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On Domain and Range Tree Languages of 
Superlinear Deterministic Top-down Tree 

Transformations* 

Gábor Dányi* 

Abstract 

Denote by sl-DT the class of superlinear deterministic top-down tree 
transformations, by REC the class of recognizable tree languages, and by 
DREC the class of deterministic recognizable tree languages. In this paper 
we present the following results. The class d o m ( s l - D T ) is exactly the class of 
tree languages recognized by semi-universal deterministic top-down tree rec-
ognizers, which are introduced in this paper. Moreover, for any L € DREC, 
it is decidable whether L £ d o n i ( s l - D T ) holds and we also present a decision 
procedure. Finally, we show that ra,nge(sl-DT) = REC. 

1 Introduction 
Top-down tree transducers were introduced in [Rou] as formal models of syntax-
directed compilers. They are finite devices processing terms over ranked alphabets, 
which are called trees in this area. A top-down tree transducer induces a binary 
relation over trees, called a top-down tree transformation. Tree transformations in-
duced by top-down tree transducers serve as abstract models of translations realized 
by syntax-directed compilers. 

Top-down tree transducers and top-down tree transformations were studied in 
several papers, e.g., in pioneer works [Engl], [Eng2] and [Bak], A number of special 
types have been defined (linear, nondeleting, etc.) and compared to each other, see, 
for example, [GécStel] or [FülVág]. 

A top-down tree transducer translates an input tree by applying so called rules 
at the nodes, processing the tree from the root to the leaves. Each rule has the form 
q(o(x\,... ,xm)) —• where <r is an input symbol of rank m that labels a node 
of the input tree, q is a state of the tree transducer and £ is a term consisting of 
output symbols and terms of the form p(xi), where 1 < i < m, X{ refers to the ith 
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direct subtree and p is a state of the tree transducer. A top-down tree transducer 
is said to be deterministic if, for any state q and symbol a, there is at most one 
rule of the above form. In this paper we consider only deterministic top-down tree 
transducers. A top-down tree transducer is called linear if, for every rule of the 
above form and 1 < i < m, each term of the form p(xi) appears at most once in 

As a result of this condition, the translation of any direct subtree íj of a tree 
<j(ti,... ,tm) appears at most once in the translation of the whole tree. 

Superlinear deterministic top-down tree transducers were defined first time by Z. 
Fülöp and H. Vogler during a personal communication in 1992. A characterization 
of this type and comparisons to other ones can be found in [DánFüll] and [DánFül2]. 

Informally speaking, a superlinear deterministic top-down tree transducer is a 
linear deterministic top-down tree transducer, which satisfies the following condi-
tion. For any symbol a of rank m and two different states q and q', if both the rules 
q(a(xi,... ,xm)) £ and q'(a(xi,... ,xm)) -»• exist, then, for every 1 < i < m, 
a term of the form p(xi) appears in at most one of £ and This implies that the 
translation of a direct subtree íj of a tree cr(t\, tm) appears in the translation 
of the whole tree if and only if the transducer starts the processing of a(ti,..., tm) 
in a distinguished state depending on i. 

Investigating a certain type of top-down tree transducers, the questions natu-
rally arises, what kind of trees can be processed by this type, and what kind of 
trees may occur as result of such a processing. For a top-down tree transducer, the 
sets of possible input and output trees are called the domain and the range of the 
induced tree transformation, respectively. 

Tree sets are also called tree languages. Similarly to the string languages, for 
tree languages there are also finite state recognizers. By the help of these devices, we 
can define the classes of recognizable and deterministic recognizable tree languages, 
see [GécStel]. It turned out that domain and range tree languages of top-down tree 
transformations can generally be associated with these two classes, see [GécStel] 
and [FülVág]. However, it is known from [DánFüll] that the class of domain tree 
languages of superlinear deterministic top-down tree transformations is a proper 
subclass of the class of deterministic recognizable tree languages. 

In this paper we investigate domain and range tree languages of superlinear de-
terministic top-down tree transformations. We define a new type of tree recognizers, 
called semi-universal deterministic tree recognizer. We show that the domain tree 
languages of superlinear deterministic top-down tree transducers are exactly that 
ones, which are recognizable by semi-universal deterministic tree recognizers. On 
the basis of this result we develop a decision algorithm, which decides whether an 
arbitrary deterministic recognizable tree language can be the domain of a superlin-
ear deterministic top-down tree transformation. Moreover, we prove that the range 
tree languages of superlinear deterministic top-down tree transducers are exactly 
the recognizable tree languages. The outline of the paper is the following. 

In Section 2 we introduce the notions and notations, which are necessary for 
understanding the paper, and recall some preliminary results. 

In Section 3 we give a characterization of the domain of the class of superlinear 
deterministic top-down tree transformations. Moreover, we show that, for a deter-
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ministic recognizable tree language, it is decidable whether it can be the domain of 
a superlinear deterministic top-down tree transformation. 

In Section 4 we show that the range tree languages of superlinear deterministic 
top-down tree transformations are exactly the recognizable tree languages. 

Finally, in Section 5 we summarize our results and raise some related open 
questions. 

2 Preliminaries 

In this section we introduce the notions and notations, which are necessary for un-
derstanding the paper. Furthermore, we recall some preliminary results, although 
some of them are referred to in a modified form. 

2.1 Sets and relations 

We denote by pow(>l) and |J4| the power set and the cardinality of a set A, respec-
tively. A finite nonempty set is also called an alphabet. 

Given two sets A and B, an arbitrary subset 9 of A x B is a relation from A to 
B. We also write adb meaning that (a, b) £ 6. A relation from A to A is called a 
relation over A. The identity relation over A is Id(A) = {(a, a) | a £ A}. 

Let A be a set and a,b,c E A arbitrary elements. A relation 9 over a set A 
is said to be reflexive if (a, a) £ 9 always holds, transitive if a9b and b9c implies 
a9c, symmetric if adb implies b9a, and equivalence if it is reflexive, transitive, and 
symmetric. An equivalence relation = over A defines a partitioning of A, where, 
for any a,b £ A, a and b are the same class if and only if a = b. We denote by [a]= 
the class of an a £ A with respect to =. 

The transitive closure 9+ of a relation 9 over A is also a relation over A. For 
any a,b £ A, a9+b holds if and only if there exist a\,..., an £ A with n > 1 such 
that ai = a, an = b, and ai9a t+i, for every 1 < i < n. The transitive-reflexive 
closure of 9 is 9* = 9+ U {(a, a) | a £ A}. 

Let 9 be a relation from A to B. The sets dom(0) = {a £ A \ 3b £ B : a9b} 
and range(0) = {b £ B \ 3a £ A : a9b} are called the domain and the range of 9, 
respectively. We say that 9 is total, if dom(0) = A, and partial otherwise. 

We extend the concepts of domain and range for classes of relations. Let C be 
a class of relations, then the domain and the range of C are defined by dom(C) = 
{dom(0) | 9 EC} and range(C) = {range(0) | 9 EC}, respectively. 

Let A and B be sets. A relation v C. A x B is called a mapping from A to B, 
denoted by v : A B, if, for any a £ A, there is exactly one b £ B such that 
(a, b) E v holds, for which we also write v{a) = b. A mapping u from A to B is said 
to be infective if, for each b E B, there is at most one a £ A such that v(a) = b, 
surjective if range(i/) = B, and bijective if it is injective and surjective. A bijective 
mapping is also called a bijection. 
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2.2 Trees 

A ranked alphabet £ is an alphabet, in which every symbol has a unique rank in the 
set of nonnegative integers. For each m > 0, the set of symbols in E having rank m 
is denoted by E m . We write E = {crjmi\ . . . , meaning that E = {CTI , crnj 
is a ranked alphabet, where the symbol cr* has the rank ml) for each 1 < i < n. 

We specify an enumerable set X = {xi , x2,...} of symbols, called variables, and 
we put Xn = { x i , . . . , x n } , for every n > 0. We assume that X is disjoint with any 
ranked alphabet E. 

Let E be a ranked alphabet. For a set H, disjoint with E, the set of trees over E 
indexed by H is denoted by Tz(H) and defined as the smallest set U, which satisfies 
the following conditions. 

(i) H U E0 C U. 

(ii) cr( i i , . . . , tm) G U, whenever m > 0, cr € E m , and h,... ,tm e U. 

The set TK(0) of ground trees over E is also written as 
The trees can be represented as expressions with parentheses. For example, if 

E = #( ° ) } then <5(<r(#), # ) G TE and S(S(x1,#),6(a(x2),a(x1))) G X s . 
A chain tree, like a(... <r(#)...), where a occurs i times, is abbreviated by cr l(#). 
For instance, cr3(#) denotes the tree cr(a(a(#))). 

We write Tj;in for and distinguish a subset TE,„ of Tx;)n as follows. A 
tree t G X£ n is in Ts,n if and only if each variable in Xn appears in t exactly once 
and the order of them from left to right is x i , . . . ,xn . For instance, if E = {¿r'2 ' } , 
then a(xi,x2) G Is,2 , but (T(xi,xi),cr(a;2,xi) ^ T^t2. 

Let t G Tz<n, for some n > 0. We define the height of t and the set of variables 
occurring in t, denoted by height(i) and var(t), respectively, as follows. 

(i) If t = Xi G Xn, then height(i) = 0 and var(i) = {xj } . 

(ii) If t = a G E0, then height(i) = 0 and var(i) = 0. 

(in) If t = a(ti,... ,tm), where m > 0, a G E m , and ¿ i , . . . , i m G 7s,n , then 
height(i) = 1 + max{height(ij) | 1 < i < m} and var(i) = Ui<i<m v&r(ti)-

We introduce the concept of tree substitution. Let n > 0, t 6 and let 
s i , . . . , sn be arbitrary trees. We denote by t [s i , . . . , sn] the tree, which is obtained 
from t by replacing each occurrence of Xi by S{, for every 1 < i < n. 

Let r and s be ground trees over a ranked alphabet E. We say that r is a subtree 
of s, if there exists a tree t G Tj^i such that s = t[r]. 

Let E and A be ranked alphabets. A tree language L over E is a subset of 
T-£-. A tree transformation from to T& is a relation from to TA . Since the 
tree transformations are relations, the concepts of their domain and range should 
be clear. Note that if r is a tree transformation from Xs to TA, then dom(r) and 
range(r) are tree languages over E and A, respectively. 
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2.3 Top-down tree transducers 
A top-down tree transducer is a 5-tuple T = (Q, £, A, qo, R), where 

• Q is an unary ranked alphabet, i.e. Q = Q1, called the set of states, which 
satisfies Q n ( E u A ) = 0 , 

• £ and A are arbitrary ranked alphabets, called input and output ranked 
alphabets, respectively, 

• Qo E Q is the initial state, and 

• R is a finite set of rules of the form 

q(a(xi,...,xm)) t[q1{xil),..., qn(xin)}, 

where m, n > 0, a E E m , 1 < i\,..., in < m, q, qi,..., qn E Q, and t E 2 \ n . 
A rule as above will be referred to as a g-rule for a, or shortly as a (g,cr)-rule. We 
say that q is defined on a in R, if there exists a (q, cr)-rule in R. 

A top-down tree transducer T is called deterministic, if, for any q E Q and a € 
there is at most one (q, <r)-rule in R. For brevity, we write "dt" for "deterministic 

top-down" in the sequel. 
Consider the above (g,er)-rule. The term ¿[<71(1^),... ,qn{xin)] is called the 

right-hand side of the rule and it is denoted by rhs(g,cr). Moreover, for each 1 < 
j < m, we define rst(g,cr, j) = {qk E Q | 1 < k < n,ik = j}, i.e. the set of states 
applied to Xj in rhs(g,cr). 

For a set S of trees, we put Q{S) = {q(s) \ q E Q, s E S} . The rules in R induce 
a relation, called derivation, denoted by =>r, over the set T&(Q(Ts)). For any trees 
r,s E TA(Q(?E)), r =>T s holds if and only if there is a rule q(a(xi,..., xm)) —¥ 
t[qi(XJJ),..., qn{xin)] in R such that, for some ti,... ,tm E TE, S is obtained from r 
by replacing an occurrence of a subtree q(cr{ti,.. • ,tm)) of r by t[q\ (tij),..., qn{tin)]-

The tree transformation Ty induced by T is defined as 

TT = { ( r , s) E r s x T A I q0(r) =>*T s}. 

A tree transformation is called a dt tree transformation, if it can be induced by a 
dt tree transducer. The class of dt tree transformations is denoted by DT. 

We note that nondeterministic top-down tree transducers are sometimes defined 
to have more than one initial states. However, that concept is not essentially 
different from our one. It is an easy exercise to show that, for each top-down tree 
transducer having more initial state, a top-down tree transducer with one initial 
state can be constructed,, which induces the same tree transformation. 

We introduce some special types of dt tree transducers applying certain restric-
tions to the form of rules. Moreover, we specify a unique abbreviation for the name 
of each type. Let T = (Q, A, q0, R) be a dt tree transducer. We say that it is 

• linear (I), if, for every rule q(a(xi,... ,xm)) ->• ^{x^),... ,qn(xin)] in R, 
each of the variables x\,..., xm appears at most once in the right-hand side. 
Note that in this case m >n. 
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• superlinear (si), if it is linear and, for every m > 0, a 6 £ m , and any two 
different states q,p G Q, var(rhs(g, a)) fl var(rhs(p, a)) = 0 holds. In other 
words, T is sl-dt, if it is linear and, for every m > 0, er G E m , and 1 < i < m, 
there is at most one state q G Q such that Xi occurs in rhs(g, a). 

• relabeling (rl), if each rule in R is of the form 

q{a(xx,... ,xm)) % i (a ; i ) , . . .,qm{xm)), 

where m > 0,(7 € £ m , <5 G ATO. Roughly speaking, processing a tree, T does 
not change the skeleton, only relabels the nodes. 

Observe that an rl-dt tree transducer is necessarily linear, but generally not super-
linear. 

These attributes can be combined. For example, by an rl-sl-dt transducer we 
mean a relabeling and superlinear deterministic top-down tree transducer. 

Let x be a combination of some of the modifiers in {l,sl,rl}, such as rl-sl, etc. A 
dt tree transformation is said to be an x-dt transformation if it can be induced by 
an x-dt transducer. The class of x-dt tree transformations is denoted by x-DT. 

2.4 Top-down tree recognizers 

A top-down tree recognizer (ttr) is a top-down tree transducer T = (Q, go, R), 
of which the rules are of the form 

q(a(xi,.. .,xm)) ^ cr(9i(xi),... xm)), 

where m > 0. If T is deterministic, then it is called a deterministic top-down tree 
recognizer (dttr). Observe that TT C Id(Tj;) holds and T is an rl-dt tree transducer. 

Let T = (Q,T,,T,,q0,R) be a dttr. We say that a state q G Q is universal, if, 
for all t G TE , q{t) =>*T t holds, i.e. {i G | q{t) ^ t} = TE. Observe that, 
for any rule q(a(xi,... ,xm)) a(qi(zi),... ,qm(xm)) & R, if q is universal, then 
hi - • • ,1m are necessarily universal, too. 

We say that T recognizes the tree t G TE, if qo(t) t. The tree language 
recognized by T is L(T) = ( i 6 TE | q0(t) t}. Observe that L(T) = dom(rT). 
A tree language is recognizable (resp. deterministic recognizable), if it is recognized 
by a ttr (resp. dttr). We denote by REC (resp. DREC) the class of recognizable 
(resp. deterministic recognizable) tree languages. 

Note that the original concept of recognizability concerning tree languages is 
defined by descending (or bottom-up) tree automata, see in [GecStel]. However, 
consulting Chapter II in [GecStel], one can easily see, that top-down tree recogniz-
ers are equivalent to regular tree grammars in normal form and hence to descending 
tree automata. 

Clearly, DREC C REC holds. Moreover, it is a well-known result (see, e.g., 
[GecStel]) that the inclusion is proper, i.e. DREC C REC. 
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2.5 Minimal deterministic top-down tree recognizers 
Deterministic top-down tree recognizers also have automaton type equivalent, 
namely deterministic ascending (or top-down) tree automata (dtta). A short re-
flection will show that there are mainly notational differences between these types 
of devices, hence we can apply the notions and results in [GecSte2] to dttr's without 
difficulties. 

An n-ary dtta is a 5-tuple A = (Q, £, Yn, qo, F), where n > 0, 

• Q is the finite nonempty set of states, 

• <7o € Q is the initial state, 

• F = (Qi,... ,Qn) £ (pow(Q))n is the final state vector, 

• Yn = { j / i , . . . ,yn} is the set of automaton variables, and 

• £ is a ranked alphabet, where £ fl Yn = 0, £o = 0, and every a £ £ m with 
m > 0 is realized as a mapping aA : Q —» Qm. 

We now specify how a dtta A recognizes trees. Define the mapping a A : 
Tz(Yn) pow(Q) as follows. 

(i) OLAiVi) = Qi, for 1 < i < n, and 

(ii) aA(t) = {q e Q | aA{q) 6 aA{ti) x . . . x a ^ ^ ) } , if t = a{tu...,tm) with 
m > 0, a S £ m , and ti,...,tm e T^(Yn). 

The tree language recognized by A is L(A) = {t € T^(Yn) | q0 £ «^ ( i ) } . 
We show that, for any dttr, an equivalent dtta can be constructed. 

Construction 2.1 Consider an arbitrary dttr T = (Q, £, £, qo, R) and suppose 
that £o = {<5i,..., <5n} with n > 0. Let p £ Q be a new state. Define the dtta 
A= (QUIPI.S-SO.SO,®^), where 

• F = (<3i,. . . , Qn) with Qi = {q£Q | q{Si) ->• Si £ R}, for 1 < i < n and, 

• for all m > 0, a £ £ m , and q £ Q U {p}, if q £ Q and q(a(xi,..., xTO)) 
a(qi(xi),... ,qm(xm)) is in R, then let crA(q) = (q\,... ,qm), otherwise let 
aA(q) = (p,...,p). 

It is straightforward to prove L(A) = L(T). Note that the case n = 0 is trivial, 
because then L(T) = 0. 

Conversely, for any dtta, an equivalent dttr can be constructed. 
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Construction 2.2 Let A = (<3,E, yn,<7o, F) be an arbitrary dtta. Assign the rank 
0 to each element of Yn and let A = E U Yn. Define the dttr T = (Q, A, A,q0,R), 
where R is constructed as follows: 

(i) for all 1 < i < n, q(yi) -¥ yi G R if and only if q 6 Qi and, 

(ii) for all TO > 0, a G Em and q,qi,...,qm € Q, the rule q(a(xi,.. .,xm)) 
a{qx(xi),... ,qm(xm)) is in R if and only ifaA(q) = (qt,..., qm). 

It is easy to show L{T) = L(A). 
We now recall some definitions and results from [GecSte2] using the dttr no-

tation. Note that two dttr's are called equivalent, if they recognize the same tree 
language. 

Let T = (Q, E, E, q0, R) be a dttr. A state q £ Q of T is called 0-state if the set 
{< 6 Tj; | q(t) i } is empty. A dttr T = (<2, E, E ,q0 , R) is said to be normalized, 
if either it has no 0-state, or the only 0-state is qo and in this case Q = {qo} and 
R = 0 hold. 

We note that this concept of normalization differs from the original one in 
[GecSte2] on page 40. Namely, if a dttr is normalized by the above definition, then 
the dtta given by the Construction 2.1 is normalized in the sense of [GecSte2]. 
However, the converse is not true, that is if a dtta is normalized in the sense of 
[GecSte2], then the dttr given by the Construction 2.2 is generally not normalized 
by the above definition. The difference follows from the fact that in the case of 
dtta's every a 6 E m with m > 0 is realized as a mapping aA : Q -> Qm, hence oA 

should be defined for each q 6 Q. That is why the 0-states cannot be discarded 
completely from the state set of a normalized dtta. On the other hand, the 0-states 
(except qo) and the corresponding rules can be deleted without difficulties in the 
case of dttr's, as it is shown by the following proposition. 

Propositon 2.3 For any dttrT = (Q, E, E, qo, R), an equivalent normalized dttr 
Tnor = (Q', E, E, qo, R') can be constructed effectively such that Q' C Q and R' C R. 

Proof. The set of non 0-states can be computed as follows. Define a sequence 
Q(o) c QW C . . . of subsets of Q, where 

(i) Q(°) = {q 6 Q | 3<5 G E0 : q{5) -4 S G R} and, 

(ii) f o r i > 0, Q(i+1> = Q^U{q G Q | 3m > l,cr G E m : q(a(xi,...,xm)) 
<7(<ii(zi), • • • ,qm(xm)) e R and 91,... ,gm e <3(,)}. 

Obviously, there is a k > 0 such that Q^ = Q(k+i\ for every j > 1. 
If qo & Q ( fc ), then let Q' = {90} and R' = 0. Clearly, in this case L(T) = 

L(Tnor) = 0 holds. 
Finally, if q0 G Q(k), then let Q' = Q^ and R' = {q(a{xu... ,xm)) 

a(qi(xi),...,qm(xm)) G R \ q, qi,..., qm G Q ( f c ) } . Observe that, for any t G L(T), 
during the derivation qo(t) t only such rules are applied, which do not contain 
a 0-state, hence qo{t) =>rnor t> t o ° - Therefore L(Tnor) = L(T). • 
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We define the binary relation i o v e r Q as follows. Let q,p G Q, then q P 
if and only if there exists a a G £ m with m > 0 such that p appears in rhs(g,er). 
We say that p is accessible from q if q p holds. The dttr T is called connected 
if every state in Q is accessible from q0. 

Note that the above concept of accessibility is derived from the concept of 
reachability of states of dtta's defined in [GecSte2] on pages 41-42. 

Propositon 2.4 For any dttr T = (Q,H,H,qo,R), an equivalent connected dttr 
TCon — (<?', £> A, qo, R1) can be constructed effectively such that Q' C Q and R' C 
R. Moreover, if T is normalized, then Tcon is also normalized. 

Proof. The set of accessible states can be determined in the following way. 
Define a sequence Q<°) C QW C . . . of subsets of Q, where 

(i) Q ( 0 ) = {9o} and, 

(ii) for i > 0, Q<i+1) = Q ( i ) U {9 G Q | 3m > l,cr € E m , p € Q ( i ) : q occurs in 
rhs(p, a)} . 

Clearly, there is a k > 0 such that QW = Q(k+j\ for every j > 1. 
Let Q' = QW and R! = {G(<J(XI,... ,xm)) ->• «7(91(11),... ,qm{xm)) G R\q,qi, 

• • •, qm G Q{k)}- It is easy to show that L{Tcon) = L(T). 
Note that the construction of Q1 is derived from the procedure computing HK'S 

in [GecSte2] on page 43. 
It is not hard to show that if T is normalized, then Tcon is also normalized. • 
By Proposition 2.4, if T is a normalized dttr, then Tcon is also normalized. 

However, the converse is not true, i.e. if T is a connected dttr, then Tnor is 
not necessarily connected. To see this, consider the following example. Let 
T = ({qo,quq2},X,Z,qo,R), where S = {<7<2\#(°)} and R = {«bMn.a*)) -> 
0-(<?i(a;i),<72(2:2)), <7o(#) # , 9 i (# ) #}• Clearly, T is a connected dttr, but 
Tnor = ( {9o,9i} ,S,S,9o, (<?o(#) # , 5 i (#) -> # } ) is not connected, because qi 
is not an accessible state in Tnor. 

If we refer to the construction of the normalized and connected equivalent dttr 
Tnor,con of a dttr T in the sequel, then we always mean that Tnor should be deter-
mined first from T as defined in the proof of Proposition 2.3 and Tnor.iCon should 
be computed from Tnor as specified in the proof of Proposition 2.4. 

A dttr T is said to be minimal if, for every dttr T' such that T' is equivalent to 
T, |Q| < |Q'| holds, where Q and Q' are the sets of states of T and T', respectively 
(cf. minimal dtta on page 38 in [GecSte2]). 

Let T = (Q,T,,T,,q0,R) and T' = (Q1, E, S, q'0, R') be dttr's. We say that 
T and T' are isomorphic if there exists a bijection v : Q —• Q' such that 
i/(q0) = qg holds and, for any m > 0, a G £ m , and states q,qi, • • • ,qm G Q, 
the rule q(a(xi,... ,xm)) a(qx(xi),... ,qm(xm)) is in R if and only if the rule 
i/(q)(a(x 1 , . . . ,xm)) a(p(qi)(xi),..., v{qm){xm)) is in R'. In this case v is also 
called a dttr isomorphism (cf. dtta isomorphism on page 39 in [GecSte2]). Note 
that if T and T' are isomorphic, then clearly \Q\ = |Q'| and they are equivalent. 
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We say that a minimal dttr T is unique up to the isomorphism if, for each 
minimal dttr T" equivalent t o T , T' and T are isomorphic. 

The following result is derived from Theorem 8 in [GecSte2]. 

Propositon 2.5 For any dttr T, there exists an equivalent minimal dttr Tmin. 
Moreover, it is unique up to isomorphism and can effectively be constructed. 

We also present the construction of the minimal dttr. We note that the following 
construction is derived from the construction of reduced dtta presented in [GecSte2] 
on page 43. 

Construction 2.6 Let T — (Q, £, go, R) be a dttr. By Propositions 2.3 and 2-4, 
we can assume without loss of generality that T is normalized and connected (if it 
is not, then consider Tnorcon instead ofT). We define a sequence ... of 
equivalence relations over Q, where 

(i) q =o p if and only if, for every a £ So, g(c) -> a £ R holds if and only if 
p(a) —>• a £ R and, 

(ii) for i > 0, q =»+i p if and only if q =i p and, for every a £ T,m with 
m > 0, either both q and p are not defined on a, or both q(a(x\,..., xm)) —> 

• • • ,Qm{xm)) and p(cr(xi,... ,xm)) (?(pi(xi),... ,pm(xm)) are in 
R and then qj =i Pj holds, for each 1 < j < m. 

Clearly, there is a k > 0 such that and =k+j are the same, for every j > 1. The 
minimal dttr equivalent to T is defined as Tmin = (Q', [go]=i., R'), where 

• Q' = {[g]=fc | q £ Q) and 

• [q]=k{cr{x 1,...,xm)) a([qi]=k ( x i ) , . . . , [qm]=k (xm)) £ R' if and only if 
q{a{x1,... ,xm)) <r(qi(xi),...,qm(xm)) € R, for any rn > 0, a £ S m , 
and q,qi,... ,qm € Q. 

The proof of Proposition 2.5 is rather long, technical and needs new concepts to 
introduce (e.g. dttr congruence, quotient dttr, etc.). However, it is an easy exercise 
to present it if one follows the proof of Theorem 8 in [GecSte2] step by step. Hence 
we omit the proof here. 

However, we note that, proving Proposition 2.5 on the basis of [GecSte2], it 
should be considered that, in contrast with a dtta, a state of a dttr is not necessarily 
defined for all input symbols (cf. definitions of =¿+1 in (ii) of Construction 2.6 and 
Pk+1 in (ii) in [GecSte2] on page 43). 

2.6 Recognizability of domain and range tree languages of 
deterministic top-down tree transformations 

Recall that a dttr is also an rl-dt tree transducer, hence DREC C dom(rZ-DT) 
holds. On the other hand, the following statement shows that doin(DT) C DREC. 
The original statement can be found as Lemma 5 in [FiilVag] (this result also 
appears in [Eng2]), although it is slightly modified here for our purposes. 
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Propositon 2.7 For any dt tree transducer T = (Q, E, A, go, R), there exists a 
connected dttr T" = (Q', E, E, {go}, -R') such that L(T') = dom(Tr). 

Proof. We define a sequence Q ^ C Q ^ C . . . of subsets of pow(Q) and a 
sequence R^ C R^ C . . . of finite sets of rules of the form P(cr(x\,..., xm)) -» 
a(Px(xi),.. .,Pm(xm)), where m > 0, a € E m , P,P1? ...,PmCQ. 

(i) Put P0 = {g0}. Let Q^ = {F0} U {rst(q0,cr,j) | m > 1, a £ Emj 1 < j < 
m, go is defined on a in R}. Moreover, let R = {PQ(a(xi,... ,xm)) —> 
a(rst(g0,a, 1)(xj) , . . . ,rst(g0 ,<r,m)(xm)) \ m > 0, a £ E m , g0 is defined on a 
in R}. 

(ii) Let k > 0. For any P G Q^ and a 6 E, we say that P is defined on a if, for 
each q £ P, q is defined on a in R and in this case if a £ E m with m > 1, 
we put Sp,a,j — U9ep rst(<7; ff>j)i f° r every 1 < j < m. Specially, P = 0 is 
defined for all a £ E and if a £ £ m with m > 1, then SQ^J = 0, for each 
1 < j < m. 
Now let = Q(fc) U {SP,aj | m > 1, a £ £m, 1 < j < m, P £ 
P is defined on a}. Moreover, let = RW J {P{a{xi,...,xm)) ->• 
v(Sp,a,i(zi), • • •, Sp,a,m{xm)) ) m > 0, a £ E m , P £ P is defined on 
a}. Specially, if 0 £ Q{k\ then 0(cr( xi,...,xm)) -> cr(0(x1), . . . , 0(xm)) £ 
R(k+1\ for every m > 0 and a £ E m . 

Clearly, there exists a k > 0 such that Q(fc+1) = Q(k\ and then = Q(fc+2) = 
. . . and = i?<fc+2) = . . . hold. Let Q' = and R' = i?(fc+1». It is an 
exercise to show that T' is exactly the connected version of the dttr defined in the 
proof of Lemma 5 in [FiilVag]. • 

Observe that if T is linear, then Q' in the proof of Proposition 2.7 consists of 
sets containing at most one element. Moreover, if 0 £ Q', then it is a universal 
state of X". 

We have dom(rZ-DT) = dom(Z-DT) = dom(£»T) = DREC. On the other hand, 
by (2) of Theorem 4.3 in [DanFiill], dom(sl-DT) c DREC holds. 

As for the ranges of various types of dt tree transformation classes, we recall the 
following results. It is well-known and easy to prove that range(DT') £ REC. On 
the other hand, by Corollary 6.6 of Chapter IV in [GedStel], range{l-DT) C REC 
holds. We note that even the equality can be proved, although this result has not 
been published yet, to our best knowledge. The equality is shown in Section 4. 

3 On domain of sl-DT 
In this section we give a characterization of the class dom (sl-DT). Moreover, we 
show that, for any L £ DREC, it is decidable whether L £ dom(s/-i?T) holds and 
we present a decision procedure. 

Let T = (Q, E, E, go, R) be a dttr. We say that T is a semi-universal deter-
ministic top-down tree recognizer (su-dttr), if the following condition holds. For 
any rn > 1, a £ E m , and two different states q,p £ Q, if q(a(xi,... ,xm)) —> 
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cr(qi(xi),... ,qm{xm)) and p(er(xi,... ,xm)) a(pi(xi),... , p m ( x m ) ) are in R, 
then, for each 1 < i < m, at least one of qi and pi is universal. We denote by 
su-DREC the class of tree languages recognized by su-dttr's. 

First we show that dom (sl -DT) and su-DREC are equal classes. 

Lemma 3.1 For any si-dt tree transducer X = (Q, E, A, q0, R), dom{rr) is recog-
nized by an su-dttr. 

Proof. Let the dttr T' = (Q', E, E, {<7o}, R') be constructed from X as defined 
in the proof of Proposition 2.7, then L(T') = dom(fr) . We show that T" is su-dttr. 

Since X is linear, the.sets in Q' contain at most one element. Observe that, for 
any m > 1, a G £ m , and q 6 Q, if {Q}(<T(XI, . . . . , x m ) ) a{Pi{xx),... ,Pm{xm)) 
is in R', then q(a(xi,... ,xm)) —> (a^ii• • •, inC^O] G R, for some 0 < n < m 
and t 6 TA,«- Moreover, for each 1 < j < m, if j = ik, for some 1 < k < n, then 
Pj = and Pj — 0 otherwise. Note that, since T is linear, the iks are different. 

Now suppose that, for some m > 1, a € E m and two different states q,p G 
Q, {q}(a{x!,... ,xm)) a{Pq> i(xi),... ,Pq>m(xm)) and {p}(<r(xi , . . . , x m ) ) 
a(PPti(xi),... ,PP!m(xm)) are in R'. Then, by the above observations, there 
exist rules q(a(x i , . . . , xm)) i[gi (xh),..., qn(xin)] and p(a(x x,..., xm)) 
s[pi(a:f/) , . . . ,pn ' (®i ' , )] in R> f°r some 0 < n,n ' < rn, t G Ta,u, and s G TA,n ' , 
where, for each 1 < j < m, if j — ik, for some 1 < k < n, then Pqj = {qk}, else 
Pqj = 0. Moreover, if j = i'k, for some 1 < k < n', then Ppj — {pk}, and Ppj — 0 
otherwise. 

Since T is superlinear, { ¿ i , . . . ,in} D {i[,... ,i'n,} = 0, hence we have that, for 
each 1 < j < m, at least one of Pqj and Ppj is 0. We saw that if 0 G Q', then it is 
necessarily a universal state, hence T" is su-dttr. • 

Lemma 3.2 For any L G su-DREC, there exists an sl-dt tree transducer T' such 
that dom(TT') = L. 

Proof. If L G su-DREC, then it is recognized by an su-dttr T — 
(Q,T,,T,,q0,R). For every m > 0, cr G £ m , q G Q, and q(a(xi,... ,xm)) 
a{qi{xi),... ,qrn(xm)) G R, consider the set { ¿ i , . . . , i n } C { l , . . . , m } of indices, 
where i\ < ... <in and, for any 1 < j < rri, j G { ¿ i , . . . ,in} holds if and only if qj 
is not a universal state. Then let aq be a new symbol having the rank n and define 
the rule r9iCT : q(a{x i,... ,xm)) Uqiq^ix^),..., qin ( x j j ) . 

Let X" = (Q, T,,A,q0,R') be a dt transducer, where 

• A = {aq | q is defined on a in R} and 

• R' = {rqta | q is defined on a in R}. 
We show that X" is superlinear. Obviously, it is linear. Let q,p G Q be 

two different states. Suppose that q(a(xi,... ,xm)) —> crq(qi(xil),... ,qk{xik)) and 
p(cr(xi,... ,xm)) —> apipiixj^,... ,pi{xjt)) are in R, for some m > 0, 0 < k,l < m 
and a G E m . Then, by the construction of X', { q ^ , . . . ,qik} and {q^,..., qj,} are 
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the sets of non-universal states of rhs(g, a) and rhs(p, a) in T, respectively. Since 
T is su-dttr, { ¿ i , . . . ,ik} H { j i , . . . , ji} = 0 holds. Therefore T' is superlinear. 

Finally, we show that, for any tree t £ T j and state q £ Q, q(t) t holds if 
and only if q(t) £', for some t' £ TA- This implies dom(Tx) = L immediately. 
We prove the statement by induction on height(i). 

Basis. Suppose that height(i) = 0, then t = S, for some <5 6 So- By the 
definition of T1, q(S) —> 6q £ R' if and only if q(6) S £ R, hence the statement 
holds by t' = 6q. 

Induction step. Suppose that height(í) = n + 1 with n > 0, then t = 
cr(t\,... ,tm), for some m > 1, a £ £ m , and t\,... ,tm £ Te, where height(í¿) < n, 
for each 1 < i < m. Recall that q(a(xi,...,xm)) -»• ( z ¿ 1 ) , . . . , qtn (xin)) £ R' 
if and only if q(a(xi,...,xm)) a(qi ( x j ) , . . . , qm{xm)) £ R, where qh , . . . , qin 

are exactly the non-universal states of rhs(<7, a) in T. Furthermore, by the in-
duction hypothesis, for each j £ {ii,... ,in}, qj(tj) tj holds if and only if 
qj{tj) t'j' f° r s o m e tj S TA- Hence q(t) " " (^ ( i i ) , . . . ,qm(tm)) t if and 
only if q(t) T- aq{qh (í¿1 ),•••, 9¿„(í¿J) t', where t' = aq(t'h ,..., t'in). • 

Summarizing the results of the above two lemmas, we have that the domain 
tree languages of sl-dt tree transformations are exactly those tree languages, which 
are recognized by su-dttr's. 

Theorem 3.3 dom{sl-DT) = su-DREC 

In the rest of the section we show that, for any L £ DREC given by a dttr 
recognizing L, it is decidable whether L £ dom (sl -DT) holds. Moreover, we present 
a decision procedure. 

Recall that, for a dttr T, Tnor and Tcon denote the normalized and connected 
equivalents of T, according to Propositions 2.3 and 2.4, respectively. Moreover, if T 
is normalized and connected, then Tmin is the minimal equivalent of T, according 
to Proposition 2.5. 

Lemma 3.4 Let T = (Q, £, £, q0, R) be an su-dttr, then Tnor and Tcon are su-
dttr's, too. Moreover, if T is normalized and connected, then Tmin is also an 
su-dttr. 

Proof. By Proposition 2.3, Tnor = {Q', £, £, q0, R'), where Q' C Q and R' C R 
hold. Hence it should be clear that if T is su-dttr, then Tnor is also su-dttr. 

Similarly, by Proposition 2.4, Tcon = (Q", £, £, q0, R"), where Q" C Q and 
R" C R. Therefore if T is su-dttr, then Tcon is necessarily su-dttr, too. 

Now suppose that T is a normalized and connected su-dttr. Denote by = the 
equivalence relation, by which Tmt-n is constructed from T (see Construction 2.6). 
Recall that Tmin = {Qm, £, £, [q0}=, # " ' ) , where R'" = { [g ]=(a(x i , . . . ,a : m ) ) 
ct([qi]=(xi ) , . . . , [<7m]=(xm)) I q{(r(x1,... ,xm)) a{qi(xi),..., qm(xm)) £ fi} and 
Q'" = {Ms I <7 e Q}. 

It can be easily shown that, if T has universal states, then they constitute 
exactly one class of Q with respect to = . Moreover, if this class exists, then it 
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is the only universal state in Tmin . By the construction of =, the proofs of these 
statements are straightforward. 

Suppose that the states q,p £ Q are in different classes with respect to = , 
that is [g]= [p]=. If, for some a £ £ m with m > 1, both [q}= and [p]= 
are defined on a in R'", then the ([?]=,er)-rule and the ([p]=,a)-rule of R'" can 
be written of the form [<j]=(a(a;i,... ,xm)) o-([ii]=(a:i),..., [<7m]=(xm)) and 
¡p]=(^(xi,---,xm)) cj([pi]=(xi),.. . , [p m ]= ( i m ) ) , respectively, where qu.. ,,qm, 
Pi, -,Pm 6 Q and the rules q{a(xlt... ,xm)) o(qi(xi),... ,qm(xm)) and 
p(cr(xi,... ,xm)) a (p i (x i ) , . . . ,pm(xm)) are in R. Since T is su-dttr, then, for 
any 1 < i < m, at least one of qi and Pi is universal in T. Thus, by the observa-
tions of the previous paragraph, at least one of [</{]= and {pi\= is universal in Tmin. 
Therefore Tm jn is su-dttr, too. • 

We recall from Proposition 2.5 that, for any L G DREC, the minimal dttr 
recognizing L is unique up to isomorphism. Denote this dttr by T/,. The following 
theorem establishes our decidability result. 

Lemma 3.5 For any tree language L £ DREC, L £ su-DREC if and only if TL 
is su-dttr. 

Proof. If TL is su-dttr, then L £ su-DREC by definition. Conversely, suppose 
L £ su-DREC, then there exists an su-dttr T such that L(T) = L. By Propositions 
2.3, 2.4 and 2.5, TL can be computed from T and, by Lemma 3.4, it is su-dttr, too. • 

Theorem 3.6 For any tree language L £ DREC given by a dttr T recognizing L, 
it-is decidable whether L 6 dom(sl-DT) holds. 

Proof. By Propositions 2.3, 2.4 and 2.5, TL can be constructed effectively from 
T. Moreover, it is obviously decidable whether TL is su-dttr. Hence, by Lemma 
3.5 and Theorem 3.3, the statement of the theorem holds. • 

Finally, we present an algorithm, which, for any tree language L £ DREC given 
by a dttr recognizing L, decides whether L £ dom(sl-DT) holds. The method is 
based on the proof of the Theorem 3.6. 

Let L be an arbitrary deterministic recognizable tree language and let T ' 1 ' be 
a dttr, which recognizes L. The algorithm gives the answer YES if L can be the 
domain of a superlinear deterministic top-down tree transformation, otherwise it 
answers NO. 

1. Compute TnX as defined in the proof of the Proposition 2.3. Denote TnX by 
T(2). 

2. Compute Tcon as defined in the proof of the Proposition 2.4. Denote Tcon by 
T O ) . 

3. Construct T^Jn as determined in Construction 2.6. Denote T^}n by TL. 
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4. Decide whether Ti is semi-universal. (It is trivially decidable, e.g., check all 
rule pairs, which concern the same input symbol.) If it is, then the answer is 
YES, else the answer is NO. 

4 On range of sl-DT 

In this section we prove range{sl-DT) = REC. Furthermore, as a by-product, we 
get range(l-DT) = REC, too. 

Assume that L £ REC, then there exists a ttr T = (Q,T,,H,q0,R) satisfying 
L(T) = L. We define the ranked alphabet A such that, for each m > 0, we put 

Am = {&q,qi ,...,(jm I ® G Em> q(<r(xi,- • • , z m ) ) 0-(<?i(a:i),.. -,qm( xm)) € R}. 

Let T' = (Q, A, £ , qo, R') be a dt tree transducer, where 

R' = {q{aq,qii...,qm{xx,... ,xm)) a{qi(xi),... ,qm{xm)) \ (rq,Ql € A } . 

Observe that T' is an rl-sl-dt tree transducer. 

Lemma 4.1 For any tree t £ T-% and state q € Q, q(t) t if and only if 
q{t') t holds, for some t' 6 T&. 

Proof. First assume q(t) t. We show the existence of the above t' by 
induction on height(i). 

Basis. Suppose that height(i) = 0, then t = S, for some <5 £ E 0 , and then 
q(t) t implies q(S) —• S £ R. By the construction of T', Sq £ Ao and q(Sq) 
5 £ R', hence q(t') * holds, for t' = Sq. 

Induction step. Suppose that height(i) = n + 1 with n > 0, then t = 
a(ti,..., tm), for some m > 1, a £ £TO, and tx,..., tm £ Tz, where height(ii) < n, 
for all 1 < i < m. Since q(t) t, there should be a rule q(a(x\,... ,xm)) 
cr(qi(xi),... ,qm(xm)) in R, where qi{ti) holds, for each 1 < i < m. By 
the construction of T', <rq,qi,...,qm £ A and the rule q(crq,qi,...,qm(xi,...,xm)) —> 
&{qi{xi),... ,qm{xm)) is in R. Moreover, by the induction hypothesis, there ex-
ist trees t'1,...,t'm £ TA such that qi{t\) f° r all 1 < i < m. Let 
t' = CT?i9l,...;,m(ii,...,i'm), then we have q(t') =>T< o{qi{t'i), • • •, Qm(t'm)) =>*T, 
a(ti,..., tm) = t. 

Now suppose that there exists a tree t' £ TA satisfying q(t') t. We prove 
q(t) t also by induction on height(i). Recall that, since T' is relabeling, 
height (i') = height(i) necessarily holds. 

Basis. Suppose that height(i) = 0. Then t = S, for some 5 € Eo- By the 
construction of T", t' = 6q £ A 0 and q(Sq) 8 € R', hence q(6) 6 £ R. 
Therefore, q(t) t holds. 

Induction step. Let n > 0. Suppose that height(t) = n + 1, then t = 
a(t\,... ,tm), for some m > 1, a £ £ m , and t\,... ,tm £ where height(ii) < n 
holds for all 1 < i < m. By the construction of T', for some qi,...,qm € Q 
and t ; , . . . , ^ € TA, t' = aq,qi qm{t[,... ,t'm) and q{<Tq,qi,...,qm(x i , . . . , z m ) ) -»• 
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&(qi{xi), • • • ,9m(sm)) € R hold. Moreover gj(íj) =>7, íj, for each 1 < i < m. Hence 
q(a(xi, . . . , x m ) ) í j (gi(xi) , . . . ,gm (xm ) ) G R and. by the induction hypothesis, 
9i(íi) =>T t i ; for all 1 < i < m. Therefore, we have q(t) =>T c(<7i(ii), • • • ,qm(tm)) 

a{tu ... ,tm) = t. • 

Lemma 4.1 implies that, for any tree í 6 T j , q0(t) í holds if and only if 
there exists a tree t' G 7A satisfying qo(t') t. Hence í G L(T) if and only if t e 
range(T7")- Since L was arbitrary and T' is rl-sl-dt tree transducer, it follows that 
REC C range(s/-£>T). On the other hand, range(sM»T) C range(l-DT) obviously 
holds and, by Corollary 6.6 of Chapter IV in [GécStel], range{l-DT) C REC, thus 
we have the following result. 

Theorem 4.2 range{sl-DT) = range(l-DT) = REC 

5 Concluding remarks 
In this paper we have considered the domain and range tree languages of superlinear 
deterministic top-down tree transformations. Our main results are as follows. 

1. The class dom(s/-£>T) is exactly su-DREC, i.e. the subclass of DREC con-
sisting of that tree languages, which are recognized by semi-universal deter-
ministic top-down tree recognizers. 

2. For any deterministic recognizable tree language L, it is decidable whether 
L is in dom(sl-DT). Namely, L is in dom(sl-DT) if and only if the minimal 
dttr recognizing L is an su-dttr. Moreover, a decision procedure is given. 

3. The class range(sZ-LT) is exactly REC, that is the class of all recognizable 
tree languages. 

Finally, we recall that, by (1) of Theorem 4.3 in [DánFüll], the hierarchy 
dom(sl-DT) C dom {sl-DT2) C . . . is proper and, for any n > 1, dom (sl-DTn) C 
DREC holds, where sl-DTn is the n-fold composition of sl-DT. Hence, for 
n > 2, the characterization of. the class dom(sl-DTn) arid the decidability of 
L G dom(sl-DTn) with L G DREC may be a topic of further research. 

Acknowledgement. The author is grateful to Zoltán Fülöp for his valuable 
suggestions regarding the result of Section 4. 
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