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Growth Functions and Length Sets of Replicating 
Systems* 

Valeria MIHALACHE * Arto SALOMAA* 

Abstract 

Growth functions and length sets are studied for classes of replicating 
systems. The so-called deterministic classes of replicating systems, which are 
systems for which one can define growth functions, are fully characterized. 
Their growth is either exponential, or linear. For nondeterministic classes, 
where length sets rather than growth functions are considered, we obtain 
detailed characterizations in many cases, while some details remain open in 
other cases. 

1 Introduction 

Replication, introduced in [2], is an operation of generating strings by an insertion 
subjected to some additional constraints. The reader is referred to [2] for inter-
connections with several research areas: molecular biology (DNA recombination, 
a particular type of splicing), linguistics (insertion grammars), language theory, 
combinatorics on words. 

The basic set-up is the following: there are a starting string (called replicating 
string), say w, over a finite alphabet, and a pair of strings, (u, v) (called insertion 
context), over the same alphabet. If the string uv appears as a substring of w, then 
one can insert in-between u and v any substring of w which starts with v and ends 
with u. A more intuitive representation for this is in the next figure. 
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Figure 1 

Several variants arise with respect to the string to be inserted or to the place 
where insertion is performed. So far only restrictions on the string to be inserted 
have been taken into account (i.e. insertion is allowed to be performed in-between 
u and v in any position where the word uv occurrs as substring of the current 
string). Moreover, insertion contexts investigated so far have consisted of one pair 
of letters. In this paper, we restrict ourselves to these same variants. 

The subject matter in [2] was mainly the generative power of replication sys-
tems, with comparisons to one another or to generative grammars in the regulated 
rewriting area. In [3], closure properties with respect to sets of replicating strings 
or sets of insertion contexts were investigated. 

The aim of this paper is to find intrinsic properties of the strings obtained 
by replication. More precisely, following the approach in Lindenmayer systems 
theory, we study growth functions for the strings generated in a chain of replication 
steps. This can be done in the deterministic case, when the lengths of resulting 
strings are uniquely determined. In the nondeterministic case, we study length sets. 
For all the deterministic variants of replicating systems, characterizations of the 
associated growth functions, as well as of the Parikh sets of the generated languages 
are presented. For some of the nondeterministic variants, characterizations of the 
length sets and of the Parikh sets are obtained, while for some others the shape of 
this sets is pointed out, characterizations being obtained in more restricted cases. 
Using the length sets, the strictness of the inclusion of the families of languages 
generated by any type of replicating system into the family of context-sensitive 
languages is proved. 

2 Basic Definitions 
As general formal language notation, we use: V* = the free monoid generated by 
the alphabet V, A = the empty string, V+ = V* — {A}, |z| = the length of x e V*, 
\x\a = the number of occurrences of a 6 V in x € V*, Pref(x) (Sub(x), Suf(x)) 
= the set of prefixes (subwords, suffixes) of x € V*, alph(L) = {a | |x|a > 0 for 
some x L}. If V = { a i , . . . , a n } and x £ V*, its Parikh vector is = 
(|x|ai,..., |x|Qn). The mapping 'Py is extended in the natural way to languages. 
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For a vector v = (ai, 02, . . . ,an) £ IN", we denote by |v| = ICi^i en, and v(i) = a,, 
for any i, 1 < % < n. The family of regular and context-sensitive languages are 
denoted by REG, CS, respectively. Further elements of formal language theory 
can be found in [5]. For Lindenmayer systems we refer to [4]. 

Definition 1 A replicating system is a triple 

v = (V,w,(a,b)), 

where V is an alphabet, w £ V+ is a replication string, and (a, b) £ V x V is an 
insertion context. 

Definition 2 With respect to a replicating system as above, forx,y G V* we define 
the direct replication relation as 

y iff ( l ) x = x\abx2, X1,X2€V*, 

(2) y = x\azbx2, for z = bz' = z"a, 
(3) 2 G Sub(x). 

No restriction is imposed about the position of the substring ab in x (condition 
(1)) or on the way 2 was selected from Sub(x) (condition (3)). Ten possibilities can 
be pointed out when considering restrictions on condition (3). 

Condition (3) can be replaced by more restrictive ones as follows (in all cases, 
z = bz' = z"a): 

1. z = x (total, t), 

2. z G Pref(x) (arbitrary prefix; ap), 

3. z G Pref(x) and 2 is maximal (if x = z\U\,z\ = bz[ = z"a, then \z\ > |zi|) 
(maximal prefix; Mp), 

4. z G Pref(x) and 2: is minimal (if x — Z\U\,Z\ — bz[ = z'{a, then < |zi|) 
(minimal prefix; mp), 

5. 2 G Sub(x) and z is leftmost (if x = uizu2,x = ^ziu^zi = bz[ = z"a, then 
lui| ^ K|) (arbitrary leftmost; at), 

6. z £ Sub(x), z is leftmost and maximal (x = \1\ZU2 and if x = v!xz\u'2,z\ = 
bz[ = z"a, then |ui| < l«^; moreover, if x — U1ZU2 = uiziu'2,zi = bz[ = z"a, 
then \z\ > \zi\) (maximal leftmost; Ml), 

7. z £ Sub(x), z is leftmost and minimal (a; = uizu2 and if x = u^ziu^zi = 
bz[ = z"a, then |ui| < |tti|; moreover, if x = u\zu2 = u\z\u'2,z\ — bz[ = z"a, 
then \z\ < \zi|) (minimal leftmost; ml), 

8. z £ Sub(x) and 2 is maximal (if x = U1ZU2 and x = u^ziu^zi = bz[ = z'{a, 
l '̂il < |ui|i lu2l ^ |tt21, then 2 = Z\) (arbitrary maximal; aM), 
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9. z £ Sub(x) and z is minimal (if x = u\zu2 and x = u^ziu^zi = bz[ = z"a, 
K l > |ui|, \u'2\ > [1x215 then z = zi) (arbitrary minimal; am). 

The case in Definition 2 corresponds to 

10. z £ Sub(x) (any subword, free; af). 

For g £ {i, ap, Mp,mp, al, Ml, ml, af, aM,am} = D, we write if 
and the restrictions required by the g mode of replication are satisfied. denotes 
the reflexive and transitive closure of the relation •— 

The language generated by the replicating system a = (V,w , (a,b)) in the mode 
g £ D is defined by 

Lg(a) = {z £V* \ z}. 

We denote by SF(ry) the family of languages of the form Lg(a), g € D (SF stands 
for " snake family". By a " snake language" we mean in the sequel any language in 
any SF-family.) 

Consider in the following a replicating system a = (V,w,(a,b)). Any "snake 
sequence" of a with respect to the g £ D mode of replication, 

E{o,g) = WQ,Wx,..., wn,..., 

can be associated in a natural way a so-called growth function, defined, just as 
in the case of Lindenmayer systems, by the length of the strings in the sequence. 
More precisely, the growth function associated to a snake sequence as above is the 
function / defined on IN and valued in IN, such that f(n) — |w„|, for any n > 0. 

As it was pointed out earlier, the string to be inserted at any application of the 
replication operator depends on the replication mode of the system. Furthermore, 
we consider the following notion. 

Definition 3 We call a replication mode g £ D deterministic if the string to be 
inserted to generate a new string from a given one is uniquely determined. For-
mally, for any strings x,y\,y2 £ V*, such that y 1 by inserting the string zx 

into x, and y2 by inserting the string z2 into x, the equality z\ = z2 holds. 

A replication mode which is not deterministic is called nondeterministic. By 
the above definition, the replication modes t, Mp, Ml, aM, mp, ml are deterministic, 
while the replication modes ap,al,af,am are nondeterministic. 

A special property of a deterministic replication mode g is that for any snake 
sequences Ei{a,g),E2(a,g) of a replicating system a working in the g mode, if de-
noting by /1, /2, the growth functions associated to Ei(a,g),E2{a,g), respectively, 
then the functional equality /1 = f2 holds. This means that the length sequence 
is uniquely determined in such a case. Then we can consider, as above, the growth 
function associated to a replicating system and a deterministic mode of replication. 

In the theory of L systems, replicating systems working in a deterministic mode 
correspond to DOL systems, while their snake sequences correspond to DOL se-
quences. 
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Yet the snake sequence is not uniquely determined for a system working in a 
deterministic mode, because the insertion of a string can be performed in several 
positions. However, observe that the special effects on determinism are due to the 
presence of only one insertion context. For instance, in the aM mode, z must always 
begin with the leftmost occurrence of b and end with the rightmost occurrence of 
a. No matter between which pair (a, b) such a z is inserted, the leftmost b and 
rightmost a are uniquely positioned also for the next step. Thus, although the 
snake sequence may vary according to the positioning of z's, the length sequence 
remains unique. The situation is quite different in the presence of two insertion 
contexts. Then, apart from the t mode, z is not in general unique. 

When the replication mode is not a deterministic one, then we do not have a 
growth function as above associated to a replicating system with respect to that 
replication mode. However, following the approach in the theory of L systems for 
the nondeterministic case (see, for example, [1]), for a more involved study on the 
nondeterministic replication modes as well, we associate to any replicating system 
its length set with respect to a given replicating mode. 

Definition 4 For any replicating system a = (V,w,(a,b)) and for any replication 
mode g 6 D, we define the length set associated to a with respect to the g mode 
of replication as 

LSg(a) = {\z\\zeLg(a)}. 

A length set N C IN is a SF (g) length set if there exists a language L G SF(g) such 
that N = {|z| | z e L}. The family of SF(g) length sets is denoted by CS{SF(g)). 

It was remarked in [2] that a snake language is either singleton or infinite, the 
case of singleton languages being the trivial one, when the replication operator 
cannot be applied to the initial replicating string. Therefore, we consider in the 
following only infinite snake languages. For the deterministic replication modes, 
g £ {t, Mp, Ml, aM, mp, ml}, we have the following characterizations. 

Theorem 1 A sequence u(n) of nonnegative integers is the growth function for a 
replicating system a with respect to the t mode of replication if and only if u(n) is 
a geometric progression with ratio 2 and with the initial element not equal to 1. 

Proo f : Let 
. u{n) = l,2l,22l,...,2nl,... 

Consider w = a1, <J = ( {a } ,w, (a, a)). Because the replication mode is total, at 
any step in a replication sequence the entire current string is inserted in-between 
some consecutive occurrences of a, therefore the length of the resulted string being 
the double of the length of the current one, i.e. |u>n+i| = 2|wn|, for any n > 0. 
Since |uio (= = I, it then follows that the growth function associated to a snake 
sequence of a with respect to the total mode of replication is exactly f(n) = u(n). 

Conversely, let a — (V, w, (a, b)) be a replicating system and denote I = |w|. 
Observe I > 2 (I can be 2 or 3 only in case a = b). With the same arguments as 
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above, the growth function associated to any snake sequence of cr with respect to t 

f(n) — I,21,22l,..., 2nl,..., 

and hence fin) = u(n). • 

Theorem 2 A sequence u(n) of nonnegative integers is the growth function for a 
replication system a with respect to the g mode of replication, where g 6 {Mp, Ml, 
aM}, if and only if u(n) is of the form u(n) = I + 2nk, where k > 2,1 > 0. 

Proof: First of all, note that the case I = 0,k > 2, is the one outlined in the 
preceding theorem. So we have to consider only the situation I > 1, k > 2. 

Let u(n) be a sequence of such nonnegative integers, let a, b, c be distinct 
symbols, w = bck~2abc*~1, and a = ({a, b, c},w, (a, b)). In any of the maximal 
modes of replication (Mp, Ml,aM), the string to be inserted at the first step is 
2 = bck~2a, \z\ = k, w resulting in a string w' = baabd"1. The substring of 
w' to be used in replication in a maximal mode is now z' = baa, \z'\ = 2\z\. 
Moreover, this property of doubling the length of the string to be inserted in 
a maximal replication mode is preserved at any replicating step, therefore we 
get a replicating sequence wq = w,w\,... ,wn,wn+i,... having the property 
|wn+i| = 2(\wn\—l)+l, |uio| = l+k. This implies that the growth function associated 
to it is just / (n ) = u(n). 

Conversely, let a = (V,w,(a,b ) ) be a replicating system. We select the string 
to be inserted in w in a maximal mode of replication, that is, w = zy,z = bz' — 
z"a,y — by'. Denote \z\ = k,\y\ = /. With the same observations as above, it 
follows that the growth function associated to cr with respect to any maximal mode 
of replication is f(n) = u(n). • 

As for the families of length sets, we have the following immediate corrolary. 

Corollary 1 i) CS(SF(Mp)) = £S(SF(M/)) = £S(SF(aM)); 

ii) CS(SF(t)) C £iS(SF(Mp)), strict inclusion. 

Theorem 3 A sequence u(n) of nonnegative integers is the growth function for a 
replicating system a with respect to the g mode of replication, where g £ {mp, ml}, 
if and only if u(n) is an arithmetical progression u(n) = I + nk, with 1 <k<l. 

Proof: Let u(n) = I + nk be an aritmetical progression with the initial term 
I and ratio k, 1 < k < I. Consider first the case k > 2. Let a,b,c, be distinct 
symbols, let w = bck~2abcl~k~1 and let a = ({a,b,c},w,(a,b)) be a replicating 
system. In both the minimal prefix and the leftmost minimal modes of replication, 
the string to be inserted at any replicating step is z = bck~2a, with \z\ = k. Hence 
in any replicating sequence wq = w,wx,...,wn,..., for any n > 0, the relation 
|iDn+i| = |?/)„| + k. Since |wo| = I, it follows that the growth function satisfies 
f(n)=u(n). 

In case k = 1, consider a,b distinct symbols, w = aabl~2, and the replicating 
system a = ({a, 6}, w, (a, a)). The conclusion follows with the same arguments as 
in the preceding situation. 
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Conversely, let a — (V, w, (a, b)) be a replicating system. Let w = az(3, where z 
is the leftmost minimal substring of w to be inserted in the g mode of replication, 
g G {mp,ml} (for g = mp, note that a should be the empty word). Let |w| = 
I, \z\ = k. Observing that the string to be inserted is z, at each replicating step, 
for both modes considered here, the growth function for the system, with respect 
to the g mode of replication, is f(n) = I + kn. • 

Corollary 2 i) CS(SF{mp)) = £S(SF(ml)); 

ii) £<S(SF(mp)) is incomparable with any of the families CS(SF(g)) with g G 
{t,Mp,aM, Ml}. 

Note that the Parikh languages associated to the replication modes considered 
above resemble the shapes of the growth functions, respectively. That is, we have : 

Proposition 1 A set of vectors H C INP is the Parikh set for a language L G 
S F { g ) , g £ {t,Mp,Ml,aM,mp,ml},V = alph(L), card(V) =p, if and only if: 

i) H = {2nvi | n > 0}, where Vx G 1NP, \vx | > 2, in case g = t; 

ii) H = {v2 + 2nv3 I n > 0}, where v2,v3 G JNP, |u3| > 2, in case g G {Mp,Ml, 
aM}; 

Hi) H = {i>i + nv3 | n > 0}, where v\,v3 G 1NP, 1 < |u3| < |ui|, in case 
g G {mp, ml}. 

' We mention that for the total or a maximal mode of replication, the shape of 
the Parikh set associated to a snake language was already pointed out in [2]. 

As it was remarked in the beginning of this section, for nondeterministic repli-
cation modes one cannot speak about growth functions. However, length sets can 
be studied. Also we can present properties of the associated Parikh sets. 

The arbitrary minimal mode is fully characterized, with respect to its length 
and Parikh sets, by the two properties that follow. 

Theorem 4 A set of nonnegative integers N C IN ¿5 the length set for a replication 
system a with respect to the am mode of replication, if and only if 

either there exist nonnegative integers I, r, and ki,k2, • • - kT > 2, with I > 
such that N = {I + c\ki + c2k2 + ... + crkr \c\,... ,cr G IN}, 

or there exists I G IN, 1 > 2, such that N = {n \ n> I}. 

Proof: If JV is a set of nonnegative integers defined as N = {n | n > I}, for some 
I > 2, then consider the replicating system a — ({a}, a', (a,a)). The string to be 
inserted in the arbitrary minimal mode is z = a, at any replication step, therefore 
|u>n+i| = |iun| + 1, for any n > 0. Together with |wo| = I, this implies that the 
growth function associated to a with respect to the am mode of replication (which 
is then well defined, in a similar manner as for deterministic replication modes) is 
f(n) =l + n. Therefore, LSam{a) = N. 
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Consider now the case N = {l + ciki + c2k2 +... + crfcr | c i , . . . ,cr £ IN}, where 
l,r, ki,... kr £ IN, and ki, k2, •. • kr > 2, with I > fc¿. 

Denote d = I — ki, and consider Z{ = bcki~2a, for any i, 1 < i < r, and w = 
Z1Z2 • • .zTcd. Let a — ({a, b, c},w, (a, b)). One can observe that at any replication 
step in the arbitrary minimal mode, the string to be inserted is a z¿, 1 < i < r, 
therefore |w„+i| = |w„| + ki, for an ¿,1 < i < r. This results in LSarn(c) = 

+ ¿6 { i r}fc¿, I n > = {i + cifci + c2k2 + ... + cTkT I c i , . . . , c r € IN} 
= N. 

Conversely, one can observe in a similar manner that the length set of a repli-
cating system is of either one of the forms in the statement of the theorem. When 
the insertion context is (a, a), the arbitrary minimal replication mode works like a 
deterministic one. • 

Note that for any replication sequence with respect to the am mode of repli-
cation and with the insertion context (a,b), we have |uin|a = \wo\a + n,\wn\b = 
|io0|6 + n, for any n > 0. 

We still want to point out that in case of only one string to be inserted in 
the am mode of replication, the growth function of such a system, with respect to 
the am mode, can be characterized by an arithmetical progression of nonnegative 
integers, just as in the case of an mp or ml replication. This immediately implies 
the following corollary. 

Corollary 3 i) CS(SF(mp)) C £<S(SF(AM)), strict inclusion; 

ii) £<S(SF(am)) is incomparable with any of the families CS(SF(g)),g £ {t, Mp, 
aM, Ml}. 

We know that the language generated by a replicating system in the arbitrary 
minimal mode is regular ([2]), therefore, we expect its Parikh set to be at least 
semilinear. But actually we can obtain more than that: we can characterize it by 
a linear set. 

Proposition 2 A linear set H = {wo + c\V\ + ... -I- cTvr \ Ci £ IN}, where Vi £ INP, 
for any i,0 < i < r and p > 1, is the Parikh set of a replicating system with 
respect to the arbitrary minimal mode of replication if and only if vo > vi > 
and there exist an s £ {1,2} and ... ,js,l < j 1 < ... < js < p, such that for any 
i, 1 < i < rivi{ji) = • •• = Vi(js) = 1 and, in addition, if s = 1, then vo{ji) > 2. 

Proof: The fact that the Parikh set for a replicating system with respect to the 
arbitrary minimal mode of replication is H alike follows with similar arguments as 
in the proof of the preceding theorem, by considering u¿ = ipv(zi), for 1 < i < r, 
and vq = ipv(w)-

Conversely, let i f be as in the statement of the proposition, and consider first 
s = 2. Let V = { a i , . . . , a p } . Without loss of generality, one can assume that 
ji = 1, h = 2. Denote u r + i = ü0 u*> á n d = a¿ iÜ)> f o r a n y 1 < ¿ < 
r + 1,1 < j < p. For any i, 1 < i < r, consider Zi = . . . a^'^Oi*'1^, z r + 1 = 
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<4 r + 1 , 1 )c4 r + 1 , 2 ) . . .a{pr+1'p\ w = ziz2...zrzr+1, and a = (V,w, (aua2)). Note that 
when replicating in the arbitrary minimal mode, the strings to be inserted are 
zi,..., zr (each of them contains exactly one occurrence of ai and one occurrence 
of a2, in the right positions) and only they. By similar observations as in the proof 
of the above theorem it follows that $ v { L ) = H. 

The case s = l,t;o(ji) > 2 can be treated similarly, considering an insertion 
context (aj1, aj1). • 

For a closer study of arbitrary prefix and arbitrary leftmost modes of replication, 
we first consider the following lemma: 

Lemma 1 Let a = (V,w,(a,b)) be an arbitrary replicating system. Then there 
exist l,q,ki,k2,... ,kq 6 IN with the property that for any w' £ Lg(cr) (g £ {al, ap}), 
there exist c i , . . . , cq 6 IN, ci > c2 > ... > cq, such that |iu'| = I + Cjkj. 
Moreover, any string z allowable to be inserted in w' according to the replicating 
mode g has the length \z\ = i c'jkj for an i,l < i < q and for some c ' j , . . . , c- £ 
IN, ci > 4 > . . . > c\. 

Proof: One can write w — aba\aa2a... aqaa', where a £ (V — {6})*, a' £ 
(V - {a})*, and for any i, 1 < i < q, £ (V - {a})*. Denote I = ki = |ai| + 2, 
and ki = |aj| + 1, for any i, 2 < i < q. 

We prove the statement for these l,q,k%,... ,kq, by induction on the length of 
the replicating chain 

If n = 0 , then w' = iv a n d therefore the s t a t e m e n t is trivially true, with Cj = 0 

for any j , 1 < j < q a n d with i having any value 1 < i < q, a n d d- = 1 for a n y 

j, 1 <3<i-
Suppose the statement holds true for n and consider the replicating chain 

W l 2. One can easily observe that wi = ab/3ia/32a.. .a/3maf3m+i, for an 
TO > q, where (5m+\ = By the induction hypothesis, |ioi| — I + 53'= i cjkj for 
some c i , . . . , cq £ IN, ci > c2 > ... > cq. 

Let z be the string which is inserted in w\ when resulting into w2. Then 2 is of 
the form z = b/3iafi2a.. -Psa, for an s, 1 < s < m. By the inductive assumption, 
\z\ — c'jkj for an i, 1 <1 < q and for some c[,... ,c'i £ IN, > c2 > . . . > c-. 
Therefore, w2 satisfies \w2\ = |wi| + |z| = l + Y?j=1 + 1 c'jkj = c'jkh 
where c" = c2 + c'j, for any j, 1 < j < i, and c'- = cj for any j, i -I-1 < j < q. Still 
note that c" > c!J > . . . > c'J. 

In order to determine the length of the strings to be inserted in w2, we need to 
point out the places where the insertion was performed when replicating wi into 
w2. One can notice two possible situations: 

case a): the prefix a of wi is of the form a = 7a, and the insertion is per-
formed in-between this occurrence of a and the occurrence of b which follows it 
(note that this case possibly occurrs only when g = al). This implies w2 = 
"/abfii a(32 a • •; /3« ab/3i a/32 a... pm a(3m+1. 

The strings to be inserted in w2 are either of the form z' = bfiia/32a... Ppa, for 
a p, 1 < P < s, and then such a z' is a prefix of z and also a string to be inserted 
in wi, hence it satisfies the restriction in the assertion (by inductive assumption), 
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or z' = zz", with z" = bfiia(32a. • • Ppa, for a p, 1 < p < m. In this case, one 
can observe that z" is a string allowed to be inserted in w\, and therefore \z"\ = 
T,rj=icjkj for some r,l < r < q,c'( > c'i.-.c';. We have \z'\ = \z\ + \z"\ = 
£ } = 1 c'jkj + i cjkj = Y^VJ=iCjkj, where v — max{i,r}, and Cj is defined as 

{ c'j + c'j, for 1 < j < min{i, r} , 
c'j for i + 1 < j < v, 

c"j for r + 1 < j < v . 
Moreover, one can note that ci > c2 > . . . > cv, and hence the assertion follows for 
this case. 

case b): = bfi'i+l, and the insertion is performed in-between the occurrence 
of a immediately preceding this occurrence of b and this b. 

Denote z" = bPiafoa.. .(iia. Then z" is a string possible to be inserted in wi, 
and hence, by the inductive assumption, \z"\ = c'jkj for an r, 1 < r < q, and 
< > . • • > 4. 

As for the strings z' to be inserted in one can note that they are of one of 
the following forms: 

b.l): z' = bpiap20" • • Ppa, for a p, 1 < p < i. Then such a z' is also a string 
allowed to be inserted in w\, and therefore the assertion follows from the inductive 
assumption. 

b.2): z' = z"z, with z = b0ia(i2a... j3pa, for a p, 1 < p < s. One can note that 
z is a string allowed to be inserted in , and then the assertion follows similarly 
as in case a). 

b.3): z' = z"zz'", with z'" = ¡}i+ia{3i+2a.../3pa, for a p,i + 1 < p < m. 
One can note that the string z = z"z"' is allowed to be inserted in u>i, and still 
\w21 = \z\ + \z"\ + \z"'\ = \z\ + \z\, and then the assertion follows similarly as in 
case a). 

Therefore, by the inductive principle, the assertion stated follows. • 
Now we can predict a superset of the length sets for the op and al case. More-

over, we can precisely characterize these sets for replication systems whose starting 
strings are subjected to some restrictions. 

Theorem 5 For any replicating system a = (V,w, (a,b)) and for a replicating 
mode g G {ap, al}, there exist nonnegative integers I, q, k\,k2,..., kq, such that for 
the set N C IN defined as N = {I + c\k\ + c2k2 + ... + cqkq \ for any i, 1 < i < 
q,Ci G IN, and Ci > Cj+i, 1 < i < q} we have 

i) LSg(cr) C N 

ii) moreover, ifw = jaby1, with |7'|a = 0, then the equality holds, i.e. LSg((j) = 
N. 

Proof: We consider w, I, q, k\, k2,..., kq as in the proof of the preceding lemma. 
Then part i) follows directly from this lemma. For part ii), we have to prove 

only the inclusion N C LSg(a). Without loss of generality, we can take into 
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consideration only the ap mode of replication (the only difference between the two 
modes is that in the al mode, if, following the notations in the preceding proof, 
a = a"a, then one can insert in-between this occurrence of a and the b following it; 
but since we want only to prove N C LSa (a), then this inclusion will follow from N 
being included in the length set generated when we do not insert in this position). 

Let N be as in the statement of the theorem. Following the notations in the 
proof of the lemma, we have w = ba\aa2a... aaqab(3 (where a' = b(3). 

We show that N C LSap{tj). 
Take an arbitrary element n G N. Then there exist c\,... ,cq G IN, with c, > 

Ci+i for any ¿,1 < i < q — 1. For any i, 1 < i < q, denote Pi — ba\aa2a... aid 
(\Pi\ = kj), mi = Ci — Cj+i, for 1 < i < q, mq = cq . We prove in the sequel 
that there exists w' G Lap(a) such that \w'\ = n. More exactly, we show how w' 
can be constructed from w, by replicating in the ap mode. 

The string Pq is allowed to be inserted in the ap mode in w, as well as in any 
string obtained from w by inserting Pq after the r;-th occurrence of a in w or in a 
string generated from w in this way. Inserting in this fashion mq (= cq) steps, we 
obtain 

baj_aa2a... aqa(ba\aa2a... aqa)Cqb. 

Denote 

W\ = bct\aa2a ... aqa(ba\aa2a... aqa)Cqb = ba\aa2a... aqab(aiaa2a... aqab)Cq, 

with |wi | = I+ cq h. 
One can note that the string pq-1 is allowed to be inserted in wi, as well as 

in any string obtained from wi by inserting Pq~i after the 9-th occurrence of a in 
such a string. Therefore, we obtain 

iui ba\aa2a .. .aqa(baiaa2a ... a ? _ i a ) m , _ 1 b(a\aa2a... aqab)Cq. 

Denote the resulting string by w2, and note that it can be rewritten as 

w2 = ba\aa2a ... aqab(a\aa2a... ag_iab)rnq~1 (axaa2a ... aqab)Cq, 

and \u)21 = I + (m , - i -I- cq) h + = ' + c « - i Z)?=i + cq^q-
Next we insert the string Pq-2 in the same way, cq-2 — cq-\ steps, resulting in 

a string 11)3 with |u;3| = / + c,_2 J2i=i k + Cq-ikq-i + cqkq. 
Repeating this algorithm, we finally obtain the string 

wq = ba\aa2a... aqab(a\ab)mi (a\aa2ab)m2 ... 

( « iaa 2 a ... aq-iab)mq-1 (a iaa 2 a. . . aqab)m", 

with |u>9| = ¿-|-miA;i+m2(A;i+A;2)-|-...+mq-i(k\+k2 + .. .+kq-i)+mq(ki +k2 + .. .+ 
kq) = l + ki nii + k2 5X2 rrii + .. . + kq-i J2i=q-1 rni + kqmq = l + k! mj + 
k2 rrii + ... + kq-1 Y,i=q-1 mi + Kmq - l + hci + k2c2 + ... + cqkq — n. Thus 
we have obtained N C LSap(a). • 

For the case of an arbitrary free replicating mode, we have: 
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Proposition 3 Let a = (V.w, (a,b)) be a replicating system. Then the Parikh set 
of the language L generated by a with respect to the af mode of replication is linear, 
that is, ^v(L) = {t;o + c^i + ... + cTvr \ Ci G IN, 1 < i < r}, for an r > 1, and 
vo, • • •, vr € 1NP, where p = card(V). 

Proof: Let z\,..., z r , be all the substrings of w of the form ẑ  = bz[ — z"a, 1 < 
i < r, not containing the substring ab, but z[ possibly containing occurrences of b, 
z'l possibly containing occurrences of a. Denote Vi = 4 ,v(zj) , for any i, 1 < i < r. 
A string to be inserted at an arbitrary replication step is either such a zi, or a 
concatenation of several z/'s. Therefore, the Parikh set associated to the generated 
language is of the form given in the statement of the proposition. • 

As we have pointed out in the Introduction section, the generative capacity of 
the replicating systems has been mainly dealt with in the paper where they are 
first considered. However, using their length sets, we can improve a result there, 
which states that they are all less powerful than context-sensitive grammars. We 
can prove now that they are strictly less powerful. 

Theorem 6 CS(SF(g)) C CS(CS), strict inclusion, for any replication mode g 6 
D. 

Proof: Because any snake language is context-sensitive ([2]), the inclusion 
holds. In order to show that this inclusion is proper, consider N = {22" | n G IN}. 
It is well-known that this set it is a context-sensitive length set. We prove in the 
following that it is not a snake length set. 

• Assume that a = (V, w, (a, b)) is a replicating system such that LSg(cT) = N for 
a g G D. Since replication is a length-increasing operation, the length of w should 
be the least element of N, that is, |w| = 2. Then the only possibility for a to 
generate an infinite language is b — a and w = aa. Depending on g, the next string 
generated is either w\ ~ aaa, with |uji| = 3, or = aaaa, with |i«2| = 4. For 
the modes g generating (namely g G {am,ml,mp,ap,al,af}, we then obtain 
3 G LSg(a), and hence LSg(a) ^ N. For the modes g generating w2 only from w 
(namely g G {t, aM, Mp, Ml}), the string w2 results in at the next replication step 
is ui3 — as, with |w3| = 8 ^ N. Therefore, also for this case LSg(a) ^ N. • 

Note that for the replication modes for which the shape of the length sets is 
characterized, the above theorems could be deduced directly from those character-
izations. 

Theorem 7 SF(</) C CS, strict inclusion, for any g G D. 

Proof: We have from [2] that SF(g) C CS. Since £5(SF(g)) C CS{CS), the 
strictness of the language inclusion holds as well. • 
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3 Final Remarks 
One can note that replicating systems are similar to Lindenmayer systems in the 
sense that strings obtained after each step of applying the operation are considered 
as belonging to the generated language. Also, just as Lindenmayer systems, they 
can be used to model biological phenomena. Therefore, a study of such properties 
of replicating systems that are well known for Lindenmayer systems is worthwhile, 
from both language theory and molecular biology points of view. The present paper 
is a step in this direction, namely it deals with growth functions and length sets of 
the languages generated under the replication operation. 

It has been proved here that growth functions (respectively length sets, Parikh 
sets) for the replicating systems studied so far are either exponential or linear. 
Nothing lies in-between. Therefore, it would be of interest to point out models 
with polynomial nonlinear growth. 

Yet notice that the general case for arbitrary leftmost and arbitrary prefix modes 
of replication, as well as the arbitrary free mode, are not yet sufficiently character-
ized, as far as the length sets are concerned. We believe that in the first two cases 
mentioned, the length sets are based on exponential functions, but with some addi-
tional constraints, while in the last case it is a linear set, for which the coefficients 
satisfy some further relations. 
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