RI® 3 teuy),

=0

where lp =15 = 1 and

=ty il >t
“a= 1 if I, = t,.

Clearly, in each step of our algorithm L, is a simple hypergraph. It is known
that the size of arbitrary simple hypergraph over R can not be greater than CL"/ 2],
where n = |R]. ci*? is asymptotically equal to 2"*+1/2/(r - n)*/2. From this, the
worst-case time complexity of our algorithm can not be more than exponential in the
number of attributes. In cases for which I, < in(g=1,...,m — 1), it is easy to see
that the time complexity of our algorithm is not greater than O(|R|*|H||tr(H)|?).
Thus, in these cases this algorithm finds tr(H) in polynomial time in |R],|H| and



Some Remarks On Generating Armstrong 173

|tr(H)|: Obviously, if the number of elements of H is small, then this algorithm is
very effective. It only requires polynomial time in |R|.

It can be seen that our algorithm is better than the algonthm presented in [4],
finding all minimal transversals.

We glve the next example which 111ustra.tes our algorlthm

Example 2.11 Let R = {1,2,3,4,5, 6} and
H={(1,2),(2,3,4),(2,4,5), (4,6)}.

From Algorithm 2.8 we obtain

Ly ={(1), @}
Ly, = {(1’3)’ (1a4)) (2)}v
L= {(1a3)5)’ (1)4)7 (2)'};

L4 = {(2’6)) (274)’ (173a5v6)a (1’4)}

Clearly, tr(H) =
Now we give the algorithm, presented in [9], that finds K|,

Algorithm 2.12 [9] ( Finding a minimal set of the attribute a ).
Input: Let s =< R, F > be a relation scheme, 4 = {a1,...,a:} = {a}.
Output: A’ € K,. A
Step 0: We set L(0) =
Step i+1: Set

o« {370 L0 )

Then set A’ = L(t).

Algorithm 2.13 [9] ( Finding a family of all minimal sets of attribute a ).

Input: Let s=< R, F > be a relatlon scheme, a € R.

Output: K,.

Step 1: Set L(1) = E; = {a}.

Step i+1: If there are C' and A — B such that C € L(i), A—» B € F,VE ¢
L(i) = E € AU (C — B), then by Algorithm 2.12 construct an F;,.;, where
Ei.y CAU(C-B),E;4; € K,. Weset L(i+ 1) = L(i) U E;y;. In the converse
case we set K, = L(i). :
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-It is shown [9] that there exists a natural number n such that K, = L(n).
It can be seen that the worst-case tlme complexity of a.lgonthm is
O(RI\FIIKal(IR| + [Ka)).
Thus, the time complexity of this algorithm is polynomial in |R|, |F|, and |K,|.
Clearly, if the number of elements of K, for a relation scheme s =< R, F > is
polynomial in the size of s, then this algorithm is effective. Especially, when |K,|
is small.

Based on Proposition 2.4, Algorithms 2.8 and 2.13 we construct the next algo-
rithm.

Algorithm 2.14 ( Generating Armstrong relation).

Input: Let s =< R, F > be a relation scheme.

Output: A relation r such that F, = F+.

Step 1: For each a € R by Algorithm 2.13 we compute K,, and from Algorithm
2.8 find tr(K,).

Step-2: N= |J tr(K.)
a€ER
Step 3: Denote elements of N by ‘4,,..., A; construct a relation

R = {ho,h1,...,h;} as follows:
Foralla € R, ho(a) =0,Vi=1,...,t

1 ifa€e A
hi(a) = { 0 otherwise

It is known [16] that if s =< R, F >isa relation scheme. Denote Z, = {A: At =
A}, and N, is a minimal generator of Z,. Then

= | J MAX(F*,a)
a€ER

where
MAX(F*,a) = {ACR:A— {a} ¢Ft ACB== B~ {a} € F+}.

From this and the definitions of M,, and N, of the relation r we have tr(K,) =
N, for all a € R. Consequently, by Proposition 2.4 we obtain F, = F't.

The estimation and the effectiveness of this algorithm are analogous to the
algorithm, presented in [9] ( see, Remark 2.12 in {9} ), so its proof will be omitted.

Now we give the algorithm finding all antikeys, presented in [20].

Let K = {By,...,Bmn} be a Sperner system over R.

For each ¢ = 1,...,m we construct K, = {B,,.. .,B,}™! by induction:

Set Ky = {R — {a} : a € B,}. It is obvious that K; = {B;} .

By the inductive hypothesis we have constructed K, = {Bl,...,Bq}_1 for
(g <m). :
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We assume that K, = F, U {X1,...,X;, }, where Xl, -+, X, containing Bgy,
and F, = {A € K, Bq+1 Z A},

For alli (i = 1 tq) construct the antikeys of {Bq+1} on X; in an analogous
way as K. Denote them by A},... AL (i=1,...,t,).Let

Ko = Fu{A' Aqu=>A;',¢A,lgz'gtq,lspgr,-}.

Set K~! = K,,,.
Denote Kq = Fq U {Xy,...,X¢,} and l; (1 < ¢ £ m—1) is the number of
elements of K '

Remark 2.15 [20] The time complexity of algorithm finding all antikeys is
m—1 )
2 :
O(|R| Z touq),
g=0 o

where
w = -ty iflg >t
771 1 iflg =t,

According to Proposition 2.5 and the algorithm finding all antikeys we. will
construct the following algorithm.

Algorithm 2.16 ( Inferring FDs ).

Input: 7 be a relation over R.

Output: s =< R, F > such that Ft = F,.

Step 1: From r compute the equality set E,

Step 2: Set N={A€ E.:A#N{B€E,:AC B}}

Step 3: Foreacha € R find M, = {A € Ng:a g A, ﬁBENR a ¢ B, AcC B}.
Compute N, = {R— A: A€ M,}.

Step 4: By the algorithm finding all antikeys, for each a € R construct N 1.

Step 5: Construct s =< R,F >, where F = {R- B - {a}:Va € R, B € -
N7, R- B # {a})

By Proposition 2.5 we have F, = F*.

Remark 2.17 Clearly, for all a € R N, is computed in polynomial time in the
size of r. It can be seen that the complexity of Algorithm 2.16 is the complexity of
step 4. By Remark 2.15, it is easy to see that the worst-case time complex1ty of
Algorithm 2.16 is

n m.-—l

O("2 Z( Z tiqliq))

i=1 ¢=0
where R = {al,- .- aan}) m; = lNail and

v = liq — tig if liq > tig
"I 1 if lig = tig
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Meaning of lig, tig, uiq see Remark 2.15.
In cases for which lig < lm(Vi,¥g:1 < ¢ < m;) the time complexxty of our

algorithm is O(n Z | No, || N, 'll ) Thus, the complexity of Algorithm 2.16 is

polynomial in |R|, IN,,,I |Na; 71| Clearly, in these cases if [Ny, ~}| is polynomial
(Especially, it is small ) in the size of 7, then our algorithm is effective. -

According to Proposition 2.6 and algorithm 2.8 we give the next algorithm for
inferring FDs.

.ot

Algorithm 2.18 ( Inferring FDs ).

Input: 7 be a relation over R.

Output: s =< R, F > such that F+ = F,.

Step 1: From r compute the set N, for all a € R.

Step 2: By Algorithm 2.8, construct tr(N,), for every a € R.

Step 3: Construct s =< R,F >, where F = {A - {a}:Va € R, A €
tr(N,), A # {a}}.

By Proposition 2.6 we have F,. = F*,
The estimation of Algorithm 2.18 is analogous to Algorithm 2.16, so its proof
will be omitted.

It can be seen that Algorithm 2.18 is similar to the algorithm inferring FDs,
presented in [18]. However, it can be seen that Algorithm 2.8 is better than the
algorithm, presented in [4], that is used in [18].

3 NP-complete Problems

In this section, we present some NP-complete problems related to PMDs, and the
sets M,. In Section 2, we show that these sets play important roles in generating
Armstrong relation and inferring FDs.

Let s =< R,F > be a relation scheme over R. Denote L, = {A: 4 — {a},
a ¢ A}. It can be seen that L, contains all PMDs concerning a, i.e., T, C L,.

Eirstly, we introduce the following problem related to the set L,.

Theorem 3.1 The following problem is NP-complete:

Let s =< R, F > be a relation scheme over R, a € R, and an integer m (m <
|R}), decide whether there is an A such that a g A, A — {a}, (i.e., A € L,), and
4] < m.

Proof. We nondeterministically choose a set A so that [A| < m, a € A, and decide
whether A — {a} is an element of F*. Clearly, by the polynomial time algorithm
finding the closure ( see [2] ), our algorithm is nondeterministic polynomial. Thus,
our problem lies in NP.
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Now we shall show that our problem is NP-hard. It is known [15] that the
problem deciding whether there exists a key having cardinality less than or equal
to a given integer for relation scheme is NP-complete. Now we prove that this
problem is polynomially reducible to our problem.

Let s' =< P, F' > be a relation scheme over P. Now we construct the relation
scheme s =< R, F >, as follows:

R=PUa,wherea¢ Pand F = F'UP - {a}.

It is obvious that s is constructed in polynomial time in the sizes of P and F'.
Based on the construction of s and the definition of the minimal key we can see
that if A € K, then A € K,. Conversely, if B is a minimal key of s, then by
R — {a} € F we have a € B. On the other hand, by the definition of the minimal
key B € Ky. Thus, Ky = K, holds. By P —» {a} € F,and a ¢ P, if B — {a} is
a PMD of s, then B € K,. It can be seen that if A € K then A — {a} € F*.
According to the definition of PMD, A — {a} is a PMD of s. Consequently, C is a
key of s' if and only if a € C, and C — {a} € F*. The theorem is proved.

Now we give the NP-complete problem concerning M,, ( see, Lemma 2.1 ).

Theorem 3.2 The following problem is NP-complete:
Let s =< R, F > be a relation scheme over R, a € R, and an integer m (m <
|R|), decide whether there is an A such that a ¢ A, A = {a} ¢ F*, and m < [A].

Proof. By the proof of Theorem 3.1, it is clear that our problem lies in NP.

It is known [14] that the independent set problem is NP-complete :

Given integer m and a non-directed graph G =< V, E >, where V is the set of
vertices and F is the set of edges. An independent set in G is a subset A C V such
that for all a,b € A, the edge (a,b) is not in E. The independent set problem is
deciding whether G contains an independent set A having cardinality greater than
or equal to m.

We shall prove that the independent set problem is polynomially reducible to
our problem.

Let G =< V, E > be a non-directed graph, m < |V|. Set

s' =< V,F' >, where F' = {{a;,a;} = V : (a;,a;) € E}, and

s=<R,F> where R=VU{a},a¢V,and F=F' UV = {a}.

Clearly, s, s’ are constructed in polynomial time in the size of G.

According to the definition of the set of edges, E is a simple hypergraph over
V. From this, we can see that s’ is in BCNF. Because F is the set of edges, and
by the definition of the minimal key, we can see that if (a;,a;) € E, then {a;,a;}
is a minimal key of s'. Conversely, if B € K, then there is an {a;,a;} such that
{ai,a;} C B. Because B is a minimal key, we have {a;,a;} = B. Hence, Ky = E
holds.

Consequently, A is not a key of s’ if and only if {a;,a;} & A4 for all (a;,a;) € E.
Thus, A is not a key of s" if and only if A is an independent set of G.

On the other hand, by the proof of Theorem 3.1 C is a key of s’ if and only if
C — {a} € F*, and a ¢ C. Consequently, A is not a key of s’ if and only if a ¢ A,
and A - {a} ¢ F*}.
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Thus, A is an independent set of G if and only if A does not contain a, and
A-— {a} ¢ F*. The theorem is proved.
Now we will show that Theorem 3.1 is still true for the relations.

Theorem 3.3 The following problem is NP-complete:
Let 7 be a relation over R, a € R, and an integer m (m < |R|), decide whether
there is an A such that a & A, A = {a} € F, and |A| < m.N

Proof.

~We nondeterministically choose a set A so that |A| < m, a € A, and decide
whether A - {a} € F;. Clearly, using the definition of the functional dependency,
we can test in polynomial time that the functional dependency A — {a} holds or
does not hold in r. It is obvious that our algorithm is nondeterministic polynomial.
Thus, the problem lies in"NP.

It is shown [14] that the the vertex cover problem is NP-complete:

Given integer m and a non-directed graph G =< V, E >, where V is the set
of vertices and F is the set of edges, decide whether G has a vertex cover having
cardinality not greater than m.

Let G =< V,E > be a non-directed graph, m < |V|. Put R = V U a, where
agV.

Denote the elements of E by E), ..., E; construct a relation

r = {ho, h1, ..., ¢}, as follows:

Forallbe R, ho(b) =0,Vi=1,...,¢t

hi(b) =

1 ifbeER;orb=a
0 otherwise.

Clearly, the set E is a Sperner system. From this and by the definition of
N, we can see that N, = {{ai,aj,a} : (a;,a;) € E}. Consequently, we obtain
N! = {{ai,a;} : (a;,a;) € E}. According to Proposition 2.7, V, = tr({{a;,a;} :
(ai,aj) € E}). On the other hand, by the definition of the vertex cover we can see
that A is a vertex cover of G if and only if A does not contain @, and A — {a} is
an element of F,.. The proof is complete.

Thus, for the relations Theorem 3.1 is still true. However, the next proposition
shows that the problem, presented in Theorem 3.2, can be solved in polynomial
time if the relation scheme is changed to the relation.

Proposition 3.4 Let r be a relation over R, a € R, and an integer m (m < |R|).
Then the problem deciding whether there is an A such that a § A, A »¢ F,, and
m < |A| can be solved by a polynomial time algorithm.

Proof. .

According to the difinitions of M, and the antikey, and by Proposition 2.2 we
can see that M, is the family of all maximal sets A such that A doesn’t contain
a, and A = {a} € F;. Clearly, for every a € R, we can compute the family M, in
polynomial time in the size of r.
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Consequently, for relations, given an attribute a, and an integer m the problem
deciding whether there is an A such that a € A, A = {a}, and the cardinality of A
is greater than or equal to m can be solved by a polynomial time algorithm. The
proposition is proved.
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