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The Reflexive Domain of CPO’s Ideals*

Gabriel Ciobanuf

Abstract

A reflexive structure is a triple (D, 1, j), where D is an algebraic structure,
and i : [D - D) = D, j : D = [D — D} are mappings such that 10j =
idip— p}- We study reflexive structures in which the basic algebraic structure
is a complete partially ordered set (cpo), and only continuous functions over
cpo’s are considered. We use the concepts, notations, results and techniques
of domain theory [4, 7, 9]. We work with the ideals of some special cpo’s. We
present a reflexive domain of these ideals.

1 Introduction

The A-calculus is considered as a “core” language which is able to capture the
essential mechanisms of complex programming languages. The A-calculus is also
considered the prototype of purely functional programming languages. An excellent
book on the A—calculus is {1].

In its pure form, the A-calculus has no numbers, arithmetic operations, records,
loops, etc.; everything is a function. Its syntax comprises three forms of expressions:
a variable z is a A-expression, the application of a A-expression to another A-
expression is a A-expression, and the abstraction of a variable from a A-expression
is a A-expression. The way by which these expressions “compute” is the application
of functions to arguments, which is formally captured by a rule called 3-reduction
rule, or G-rule.

The A—calculus is much more powerful than it might appear at first sight. It is
proved that all other known models of computation (Turing Machines, general re-
cursive functions) describe exactly the same class of functions. The A-calculus can
be developed as a syntactical theory, in which expressions are syntactically ma-
nipulated according to some reduction rules. However we already had an intuitive
interpretation in mind: the A-expressions are thought of being functions, and the
B-reduction rule codifies a step in the evaluation of a function at a given argu-
ment. Therefore there exist two levels: the purely syntactical manipulation of the
A-expressions, and the intuitive interpretation. The relationship between the two

*The final version of this paper was written at Tohoku University, where the author was a
visiting researcher supported by JSPS.

tFaculty of Computer Science®A.l.Cuza” University 6600 Iasi, Romania e-mail:
GCiobanu@QUAIC.Ro

249



250 Gabriel Ciobanu

levels is given by the formal semantics of the A-calculus. Possible interpretations
of A-expressions as functions in the usual mathematical sense lead to possible se-
mantics and models of the A—calculus. If we consider a denotational view, then we
need to choose a semantic domain D (D is usually a set of functions) and define
a denotational function which maps each expression into an element of D. Since
A-expressions take A-expressions as arguments and return A-expressions as a result,
each element of D is actually a function from D to D. Trying to construct naively
such a set D leads to a mathematical paradox. Dana Scott solved the problem in
1969, and the paradox can be avoided by considering only some of the functions
from D to D [8]. The same insight can be used to construct different domains with
different properties. This paper follows this research line, presenting the reflexive
domain of some cpo’s ideals. The domain of the cpo’s ideals has appeared in vari-
ous forms and papers, for different purposes [e.g. 5, 6]. These various approaches
are similar in many points. This paper describes a domain construction which is
interesting on its own. Moreover, the interest for cpo’s ideals comes also from the
fact that we can look at ideals as being similar to computational trees.

This paper is a formal approach which gives basic results to define and develop
formal semantics for different programming languages, and to prove properties of
various kinds of computation - e.g. dataflow computation and nondeterministic
computation {2, 3].

2 Scott domains and ideals

In the literature the term ’domain’ generally refers to the class of structures involved
in the denotational semantics of programming languages. It is common to locally
’bind’ the term to a specific class of structures for the sake of precision. Domains
are usually algebraic cpo’s. However we should not take this name too rigidly;
there have been different definitions of domains in the literature. When (D, C) is
algebraic and K (D) is denumerable, then D is called w — algebraic. Finally, a cpo
is a Scott domain if it is w-algebraic and consistently complete.

We give some useful definitions.

Definition 1.

i) A subset X of a partial order (D, C) is called bounded or consistent if there
exists an upper bound for X. Otherwise it is called inconsistent.

1) A directed set of a partial order (D,C) is a subset S C D such that every
pair of elements in S has an upper bound in S.

it) A complete partial order (cpo) is a partial order (D, C) which has a least
element 1, and least upper bounds(lub) of all directed subsets of D.

Any set can be viewed as a cpo under the discrete order: z CEy if f = y. Given
a set S, the poset S| = SU {L}, obtained by adding a new element L to S and
defining z C y iff either z = y or z = L, yields a cpo called the lift of S, or the flat
cpo determined by S.



The Reflexive Domain of CPO’s Ideals 251

Definition 2. Let D and E be cpo’s and f: D — E. The function f is monotone
if f(z) C f(y) whenever z C y; f is continuous if f({ |S) = U{f(z) | = € S} for
every directed S C D. f is said to be strict if f(Lp) = Lg. If D is a cpo, then
[D — D] denotes the set of continuous functions from D to D.

Definition 3. Let D be a cpo. An element z € D is compact if, for every directed
set M C D such that z C | | M, there is some y € M such that z C y. The set of
compact elements in D is denoted by K (D).

A c¢po in which every element is a least upper bound of a directed collection of its
compact approximations is said to be algebraic:

Definition 4. A cpo (D,C) is algebraicif for allz € D, {e Sz | e € K(D)} is
directed and z = | [{e C z | e € K(D)}. When (D,C) is algebraic and K(D) is
denumerable, then D is called w — algebraic.

Definition 5. D is consistently complete if every upper bound set X C D has a
least upper bound(lub).

Definition 6. A cpo is a Scott domain if it is w-algebraic and consistently complete.
The domains used in this paper are Scott domains.

Proposition 7. If (D,Cp) and (E, EE). are domains, then (D — E],Cp_g) is
also a domain.

fEpoe giff f(z) Cg g(z) forany z € D
(LpoEe)(z) =Lg for any £ € D, and
(Uixo fi)(z) = Ui>o(fi(z)) for all increasing sequence {f;}i>o
We define a notion of ideal for all these domains. .

Definition 8. Let D be a domain. Then I C D is an ideal if
1) whenever y C z and = € I, then y € I;
1) for every increasing sequence {z;}i>o C I we have U;>oz; € I.

Remark. According to this definition the empty set forms an ideal with U) =_1.
Consequently all continuous functions are strict, since f(U@) = Uf(P) implies
f(L)y=Lr.

Let Z(D) be the set of the ideals of D. If D is a domain, let £ € D and set
[z] = {y € D|y C z}. It is easy to verify that (z] is an ideal, precisely because D is
a domain. The ideal [z] is called the principal ideal generated by z, and it is the
smallest ideal containing z.

Let X be a subset of D, and X = {Uioz;i|{z:}i>0 is an increasing sequence in X}.
The function X ~ X is defined on those subsets of D which are downwards closed
in the sense ) of the previous definition.

Remark. The function X — X is a closure operator.

Recall that, in general, a function X + X on subsets of _some set is called a closure
operator if i) I C J implies I C J, i) I C T, and 1) I =1.

In our case it is not difficult to prove i) and %), therefore we only sketch the proof
of T = I. First we remark that I and T have the same compact elements. Suppose
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now that z € I is a compact element; then z is the lub of an increasing sequence
{a:} from I. Since z is compact, there is an index j > 0 such that z = a;, and so
z € I. Taking into account that any element of an w-algebraic cpo is the lub of an

increasing sequence of compact elements, it is easy to show that T and T have the
same elements, namely the lub’sof the increasing sequences defined by the compact
elements of I.

" The set I is called the closure of I, and I is said to be closed if I = I. Thus, by
iii), the closure of any closed set is closed. Moreover, by i), if I C J = J, then
T CJ=J,ie. ITisincluded in every downwards closed set which includes 7. Since
I is itself a downwards closed set which includes I, then the closure of I is the
smallest downwards closed set which includes I.

We give the following results, which can be easily proved.

Proposition 9.

i) for any I € I(D), K(I) = I;

i) for aﬁny.increa,sing sequence {Ix}k>0 C I(D), we have Ug>olx = m;
wi) VI, LeI(D), L =L if K{)=K();
iv) K(Uksolk) = UsoK (Ii).

As an intermediate step to the final result, we will show that we can solve the
domain equation D = [Z(D) — D]; this means that we are looking for a domain D
which is isomorphic to the domain of functions from Z(D) to D. The method we
use to solve such a domain equation is called inverse limit construction.

3 Inverse limit construction for D = [Z(D) — D]

The method of the inverse limit construction was developed by D. Scott. The result
is that, for any recursive equations of form D = T'(D), if T(D) is an expression
composed out of D such that T(D) is a domain when D is, then there is a domain
D, that is isomorphic to T(Dy), i.e. there is a solution of these equations.

In order to prove that Z(D) is a domain, we start by studying the set K(Z(D)) of
compact elements.

Definition 10. A set X is maximal complete if for every z € X there exists a
maximal element m € X such that £ C m.

Lemma 11. Any ideal [M] generated by a finite set M is maximal complete and
the set of its maximal elements is a subset of M. Any maximal complete ideal is
generated by the set of its maximal elements.

Proposition 12. If D is an w-algebraic cpo, then an ideal I is a compact element
in Z(D) iff it is maximal complete and the set of its maximal elements is finite,
containing only compact elements of D.
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Proof :

<= : We have to prove that if I C U;>0A; then there exists a k¥ > 0 such that I C
Ag. Let {a1,...,an} be the set of maximal elements of I. We have I C U;>04; =
Uj>0K (A;); therefore, for any maximal elements a, we have a, € U;>0K(4;).
Since a, is a compact element, there exists k, > 0 such that a, € K(Ax,). There
are a finite number of maximal elements; thus there exists ¥ = maz{k,, ...k} such
that a, € Ay for all p=1,...,n. Using the previous lemma, it is easy to see that
I C A

==: Since D is a domain, K(I) is denumerable, and so K(I) = {a; | ¢ > 0}.
We consider now an increasing sequence of ideal generated by subsets of compact
elements, namely [ap] C [ag, 1] C ... C [ag,...,an] E ... C I. T = K(I) =
Uiso{ao, - --,ai} = Ui»oK ([ao, - - -, ai]) = Uixolao, . - ., a;]. Now, if D is w-algebraic,
then there exists & > 0 such that I = {ag, ..., ax]. According to the previous lemma,
[ao,. .., ak] is maximal complete, and the set of maximal elements is a subset of
{ao, .- .,ax} which is finite and contains only compact elements of D.

Proposition 13. If D is an w-algebraic ¢po, then Z(D) is also an w-algebraic cpo.

Proof : There are countably many compact ideals, because they are characterized
by a finite number of compact elements from D ( and the compact elements of
D are denumerable). In Z(D), the set of compact ideals less than a given ideal
I is directed. This fact is a consequence of the equality [ag, ..., an} U [bo, ..., bm] =
[ag,--.;@n, bo, ..., D). The lub of this directed set included in K(Z(D)) is I. If
D is w-algebraic, then I = K(I) = Uj»o{ao,...,a:} = UixoK([ao,...,ai]) =
Ui>o[ao, - - - »ai], where K(I) = {a; | i > 0}. The ideals [ao, ..., a;] are w-algebraic;
therefore I is the lub of the w-algebraic ideals less than I. :

We have to prove also that Z(D) is consistently complete; we use the following
result

Lemma 14. Let (Z(D),C) be the cpo of ideals of D, where the order relation is
the set inclusion.

i) If X,Y € I(D), then XUY,X NY € I(D).

it) (Z(D),N,U) is a complete lattice, where the meet operator is the usual inter-
section, and the joint operator is defined by UjeyX; = N{I € Z(D) | Vj €
J, X; CI}. ‘

Consequently, any bound subset of Z(D) has a least upper bound given by the joint
operator.

Remark. The infinite union of ideals may not bé an ideal.
However, if D is w-algebraic, then UjcjX; = UjesK(X;).

Finally, as a consequence of the previous two results, we give now the following
proposition:
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Proposition 15. If D is a domain, then I(D) is a domain.

Definition 16. Let f : D — FE be a continuous function between two domains.

Then

I(f) : I(D) » Z(E) is defined by I(f)=Al{y€ E|3zel:yC f(z)}
Z(f)(I) is the minimum ideal containing f(I).

Lemma 17.

I(f))={ye EPz eI :yC f(z)} = {y € K(E)|3z € K(I):y C f(2)}.

Proof : Using I = K(I) from the Proposition 9 i), and since we work with a
closure operator, then

{yeEPFzel:yC f(z)} ={y€ K(E)3z € [ : y C f(z)}. Now, if z is not a com-
pact element, then there is an increasing sequence {z;}:>o of compact elements such
that z = Ui>o0Z;- Using the continuity of f, y C f(m) = f(UiZQIE,‘) = Uizof(l‘i);
but y is a compact element of E, and there exists n > 0 such that y C f(z,) and
zn € K(I) - because z, C z and I is an ideal. Therefore, if 3z € I : y C f(z),
then 32’ € K(I) : y C f(z') T f(z), ie. {yeK(E)3zel:yC f(z)} =
e KRBT e KD yC [@).

Proposition 18. If f: D S Eisa continuous function, and I C D is an ideal,
then Z(f)(I) is an ideal.

Proof : We have to prove that
1) whenever z C y and y € Z(f)(I), then 2 € Z(f)(I), and
i1) for every increasing sequence {y;}i>o in Z(f)}(I) we have Us>oy; € Z(f)(I).

i)IfzC yandy € Z(f)(I) = {y€ E|Fz €I :y C f(z)}, then 2 C y and
3z € I:yC f(z); this means that z € Z(f)(I).

i1) is clear from the definition of Z(f)(I). We want to explain now our choice for
the definition of Z(f)(7). In general, the set {y € E|3z € I : y C f(z)} is not
closed (it is not difficult to construct a counterexample). According to our
definition, if we use elements of I, we can define new increasing sequences;
then we have to close the set again, and we obtain T. In order to have T = I,
the key property of domains is that of being w-algebraic cpo’s. The construc-
tion is now consistent, because even the function space does preserve this
property, according to the fact that our domains are consistently complete(a
result proved by G. Plotkin).

Proposition 19. If f : D — E is continuous, then Z(f) is also continuous.

Proof : According to Lemma 17, Z(f) : Z(D) — Z(E) could be defined by
: I(f) =M Ay € K(E)|3z € K(I) : y € f(z)}
We have Z(f)(Un>0ln) = {y € K(E)|3z € K(Un>0ls) : y C f(z)} = by Prop. 9 ii)
{y € K(E)|3z € Un>oK (L) : y C f(z)} = by Prop. 9 iv)
Unxo{y € K(E)|3z € K(In) : y T f()} = Un>0Z(f)(In) = Unz0Z(f)(In).
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Proposition 20. If f: D = E,g: E — F are continuous functions, then

I(g) o I(f) = L(g o f).

Proof : (Z(g) o I(f)){I) = {z € K(F)|3y € K(I(f)(1)) : 2 C g(y)} =

e K(F)By € {y €K(B)Fz € K(D) -y C f(@)} 2 C g()} =

(ZeK(F)By e K(B) : Js € K(I):y C f(z) & 2 C g)}-
Since z C g(y) and y C f(z), we have z C g(f(z)) by the monotonicity of g.
Then (Z(g) o Z())(I) C 1z € K(F)[3s € K(I) : 2 C g @)} = Z(g o £)(D).
In the other direction, starting from z C g(f(z)), we have to find a compact element
y such that z C g(y) and y C f(z). We already know that z and z are compact
elements. If f(z) is compact, then we take y = f(z). If f(z) is not compact, then
there is an increasing sequence {t;};>o of compact elements such that f(z) = U;>ot;.
Using the continuity of g, we can say that 2 C g(f(z)) = g(Ui>ots) = uizog(ti_). z
is a compact element; then there exists n > 0 such that z C g(¢,,). Now we consider
y = tn; hence y C f(z) and y is compact. Thus we can write now

I(go )(I) = {z € K(F)Bz € K(D :2C gU@)] C

{ze€ K(F)|3y € K(E): 3z € K(I) : y C f(z) & 2 C g(y)} = (Z(g) o Z(S))(D)

Proposition 21. If {fi}i>o is an increasing sequence of continuous functions f; :
D — E, and I € I(D), then Z(U;>o fi)(I) = Us»oZ(fi)(I), i.e. T is continuous.

Proof : By Lemma 17, Z(U;>ofi)(I) = {y € K(E)|3x € K(I) : y C U;>o fi(z)}.
Since y is a compact element, then there is n > 0 such that y C f,(z). Using
a previous remark, Z(U;>0fi)(I) = {y € K(E)|3z € K(I) 3n > 0:y C fao(z)} =
Uiso K (Z(f:)(I1)) = UizoZ(f:)(I)-

The following definitions and results are included only to make the construction
clear; the proofs can be found in different papers or books [e.g. 1, 4, 7, 8, 9].

Definition 22. Let D, D’ be domains. A pair of continuous functions (f : D —
D', g: D' — D) is a retraction pair iff go f = idp and fog Cidp

i) f is called an embedding and g is called a projection.
11) We will use the notation (f,g) : D + D".
Proposition 23.
i) An embedding has an unique corresponding projection.
1) A projection has an unique corresponding embedding.
ii1) The functions of a retraction pair are strict functions.

Definition 24. Let (f,g) : D < D' be a retraction pair. Then (f,g)® : D' <+ D
denotes the reversal of (f,g) and is defined as (g, f). The reversal of a retraction
pair might not be a retraction pair.
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Proposition 25. LetT = (f,g): D & D' ands = (f',¢') : D' & D" be retraction
pairs. Then

i) ros=(f'of,gog'): D & D" is a retraction pair;

it) (ros)f =shork;
iii) (rR)R =r.

Proposition 26. The composition and reversal operations upon retracticn pairs
are continuous.

Definition 27. Let r = (f,g) : D & E and s = (f',¢') : D' & E' be retraction
pairs. We define
r=3s=(M.f'ohog),(Ak.g'0cko f)):[D - D'| & [E— E.

Proposition 28. Let (f,g9) : D & E be a retraction pair. Then (Z(f),Z(g)) :
I(D) + I(E) is a retraction pair.

.Proof : I(f) and Z(g) are continuous, by the Proposition 19. By the Proposition
20,
o ()I(g) oI(f))(A) =I(go f)(A)={ye DIz € A:y C g(f(z)) =z} = A, VA €
(D),
» ()I(f) oZ(9))(B) =I(fog)(B)={y € E|3z € B:y C f(g9(z)) Ex} C B,VB €
I(E).

Corollary 29. Let (f,g) : D & E be a retraction pair, and I € Z(D).
For any J € T(E) such that Z(g)(J) =I we have Z(f)(I) C J.

Proof : Z(f)(I) = Z(f)(Z(9)(J)) = (Z(f) e Z(9))(J) € J.

Remark. If J € Z(E) such that g(y) €I foranyy € J, then Z(f)(I) C J.

Corollary 30. Let r: D & E be a retraction pair. Then (Z(r))® = Z(r).

Proof : By the Proposition 28, Z(r) = Z(f, 9) = (Z(f),Z(g)).
It is not difficult to see that (Z(r)® = (Z(f),Z(g))® = (Z(9),Z(f)) = Z(g, f) =
I(r®).
In our inverse limit construction we have the following domain expressions:
T(D) = [Z(D) —» D}, and T(r)=(Z(r) = r).

Lemma 31. For all domain expressions F', and retraction pairsr : D < E,s :
EoF,

'L) F(idDHD) = idF(D)HF(D): where idD(—)D = (idD,’idD);
1) F(r) is also a retraction pair;

iii) F(r)® = F(rR®);
w) F(sor)=F(s)o F(r).
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Definition 32. A retraction sequence is a pair ({D;}i>0, {ri : Di © Dit1}izo0),
such that for all ¢« > 0 D; is a domain, and r; is a retraction pair.
Let tyn 1 Dy, © D, be defined as

Ppn_10...0r, ifm<n
tmn = { D, oD,, fm=n .
rRo...orR_, ifm>n
If we consider ¢o = id{1}, ¢n+1 = (Z(@n) = én), and each r; is a retraction pair
(¢i,%s) : Dy & Diyy,
then for m < n,
tmn = (amnyenm) = (¢n—171/)n—1) 0...0 (¢m+1a'l/)m+1) : (¢m>"r/}m) =
= (¢n——l 0...0 ¢m+1 o ¢m.71ybm ° wm+1 0...0 ";bn——l)-

We can represent this by

¢ Dmy1 Pn-1
Dp & Dy = Dpys ... Dpoy = Dy
'l!)m m+1 Yn-1

For the case when m > n,
tin = (emn70nm) = (gnmyomn)ﬁ = tfm-
Definition 33. The inverse limit of a retraction sequence
({Di}izo0, {(#i,%:) : Di & Dijali > 0})
is the set: :
Do = {{z0,21, ..., 24, ...}| for all n > 0, z,, € Dy, and &, = Yp(Tnt1)}-
This set has a domain structure with Lp_= {1p, }n>0 and the order
{Zn}n>0 Cp.. {Yn}n>o iff for any n € N we have z, Cp, yn.

Proposition 34. If F maps a domain D to a domain F(D), then the pair:
({DilDo = {1}, Diy1 = F(Di)}ix0,
{(¢i,%:) : Di © Diy1lgo = (Az. L),%0 = (Az. L), (dit1,Yiv1) = F(¢i, i) }izo)

is a retraction sequence.

To show that the inverse limit for the retraction sequence generated by F satisfies
Do, = F(Dy), we define the functions
®:Dy = F(Ds) , ¥: F(De) = Do,
using the retraction pairs (¢;, ;).
Form > 0,
tmoo : Dm € Deo 18 (Omoos 8oom) = (A2 A{8mo(2),0m1 (), ...}, A{z1, s Tmy ..} Tm)
toom : Doo * D 18 (Boom,Omoo) = tmeo™
tooco : Doo € Do 18 (Boocos Booso) = (3dD,, ,%dD_, ).

Lemma 35. For any retraction sequence and m,n,k € N U {o0}
() tmn O tkm C tkn v
(it) If m > k orm > n, then ty,n, 0 tim = tin-

(i13) If m < n, then t,,, is a retraction pair.

The isomorphism maps are defined as a retraction pair (9, ),
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Theorem 36.
(Z) (Qa q’)R ° (Qa ‘Il) = idDwHDw:
(i) (2,9)0(®, )R =idp(p_yer(D.)-

Our domain expressions T satisfies all the requirements imposed on F. The nec-
essary properties required for the new constructor Z have been proved by previous
results of this section. As a consequence, we have a domain V which is a solution
of the domain equation D = [Z(D) — D].

4 The reflexive domain. Z(V)

Recall that an algebraic structure is reflezive if there are two functions ¢ : [D —
D] — D and j: D — [D — D] such that 40 j = idjp_, pj- In our case we prove the
existence of two continuous functions ¢ : [D — D] = D and j : D — [D — D] such
that, for all f € [D = D] and z € D, j(i(f)) = f, and i(j(z)) Cp z.

~ Let V be a domain such that V = [Z(V) — V]. In order to show that Z(V) is
a reflexive domain, we consider the following functions:

Definition 37. Let f : Z(V) — Z(V) be a function, and I,J € Z(V) be ideals.
F:Z(V) > IZ(V)] = Z(V)
G:I(V) = [Z(V) = I(V)]
are defined by : :
F(fy={oce[Z(V) = V]jo() € f(),¥I € Z(V)}, and
G)(J) ={a(J)|o € [Z(V)—= V]NnI}.

Proposition 38. F' and G are well defined.
Proof :

i) If f: Z(V) = Z(V), then F(f) e Z(V).

Let o be in F(f), and p C o. p(I) € o(I) for all I € Z(V), and by the
definition of F(f), o(I) € f(I). f(I) is an ideal, hence p(I}) € f(I), i.e.
p € F(f).

Now we consider an increasing sequence {0;}i>0 in F(f). For any ¢ > 0,
o; € [Z(V) - V], and o;(I) € f(I),VI € Z(V). TFor an arbitrary I €
Z(V), (Uizooi)(I) = Ui»o0i(I), by the continuity of ¢;. Since o;(I) € f(I),
and f(I) is an ideal, then {o;(I)}:>¢ is an increasing sequence in f(I) and
Uisooi(I) € f(I). Therefore U;>90; € F(f).

i) I I € I(V), then G(I) € [Z(V) = Z(V)).
We have to prove that G(I)(J) € Z(V), VJ € Z(V), and G(I) is continuous.
Let J € Z(V), and o(J) € G(I)(J),0 € [Z(V) = V]. If a € G(I)(J), then
Jo € [Z(V) = V]N I such that o(J) = a. If we consider b T a, then it is
necessary to prove that 3p € [Z(V) — V] NI such that p(J) = b. We define
_ [ mazi>o{c; C ble; Co(x)} if b o(x);
plz) = { b, if b C o(z),
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Thus we have p(J) = b, because b C a = o(J), and p.is continuous. We
consider now an increasing sequence {a;}i>o C G(I)(J) € Z(V). This se-
quence is given by an increasing sequence {o;}i>0 C [Z(V) - V] N I. If we
consider {o;}i>0 as functions, then the values of G(I)(J) are determined by
applying these functions to J, and Ui>o0a; = Ui>00i(J). We consider {o;}i>0
as elements of I, and we have U;>oa; = U;>o0;, with o; € I. T is an ideal,
and therefore U;>0a; € I. Thus W;>0a; € G(I)(J).

141) We need to prove also that G(I) is continuous. We consider an arbitrary
increasing sequence {Jr}x>o C Z(V). We prove that G(I)(Uk>o0Jk) C
Ue>oG(I)(Jx): If @ € G(I)(Ug>oJi), then Ip € [Z(V) = V] NI such
that p(Ux>0Jk) = a. Since p is continuous, then a = Ui>op(Ji). But
p(Je) € GU)Jk) C Uk>oG(I)(Jk). Therefore a € Ur»>oG(I)(Jk), by
the definition of Z(V). Now, Ur>oG(I)(Jk) = Urso{o(Jk)lo € [Z(V) —
VINI} = {o(UkzoJk)lo € [Z(V) = V] NI} C {o(Urzodi)lo € [Z(V) —

VIN T} UWoGUI)(Jk) = {Uizoai|{ai}i>0 is an increasing sequence in
Uk>0G(I)(Jk)} C {Uisoail{ai}izo C {o(UrzoJi)} = {Ukzoo(Jx)}} =
G(I)(Ur20k)-

Proposition 39. For any I € Z(V), F(GD) C

Proof : Indeed, by the definition of G(I)(J),
F(G(I) ={o € [L(V) = V]|o(J) € GU)(J),VJ € I(V)} =
={oe[Z(V)o V]eeZ(V)> V]NI}CI
C f(J),

Lemma 40. For any J € Z(V), G(F(f))(J) C f(J), Vf:Z(V) = I(V).

Proof : G(F(f))(J) = {o(J)|o € [Z(V) = V]NF(f)} =
= {o(J)lo € {p € [Z(V) = V]|p(I) € f(I),VI € I(V)}
={o(N)|e(I) € f(I),YI € Z(V)} = {a())|o(J) € f(J)

Theorem 41. Let be f : Z(V) — Z(V). Then G(F(f)) =
Proof:

(ST

C 1)
f

iff f is continuous.

i) We have already proved that G(I) € [Z(V) — Z(V)] for all I € Z(V), and
F(f) € T(V) for all f € I(V) = Z(V).

1) We have to prove only f C G(F(f)), because the inclusion G(F(f)) C f
has been proved in Lemma 40. We consider an arbitrary J € Z(V), and
an arbitrary a € f(J). We can see a as the lub of an increasing sequence
{ai}iZO Cc f(J),ie a= Ui>o0@;.

We define ¢ :Z(V) - V by

_ [ maziso{aila; € f(I)}, ifag f(I),
"(I)'{a, = T ifae f(I).

It is clear that o(J) € f(J).
To prove that o € [Z(V) — V], we consider an increasing sequence {Ix}t>o0 C
I(V). o is monotone, and Ukzoa(Ik) C U(UkZOIk)' UkZOIk = UkZOIk implies
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that if b € o(Uk>olx) then either b € Ug>oo(Ix), or there is an increasing
sequence {bg}x>0 C V such that o(Ix) = by and b = Ug>obr € V. Therefore
o(Ur>olk) E Urzoo(lk). And f(J) € G(F(£))(J)-

~ Acknowledgements: Thanks to the referee for the helpful comments on the drafts
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