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representing RE languages by one-sided internal 
contextual languages* 

A. Ehrenfeucht 1 A. Mateescu * Gh. Paun * 

G. Rozenberg + § A. Salomaa * 

A b s t r a c t 

In this paper we prove that each recursively enumerable language L can 
be written in the form L — cutd(L' fl R), where L' is a language generated 
by a one-sided internal contextual grammar witli context-free choice, R is a 
regular language, and cutd is the operation which removes the prefix bounded 
by the special symbol d, which appears exactly once in the strings for which 
cutd is defined. 

However, the context-free choice sets are always deterministic linear lan-
guages of a very simple form. Similar representations can be obtained using 
one-sided contextual grammars with finite choice and with erased or with 
erasing contexts. 

K e y w o r d s . Formal languages, contextual grammars, recursively enumer-
able languages. 

1 Introduction 
In [3] it is proved that each recursively enumerable language L can be written in the 
form L — cutd(L' D R), where L' is a finite choice internal contextual language, R 
is a regular language, and cutd is the operation which removes the prefix; bounded 
by the special symbol d, which appears exactly once in the strings for which cutd is 
defined. It is also asked in [3] whether or not the language L' can be generated by 
an internal contextual grammar with one-sided contexts only, and it is conjectured 
that the answer is negative. We prove that each recursively enumerable language 
L can be written in the form L = cutd(L' fl R), where V is a language generated 
by a one-sided internal contextual grammar with context-free choice, R is a regular 
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language, and cutj is the operation which removes the prefix bounded by the special 
symbol d, which appears exactly once in the strings for which cutd is defined. 

An internal contextual (ic, for short) grammar (as introduced in [9], as a coun- -
terpaxt of external contextual grammars in [7]), consists of an alphabet, a finite set 
of starting strings (axioms), and a finite set of context adjoining productions of the 
form (C, u$v), where C is a finite set of strings and u,v are strings over the given 
alphabet. For each x € C we can assume that there is a rewriting rule x —> uxv (the 
context (u,v) is adjoined to x). When all productions are of the form (C, $v), then 
we say that the grammar is a one-sided one. All the strings obtained by finitely 
many adjoinings, starting from axioms, constitute the language generated by the 
grammar. When all sets C are of a given type F, we say that the grammar has 
F-choice (or ^-selection). 

The family of languages generated by a (one-sided) ic grammar with finite choice 
includes strictly the family of regular languages, is incomparable with each family 
intermediate between those of linear and of context-free languages and is strictly 
included in the family of context-sensitive languages [8], [10]. 

In [3] it is proved that every recursively enumerable (RE, for short) language L 
can be written as L = cutd(L' n R), where L' is a finite choice ic language, R is 
a regular language and cutd is the operation which maps x\dx2 into x^, providing 
X\X2 contains no occurrence of d. The last section of [3] asks wheter or not L' above 
can be a one-sided ic language. In [10] it is shown that the restriction to one-sided 
contexts decreases strictly the power of ic grammars, for all types of selection, which 
leads to the conjecture in [3] that the answer to this problem is negative. However, 
all context-free languages L can be written as L = h(L' fi R), for h a week coding, 
L' a finite choice one-sided ic language, and R a regular set. Moreover, there are 
non-context-free languages which can be represented in this way. 

Here we contribute to this question by proving that for each RE language L 
there is a one-sided ic language L' with context-free selection and a regular language 
R such that L = cutd(L' fl R). Therefore, we pay the price of using a one-sided ic 
language in the representation in [3] by involving context-free languages as choice 
sets. In fact, the used context-free languages are of three particular types, namely 
finite, deterministic linear, or of the form where z is a string of length 
two and Li is a deterministic linear language. Further arguments supporting the 
conjecture in [3] are also discussed. It is shown that representations ELS above can be 
obtained when using grammars with finite selection, providing we also use erased 
or erasing contexts, in the sense of [10]. 

The proof of our results makes use of the one-sided normal form for context-
sensitive grammars, [11]. 

2 Formal language prerequisites 

We refer to [12] for basic formal language notions and results we use here, and we 
specify only some notations. 

For an alphabet V, V* is the free monoid generated by V, A is the empty string, 
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| x | is the length of x G V*, \ x |a is the number of occurrences of the symbol a in 
x, and V+ = V* — {A}. A morphism h : V* U* is called coding if h(a) G U for 
all a G V and week coding if h(a) £ U Li {A} for all a G V. 

The left quotient of a language L2 with respect to a language L\ is: 

Li\L2 = {iv | uw € L2 for some u G Li} . 

For the alphabet Vn = {a\,bi,... ,an,bn}, the Dyck language Dn is defined as 
the smallest set E C V* such that: 

1) A G E, 

2) if x, y e E, then xy G E, 

3) if x G E, then xiaibix2 G E for all 1 < i < n and x\x2 G V* such that 
X — XIX2. 

A Chomsky grammar is written in the form G = (N, T, S, P), where N is the 
nonterminal alphabet, T is the terminal alphabet, S G TV is the axiom, and P is 
the set of productions. The families of finite, regular, linear, context-free, context-
sensitive, recursively enumerable and of arbitrary languages are denoted by FIN, 
REG, LIN, CF, CS, RE, ARB, respectively. 

3 Internal contextual grammars 
Let F be a family of languages. An ic grammar (with F choice) is a triple 

G = (V, M, P) 

where V is an alphabet, M is a finite set of strings over V, and P is a finite set of 
pairs (C,u$v), where C G F, u,v are strings over V and $ is a special symbol not 
in V. 

The elements of M are called axioms, those of P are called productions', for a 
production 7r = (C,u$v), C is called the selector and (u, v) the context of 7r. 

For any ic grammar G = (V, M, P) and x,y G V*, we write x => y iff x = x\zx2, 
y = x\uzvx2 and (C,u$v) is a production of P with z G C. Denoting by =>* the 
reflexive and transitive closure of =>, the language generated by G is defined by: 

L(G) - {y G V* | x =>* y for some x G M}. 

If all productions of P are of the form (C, $t>), then we say that G is a one-sided 
ic grammar. 

We denote by IC{F) the family of languages generated by ic grammars with F-
choice and by 1IC(F) the family of languages generated by one-sided ic grammars 
with F choice. 

Proofs of the following results can be found in [8], [9], [10], [3] : 



220 A. Ehrenfeucht, A. Mateescu, Gh. Paun, G. Rozenberg, A. Salomaa 

1) REG C 1 IC(FIN) C IC{CS) C CS 

2) IC(FIN) C IC(REG) C IC(CF) C IC{CS) C IC(RE) 

3) for all F containing the finite languages, 1IC(F) and IC(F) are incomparable 
with each family F' such that LIN C F' C CF (there are linear languages 
not in IC(ARB) and there are non-context-free languages in 1 IC(FIN)). 

For instance, the linear language 

L = a+ U {anbn | n > 1} 

is not in IC(ARB) [8]. Consider also the ic grammar 

G = ({a,b,c,d,e},{a},P), 

P = {(a, Uc), (a, $cb), (cbbc, $6), (bccb, $c), (ebb, $d),{bcc, $e)}. 
(Usually we write the singleton languages {z} without parenthesis.) 

In [3] it is proved that 

L(G) n a(cbb)+(de)+ = {a(cbb)n (de)m \m>l,n> 4m + 2{im~1 - l ) /3 , n even}, 

which implies that L(G) is not a context-free language. 

4 Representing RE languages using ic languages 
For an alphabet V and a symbol d ^ V, we define the operation 

cutd : V*dV* V* 

cutd(xidx2) =X2,XI,X2 6 V*. 

The main result in [3] is 

Theorem 1 Every language L g RE can be written in the form L = cut¿(L' n 
R), for V e IC(FIN), R& REG. 

Because we shall use here a similar idea, we recall the construction in [3] : 
Take LCV*, Le RÉ, and a type 0 grammar for L, G = (N, V, S, P). Denote 

lhs(P) = {u £ (N U V)* | u v £ P) 

(the left hand sides of rules in P) and consider the new symbols [ , ] , ! " , # • We 
construct the ic grammar 

G = ( A r u V U { [ , ] , h , # } , { S # } , P ' ) 

with P1 containing the following productions : 
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1) (u, [S]u), for each u —> v G P, 

2) (a[u ] ,h$a) ,aeJVU^ue! / is (P) , 

3) (a 1-/3,1- $a), for a, /? 6 TV U V, 

4) (a# ,h $a), for a G V. 

Consider also the regular language 

R = ({[«] I u G lhs(P)} U {h Q I a G TV U V})*#V. 

Then 
cut#(L{G')NR) = L(G). 

The symbols [, ], b are called killers ; a pair [ ] kills all symbols bracketed by [ and 
], whereas I- kills the symbol to the right of it. The intersection with R ensures 
that rules of type 1 are applied to alive symbols only, killing the substring u of the 
current string and introducing the alive string v. Rules of type 2 and 3 move alive 
symbols from the left to the right, crossing over dead symbols. By rules of type 4, 
the alive terminal symbols can be transported to the right of # . Eventually a string 
of the form i o # z is obtained, with w containing only killers and dead symbols and 
z G L(G). 

The main result of the present paper is: 

Theorem 2 Every language L G RE can be written in the form L = cutd(L' fi 
R), wi th L' £ IIC{CF) and R G REG. 

Proof Let us recall a result from [11]. A (grammatical) transformation (often 
also called a rewriting system) is a triple T = (TV, T, P), where TV is a nonterminal 
alphabet, T is a terminal alphabet and P is a finite set of rewriting rules over TVUT. 
For a language L C TV* we define 

T{L) = {a; G T* | y =>* x for some y G L}. 

According to Theorem 3 and the remarks following it in [11] (see also [6]), each 
language L G CS, L C T*, can be written in the form L = T(L0), FOR a regular 
language LQ C TV* and r = (TV, T, P) a transformation with the productions in P 
of the forms 

A ^ B, AB ->• AC, A a, for A,B,C G TV, a € T. 

Note that r contains either context-free rules or left-context rules AB —> AC (no 
one of them increasing the length of the current string). 

Let us now take a language L G RE, L C T*. There are two new symbols 
b,c £ T, and a language L' C b*CL, V G CS, such that for every w £ L there 
is a string blcw in L'. We denote X" = T U {b, c}. For this language L', consider 
L0 G REG, and r as above, r = (TV0, T', P), L0 C TV*, such that TV0 n V = 0 and 
V = T{L0). Take a grammar GO = (TVi(TV0, X 0 l P 0 ) with TVjHTVo = 0, NI PIT" = 0, 
generating LQ, with TVi = TV{ U {XF} and with the rules in PQ of the forms 
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a) XI - > X2A, f o r XI G N[,C2 ENUAE N0, 

b) XF A. 

(Such a grammar always exists for a regular language: take a left-regular grammar 
and replace each terminal rule X-TABYX-^XFA, then add the rule XF —> A .) 

We construct the ic grammar 

G = (W,M,P') 

with W = Ni U N0 U T" U {], d), for d a new symbol, M = { X 0 } and P' contains 
the following productions: 

1) ( X I . S ^ A ) , for X ! X2A G PO,X! G N[,X2 G NUA G N0, 

2) ( A : / , $ ] ) , 

:3) (A, $]a), for A -4 a G P, ,4 G Â o, a G N0 U T', 

4) ( A B , $] ]AC) , for AB A C G P, A , B , C G N0, 

5) ({ax]!1 ' | x G (7V0 U T ' ) + } , $]a), for a G N0 U T\ 

6) | x G (./Vo UT')+}+6*c,$(i) 

Consider also the regular language 

R= { X ] | X G JVIJ+IAT/JXJVO U T ' U {]>.)*DT*. 

We claim that: 
L = cutd{L{G) n R) (*) 

Note that only the productions in groups 5,6 contain selectors which are not sin-
gleton languages. 

Assume JV0UT' = { a i , . . . , an} and consider the Dyck.language Dn. We define 
the coding <p by <p(ai) = a^ y>(bi) =], for 1 < i < n. 

The intuition behind the previous construction is the following. The symbol ] is 
a killer. Each occurrence of ] kills a symbol a in iVo U T" according to the following 
rules: 

1) if x = X\Q\X2, for a G Ni, then the specified occurrence of A is killed by the 
specified occurrence of ], 

2) if x = x!a]x2]^]x3, for a 6 N0UT' and x2 G (N0\JT')*, then a is killed by 
the occurrence of ] in front of £3. 

The productions of type 1,2 in P' produce a string in Go, together with a 
sequence of dead symbols and killers. The productions of type 3,4 simulate corre-
sponding rules in r. The productions of type 5 move alive symbols from left to the 
right, across dead symbols and killers. This is useful both for preparing substrings 
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AB for productions of type 4 and for transporting to the right alive copies of ter-
minals. In order to obtain a string in R we must use exactly once the production of 
type 6. This ĉhecks whether the pairs X], X £ AY, appears in the left of symbols 
used when simulating the work of r and that all symbols in the left of d are either 
killers or dead symbols (hence the derivation in T is terminal), or alive b and c. 

The inclusion L C cutd(L(G) fl R) can be easily proved. Namely, take a deriva-
tion in the grammar Go, 

X0 XxAi X2A2Ai =>...=> XkAk ... A2AX => Ak ... A2Ai 

According to the form of productions of Go, Xk = Xf and Xt ^ Xf for all 
1 < i < k — 1. Consider also a derivation in r starting from Ak ... A2A\. 

wo = Ak ... A2Ai => w\ w2 => ... =>ws = blcw, 

for some w £ T*, w £ L, i > 0 . 
The derivation 

X0 => XojXiAi XojX^X^Ai =>... 

...=> ... Xk^]XfAk ... A2 At => X0] Xi]... Xk~i]Xf]Ak ... A2Ai 

is obviously possible in G. 
For a string 2 generated by G, let us denote by alive (z) the string obtained by 

erasing the dead symbols and the killers from z. Then 

alive (Xo]X x ] . . . ]Xf]Ak ... A2AX) = Ak... A2Ai = w0 

and 

... Xk^)Xf}Ak ... A2Ai => Xo jX j ] . . . Xf}w[ 

can be obtained in G with alive (X 0 ]X i ] . . . Xf]w[) = wi. (A rule of type 3, 4 is 
in P', corresponding to the rule used intuo => w\ •) Now, using rules of type 5, all 
the alive symbols in w[ can be moved to the right, thus obtaining 

XolXx]... Xf]w[ X0]Xi] • • • Xf]w'{wi. 

The process can be iterated, each step Wi => Wj+i can be simulated in G and 
after such a step the alive symbols can be transported to the right. Finally we 
obtain a string z = Xo }X{\.. .Xf\u)"ws, hence with alive(z) — ws. The rule of 
type 6 is now applicable and we get a string in R ended with blcdw. Using the 
operation cutd we obtain the string w € L. 

Conversely, let us take a string w £ cutd(L(G) fl R). 
There is a successful derivation in G, 

5 : XQ =>* z\Xf]z2dw, 
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for some Zl 6 {X}\ X e Nx}+ , z2 G (N0 U T' U { ] } ) * , w G T* (this is the form of 
strings in R). 

Assertion 1 For every successful derivation 6 as above there is a successful 
derivation of the form 

6' : Xo =>* ziXf]w\ => ZiXf]Z2dw, 

that is, a derivation with the rules of types 1,2 used before using any rule of other 
types. 

Indeed, every derivation in G starts by a rule of type 1, iVi fl (N0UT') = 0 , and 
the symbols in N\ do not appear in rules of type 5 (hence they cannot be moved). 
Consequently, the rules of types 1,2 do not interfere with rules of other types, if we 
have 

X 0 ] . . . Xj]Xj+1Aj+1 ... Aj. X 0 ] . . . X^Xj+iu => X 0 ] . . . X ^ X ^ J X , ^ 

then we may change the order of using rules, thus producing 

Xo] . . . Xj]Xj-|_i Aj+i ... A\ => 

=> Xo] •.. Xj ]Xj+ i ]Xj+2 Aj+2 Aj+i . . . Ai =>* 

Xo] . . . Xj ]Xj + i ]Xj + 2Aj + 2U 

By induction on the length of zi we have the assertion. 

Assertion 2 If in a successful derivation 6' as above we use further rules of 
types 1,2 for deriving the prefix z^Xf], then we obtain a derivation 6" which is not 
successful. 

Take z = Xo] . . .Xk]Xf]. If we use a production (Xi,$]YA), then we obtain 
X 0 ] . . . Xi-i}Xi}YA]Xi+i\... Xf] and A, as well as, any symbol in N0 U T" derived 
from A by rules of types 3,4 cannot go to the right of Xf], the obtained string will 
not be in R, the derivation is not a successful one. If we use (Xf, $]), then we get 
X 0 ] . . . X/t]X/]] and again the form of strings in R is contradicted. 

Consequently, in view of Assertions 1 and 2 we can consider from now on only 
derivations in G of the form Z\Xf]wi =>* Z\X¡]Z2dw using productions of types 
3-6 for deriving wi. Thus we shall discuss only derivations x =>* y, for x € (No U 
T" U {]})*• We call such a derivation successful when it is a part of a successful 
complete derivation in G. 

Assertion 3 If in a derivation u => v in G we use a production of type 3, 
(A, $]a), a G NQ U T', for an occurrence of A which is alive in u, then A will be 
dead in v and the newly introduced occurrence of a is alive in v. 

Indeed, if u = u\Au2 and u cannot be written in the form u = uiAu^u'i for 
u'2 G tfi(Dn), then u = uiA]au2 and we cannot have u = u\ A]av'2]v'2 for some 
v'2 G <p(Dn) (otherwise u = uiAv^v'^ ), hence a is alive in v. 
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Assertion 4 If in a derivation u v in G we use a production of type 4, 
(AB, $]]AC), A,B,C G No for alive occurrences of A, B in u, then A,B are dead 
in v and .4, C are alive in v. 

Indeed, if u = u\ABu2 and u cannot be written in the form u = uiABu^u^, 
for u'2 €• ip(Dn), or in the form u = uiABui^u'^u'^1, for u'2,u'2 G <p(Dn), then 
v = u-iAB)]ACu2 and we cannot have v = u\AB}]ACv2}}v2 for some v'2 G f(Dn) 
(otherwise u - uiABv^v'^ ) or v = uiABWACv^v'^v'^, for v'2,v% G f(Dn) (oth-
erwise u"= uiABv^v'^v'i'). Consequently, A and C are alive in V. 

Assertion 5 If in a derivation u => v in G we use a production of type 3, 
(.A, %), a € Nq UT', for an occurrence of A which is dead in v, then both A and 
a are dead in v. 

Take u = uiAu2]w3 for u2 G y{Dn)- Then v = uiA]cm2]u3 and, clearly, both A 
and a are dead symbols in v. 

Assertion 6 If in a derivation u => v in G we use a production of type 4, 
(AB, $]]AC), A,B,C G No, for dead A, B symbols in u, then in v all involved 
occurrences of A,B,C are dead. 

Indeed, for u = uiABu2]]u3, with u2 G <p(Dn), we get v = uiAB]]ACu2]]u3 , 
and for u = uiABu2]u3]ii4, with u2 ,u3 G <p{Dn), we get v = uiAB]]ACu2]u3]u4. 
Clearly, the specified occurrences of A,B,C are dead in v. 

Assertion 7 If in a derivation u v in G we use a production of type 4, 
(AB,$]]AC), for A,B such that A is alive and B is dead in u, then the new-
occurrence of A will be alive in v, whereas the old occurrence of A, the occurrence 
of B and the new occurrence of C are dead in v. 

If u = ui ABu2]u3, for U2 E <p(Dn), but we do not have u = ui ABu2]]u3, for 
u2 G <p{Dn), or U = U\ABU2]uz\UI, for U2,U3 G <p(Dn),then v = t t i A B ] ] A C u 2 ] u 3 

(hence the first occurrence of A, as well as B and C are dead symbols), but we 
cannot have v = u\AB}]ACv2\\VZ, for t>2 G y>{Dn) (otherwise u = UIABU2]]V3 or 
v = u\AB]\ACv2]vs]vi ); consequently, the newly introduced occurrence of A is 
alive. 
(This is the place where the one-sided normal form for context-sensitive grammars 
is essentially useful; for the rest of the proof a grammar in the Kuroda normal form 
would suffice.) 

As we cannot have A dead and B alive in a substring AB, there are all the cases 
of applying productions of types 3,4. 

Consider now the use of a production of type 5. 

Assertion 8 If in a derivation u => v in G we use a production of type 5, that 
is to some ax]'1 ' we adjoin ]a, a G No UT', and the used a is alive in u, then it will 
be dead in v and the newly introduced occurrence of a will be alive in v. 

If u = u\ax]\x\u2 and we cannot have u — uiax^u'^u'^ for u'2 G f(Dn) , then 
v — uiQx]lIl]au2 (clearly, the first occurrence of a is dead in v) and we cannot 
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have v = u\ax}^]a}v2)vA, for some v2 G <p(Dn) (otherwise u = U\ax]^v2]vz ); 
consequently, the new occurrence of a is alive. 

Assertion 9 If in a derivation u => v in G we use a production of type 5, 
namely we replace some ax]^ by ]a, aGiVoU T", such that the used a is dead in 
u, then it will be dead in v, too, and also the new occurrence of a will be dead in 
v. 

If u = uax^x\]au2}uz, for u2 G ip(Dn), then v = uax]lIl]au2]w3, which implies 
that both specified occurrences of a are dead in v. 

As a consequence of Assertions 3-7, we have: 

Assertion 10 If in a derivation u => v in G we use a production n of types 3,4, 
then alive(u) => alive(v) in r, namely by using the rule in P corresponding to 7r. 

Moreover, from Assertions 8,9 we get: 

Assertion 11 If u v is a derivation in G using a production of type 5, then 
alive(u) = alive(v). 

Consequently, for each (successful) derivation in G, 

<5 : Xo =S>* Z\Xf\u>i z\Xf]w2 =>. . .=> ziXf]wk 

the subderivation 
Wl => U)2 =$>...=> U)k 

corresponds to a derivation in r 

w\ = alive(wi) => alive(w2) =>...=> alive(wk) (**) 

Consider now the use of a production 6. It only introduces an occurrence of 
d (and no killer). Because d is not involved in other productions, in view of the 
form of strings in R, such a rule can be used exactly once and to the right of 
the introduced d we must have only symbols in T. Because the selector of the 
production 6 is bounded by the prefix X/] and a suffix blc, it follows that the whole 
string to which this rule is applied is of the form 

ZiXf]Wk = Z\Xf]uiblCU2 

for Ui G {No U T ' U {]})* such that alive(ui) = A, and i > 0, whereas u2 G T*. 
Hence we obtain 

z\Xf]uiblcu2 => ziXf]uiblcdv,2-

In view of (**), this implies that blcu2 G r(Lo) = L' hence u2 G L. Because 
in the above writing, alive(u\) = A, if we continue to apply to U\ productions of 
types 3,4 or 5, then we have to use in selectors only dead symbols. According to 
Assertions 5,6 and 9, we obtain new dead symbols only, hence the string will remain 
in the form zxXf]u\blcdu2 with alive{u\) = A. In conclusion, the derivation will 
ultimately produce a string of the form xdu2 with u2 £ L. By the operation cutd we 
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obtain u2, hence cutd{L(G) C\R) C L, and this completes the proof of the equality 
(*), hence of Theorem 2. ¡-j 

Example Here we exemplify the equality (*) from the above proof, for a simple 
case. Take the regular language 

L0 = CA+B+ 

generated by 
G0 = ({X1,X2,X3,Xf},{A,B,C},X1, 

{ X x X1B,Xl -4 X2B,X2 X2A,X2 -> X 3 A , X 3 -> XFC.XF ->• A}) 

and the transformation 

T = ({A,B,C},{aua2,b,c},{C c,A ->• auB a2j). 

The produced language is T(LO) = cafa2. The associated ic grammar is 

G = ({Xl,X2,X3,Xf,A,B,C,},aua2,b,c,d},{X1},P') 

P1 = {(X^S^B), (XU$}X2B), (X2,$]X2A), (X2, $]X3A), ( X 3 , $ ] X f C ) , (X f , $ ] ) }U 

U(C, $ } c ) , (A ,$ ]a 1 ) , (B ,$ ]a 2 ) , }U 

uKjaa;] '1 ' | x € {A, B, C, au a2, b, c , ] } + ) , $]a) | a € {A, B,C,alt 03, b,c}}U 

U{(^/]{®]|a| I x € {A,B,C,aua2,b,c}+b*c,U)} 

whereas 

R = {X1},X2],X3]}*{Xf}}{A,B,C,a1,a2,b,c,}yd{a1,a2y. 

For a derivation in Go 

Xi => XiB => X2BB => X2ABB X3AABB =» XfCAABB => CAABB 

followed by a derivation in r 

CAABB =>• cAABB => caiABB => ca\aiBB =>• caiaia2B => caiaia2a2, 

we construct a derivation in G, leading to the same string 001010202 as follows: 

XI => XI]XIB => X^XI]X2BB => Xi]XI]X2]X2]X3AABB =» 

(we have simulated the derivation Go) 

Xi]Xi]X 2 ]X2]X 3 ]X / ]C]cA]oiA]aiB]a 2B]o 2 

(we have simulated the derivation r; all the underlined symbols are alive, the other 
are dead) 

=> Xi]Xi]X2}X2]X3\Xf]C}cA\a1A\a-iB}a2B\\a2a2 => 
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Xi]... Xf]C]cA)a1A]a-iB]]a1a2B)]a2a2 => 

=> X x ] . . .X/]C ,]cA]a1A]aiB]]aia2B]]]a1a2a2 

=>* X i ] . . . X/]C]cA]]ca1yl]]]caiaiB]]]]caiaia2jB]]]]]ca1a1a2a2 

(the alive symbols are separated from the dead ones) 

=>• X i ] . . . X/]C]cA]]... caiaia2B]]]]]ciiaiaia2a2. 

This is a string in R. Cutting the prefix bounded by d we get the string aio.ya2a2. 
• 

5 Consequences, variants, comments 
Because both the intersection by a regular set and the operation cutd can be real-
ized, at the same time, by a gsm, we obtain 

Corollary 1 Every language L G RE can be written in the form L = g(L'), for 
g a gsm and V G 1 IC(CF). 

Moreover, we have 

Corollary 2 Every language L G RE, L C T*, can be written in the form 
L = (R'\L') n T*, for L' € IIC(CF),R' G REG. 

Proof Construct G and R as in the proof of Theorem 2 and take 

• R' = { X ] | X G iV i } * {X / ] } (A f 0 U T ' U T ' U {]})*-№• 

Then 
cutd{L(G) n R) = (R'\L(G)) n T*. 

(We need the intersection with T* in order to prevent cases when strings uiblcdu2, 
u2 T*, are produced in G; the intersection with R avoids such cases, but by a 
left quotient we can get u2, which is a parasitic string.) • 

The use of context-free selections is a very powerful feature. For instance, we 
have 

Theorem 3 Every language L € RE,L C T*, can be written in the form 
L = h(L' n R), where h is a morphism, L' G 1IC{LIN) and R G REG. 

Proof It is known [1] that each L G RE can be written as L = hi(Li fl L2), 
for hi a morphism and L\,L2 G LIN. For such L\,L2 C V*, we construct the ic 
grammar 

G = (V U {X1,X2,Y1,Y2},{X1},P) 

with P containing the following productions: 
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1. (X1:$a),a £ V, 

2. (Xi jSXî ) , 

3. (XiX2Li,$Y\), 

4. {X1X2L2Y1,$Y2). 

Take also the regular language 

R = X1X2V*Y1Y2 

and the morphism h : (V U {XI: X2,Yi,Y2})* T* defined by h(a) = h'i(a) for 
a G V, and h(Xi) = h{X2) = H(Ki) = H(Y2) = A. 

Then, clearly, 

h(L(G) DR) = h(XMLI N L2)YXY2) = h^LX D L2) = L 

• 
The representation in Theorem 2 cannot be obtained as a consequence of the 

results in [1], [4], because LIN - IIC(CF) ± 0. 
Note that the main difference between representations in Theorems 2 and 3 is 

the use of the operation cut¿ in Theorem 2 and of an erasing morphism in Theorem 
3. Moreover, from Theorem 3 we cannot obtain a consequence as Corollary 2 above. 

From the previous representations we get 

Theorem 4 The family 1 IC(CF) is incomparable with each family F such that 
LIN Ç F C RE, which is closed under 

1) left quotient and intersection with regular sets, * 
or 
2) arbitrary morphisms and intersection with regular sets. 

Proof We know that LIN - IIC{CF) ± 0, hence F - IIC{CF) / 0 for all F 
as above. Conversely, 1 IC{CF) Ç F, together with the specified closure properties 
imply RE Ç F, a contradiction. Q 

Important families of languages having the properties in Theorem 4 are, for 
instance, the family of ETOL languages and the family of languages generated 
by programmed (matrix, controlled, etc.) grammars with A-rules but without ap-
pearance checking. The family 1 IC(CF) contains languages outside these fami-
lies. (The same conclusion follows from Theorem 1, with respect to the family 
IC(FIN).) 

Comparing the proof in [3] with the proof of Theorem 2, the main difficulty 
in the case above arises when changing the place of alive symbols with respect to 
dead symbols. For instance, instead of productions of type 6, one might try to use 
finite-choice productions of the form 
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(aa:] |B|,.$]<*),a € N0UT', 

for finitely many given strings x. Assume, that we have productions of this form 
for all | x |< k, for given A;. Take a substring abbk]k] (all occurrences of 6 are dead). 
Moving the first b, we get•a6fefc]'!j6]) hence, we obtain a new dead occurrence of b. 
In order to move the alive a to the right, we cannot use rules as above. Suppose 
that we also have a rule 

(ab, $]a) 

If this rule is used for both ab alive, then we get ab]a, now with b dead and two 
alive occurrences of a. If it is used to derive abbk]k], we obtain abbk]k] => ab]abbk]k]. 
The first a is still alive, the second one is dead. Using also the rule (ab],$]a), we 
get a6]]dabfc.]fcl.and-the alive a is again at the distance of k + 1 dead sumbols to the 
first ] to its. right. We have obtained, nothing. This might, be a further argument 
supporting the conjecture that we cannot represent RE languages starting from 
languages 'm.HC(FIN)^ 

The previous difficulty appears because we have substrings of killers, ]*, with 
i > 2. Such substrings are introduced, for instance, by rules of type 4. If we 
could "distribute" the killers to the killed symbols, then this difficulty would be 
avoided. A possible way to do this is to consider paired contextual grammars, 
that is constructs G = ( V , M , P ) , with P containing productions of the form 
(zi, z2; Svx, $v2), where z1,z2,vi,v2 are strings over V. For x,y e V+, we write 
x •=> y, iff x = x1z1z2x2, y = xiZiViZ2V2x2, for (zi, z2; $v2) a production of 
P. However, such (one-sided) grammars can simulate usual two-sided contextual 
grammars: for IR '= (z, u$v), we consider V = (A, z, ; $u, $w) and x => y by IT if and 
only if x => y by 7r'. 

6 Erased and erasing contexts 
Two extensions of contextual grammars were considered in [10], adding the possi-
bility to remove symbols, not only to adjoin them. 

An ic grammar with erased contexts is a construct 

G = (V,M,PuP2) 

were V, M, Pi are as in an usual ic grammar and P2 is a finite set of pairs (C, u$v), 
C C V*,u,v 6 V*. For any x,y € V* we write x => y if either 

(1) x — xizx2,y = xiuzvx2, for (C,u$v) S P\,z € C, 
or 
(2) x = xiuzvx2,y = xizx2 and there is (C,u$v) 6 P2 with z € C. 
Hence the contexts in Pi are adjoined, those in P2 are erased. 
When all u as above are equal to A in all productions of P\,P2, we say that G is 

one sided. The type of selectors C defines the type of selection of G. We denote by 
ICD(F) the families of languages generated by ic grammars with erased contexts 
and F-choice; when only one-sided contexts are used, we write 1 ICD(F). 
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In [10] it is proved that the extension to erased contexts increases strictly the 
generative power of ic grammars with F-choice. In view of the following result, this 
increase is considerable. 

A variant of the operation cutc has been considered in [3], namely, for c ^ V, 

mcutc : (V U {c})*{c}V* 

defined by 
mCUtc(x\CX2) = x2,x2 E V*. 

(The maximal prefix bounded by c is erased; c appears at least once in the strings 
for which mcutc is defined.) 

Theorem 5 Every language L G RE,L € T*, can be written in the form 
L = mcutc(L' n R), for V G IICD(FIN),R € REG. 

Proof Take again a left-linear grammar G0 = (Ni,N0,X0,P0), Nx = N[U{Xf}, 
and a transformation r = (N0 ,T U {b,c},P), as in the proof of Theorem 2, such 
that T(L(G0)) = L' G CS,L' C b*cL, for L € RE given. We construct the ic 
grammar with erased contexts (and finite choice) 

G'= (W,M,P1,P2) 

where W, M are as in the grammar G constructed in the proof of Theorem 2, Pi 
contains all the rules of types 1,2,3,4 in that proof, and 

P2 = { (A ,$^ ] ) ¡AeJVo} . 

Consider also the regular set. 

R= {X}\X & N[Y{Xf])r*. 

Because no erasing of pairs € N\, is possible, each derivation in Gi ends 
by using the symbol Xf, which appears as a separator in R, all Assertions 1-7 (hence 
also Assertion 10) are still true for the use of rules in Px. Moreover, the pairs A], 
A £ No, can be freely erased, and A erased in this way is a dead symbol. Erasing 
such pairs, we make possible the use of productions of type 4 (the nonterminals 
A, B become neighbours) and we remove the useless symbols. More such erasings 
correspond to a string in ip(Dn). Therefore, each derivation in Go followed by a 
derivation in r can be simulated in G' and, conversely, a derivation in G' which 
ends by a string in R corresponds to a derivation in Go followed by a derivation in. 
r, in the sense that the produced string will be of the form zxXf]w, z\ G { X ] | X G 
N[},w G r(i/(Go)). Consequently, z\Xf]w = ziXf)blcw',w' G L, hence using the 
operation mcutc we obtain w' G L. Q 

An ic grammar with erasing contexts is a construct G = (V,M,P\,P2), where 
V, M, Pi, P2 are as in a grammar with erased context. For x,y G V* we write x => y 
if either 
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(1) x = x\zx2,y = xiuzvx2, for (C,u$v) £ Pi, z £ C, 
or 
(2) x = x\uzvx2,y = X1UVX2 and there is (C,u$v) £ P2 with z £ C. 
Hence the string z braketted by the context (u, v) is erased when z £ C for 

some (C,u$v) in P2. 
We denote by ICG(F),IICG(F), the families of languages generated by such 

grammars. 
The use of erasing contexts increases strictly the generative power of ic gram-

mars. As for erased contexts, we have 

Theorem 6 Every language L £ RE,L C T*, can be written in the form 
L = mcutc(L' n R), for V £ IICG{FIN),R £ REG. 

Proof We simply repeat the proof of Theorem 5 taking instead of P2 the set 

P^={(A},$)\A£N0}. 

Erasing the context (A, A]) when bracketing A (as in the case of P2) is the same 
with erasing A] when bracketed by (A, A) (as in P2), hence all arguments in the 
proof of Theorem 5 remain valid. Q 

Again consequences as in Corollaries 1,2 and in Theorem 4 (point 1) can be 
obtained for families IICD(FIN), 1ICG{FIN). 

These representations of RE languages remind the representations of linear 
languages by cancellation operations, as in [2], [5]. However, here we start from 
families of languages which are incomparable with LIN: again L — a+ U {anbn \ 
n > 1} cannot be generated by an ic grammar with erased or with erasing contexts 
and with F choice, whichever F is (in order to produce strings am with arbitrarly 
large m we either need a production (C, a®$aJ') with C D a+ 0 and i + j > 1 or 
the possibility to erase the occurrences of b from some anbn; in the first case we 
can derive strings aPV in L into strings aqbp with q > p; in the second case we 
have intermediate steps of derivation when strings asbl with s > n, t > n, s > t. are 
produced; in both cases we have obtained parasitic strings). 

Since the family RE is closed under all the operations involved in the previous 
proofs, all the representations given above are in fact characterizations of recursively 
enumerable languages. 
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