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Abstract 

A Petri net is called (n, m)-transition restricted if its weight function takes 
values in { 0 , 1 } and 1 < |*£| < n and 1 < |i*| < m for all transitions t. Using 
the results from [6] it has been proved ([13]) that any A-labelled Petri net is 
equivalent to a A-labelled (2, 2)-transition restricted Petri net, with respect 
to the finite transition sequence behaviour. This one may be considered as 
a normal form of Petri nets, called the super-normal form of Petri nets, and 
the question is whether it preserves or not the partial words and processes 
of Petri nets ([13]). In this paper we show that the answer to this question 
is positive for partial words and negative for processes. Then some infinite 
hierarchies of families of partial languages generated by (labelled) (n, m) -
transition restricted Petri nets, are obtained. 

1 Introduction and Preliminaries 

A Petri net is a formalism that has been used intensively to model parallel com-
putations ([9], [10]). Since the problems surrounding general Petri nets seem to 
be very difficult to analyze, it is sometimes necessary to narrow the scope of the 
investigation to subclasses of Petri nets. If such a subclass does not limit, in a 
precisely specified sense, the entire class of Petri nets then we say that the Petri 
nets in that subclass are in a certain normal form. For example, J.L. Peterson 
([8]) considered the so-called standard normal form which preserves the sequential 
behaviour of Petri nets, and S. Crespi-Reghizzi and D. Mandrioli ([3]) considered 
the semibounded normal form which preserves the reachability. Another normal 
form, used to obtain logical characterizations of Petri nets ([5], [7]), was considered 
by E. Pelz in 1990 [6]. A Petri net in this normal form is called normalized and 
it is characterized by the fact that the weight function and the initial and final 
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markings take values in {0 ,1} . It was shown that for any labelled Petri net 7 one 
can effectively construct a normalized labelled Petri net 7 ' such that 7 and 7 ' have 
the same processes up to ah isomorphism. As a result, the normalization preserves 
the finite and infinite transition sequence behaviour, step behaviour, and partial 
word behaviour ([6]). 

In [12] a systematic investigation of graph theoretic properties of Petri nets 
within the framework of language theory was initiated. In other words, various 
subclasses of Petri nets were introduced by imposing various restrictions on the in-
and out- degree of nodes in the graph of the underlying net structure. Further these 
restrictions were refined with respect to transitions ([13]) by considering (n,m)-
transition restricted Petri nets as being Petri nets for which the weight function 
takes values in {0 ,1} and 1 < |*i| < n and 1 < |i*| < m for all transitions t. Thus, 
interesting hierarchies of Petri net languages were obtained, and in the case of A-
labelled Petri nets, the Pelz's normal form was improved with respect to the finite 
transition sequence behaviour. More precisely, it was shown that every A-labelled 
Petri net is equivalent to a normalized and (2,2)-transition restricted net (with 
respect to the finite transition sequence behaviour). 

A very natural question is whether this new normal form, called the super-
normal form, preserves or not the partial words and processes of Petri nets. In 
this paper we show that the answer is positive for partial words and negative for 
processes. Therefore, whenever we deal with sequential or partial languages of 
A-labelled Petri nets we may freely use normalized and (2,2)-transition restricted 
nets which could lead to simpler proofs and easiness of manipulation of complex 
structures. Then we turn our attention to labelled (n, m)-transition restricted Petri 
nets and we show that the families of partial languages (generated by such nets) 
form infinite hierarchies both with respect to n and to m. 

. First of all let us fix the terminology and notation that will be used in our paper 
(for details concerning Petri nets and processes the reader is referred to [1], [2], [7], 
[9], [10], [1.1]). The empty set is denoted by 0, and denotes the cardinality of 
the finite set A. A C B denotes the inclusion of the set A in the set B. The set 
of nonnegative integers is denoted by N. A (finite) P/T-net, abbreviated PTN, 
is a 4-tuple £ = (S,T ,F , W) where 5 and T are two finite non-empty sets (of 
places and transitions, resp.), 5 n T = 0, F C (5 x T) U (T x S) is the flow 
relation and W : (S x T) U (T x S) —> N is the weight function of £ verifying 
W(x,y) = 0 iff (x,y) fi F. A marking of £ is any function M : S —> N; it will 
sometimes be identified with a vector M £ NISI.' The operations and relations on 
vectors are componentwise defined. For x £ S U T we set 'x = {y\{y, x) £ F} and 
x' = {y|(a;,2/) £ F}. If t is a transition of £ then £ t will denote the subnet (ofT,) 
generated by t (i.e. £t contains only the transition t and all the places s £ *t U i*; 
the arcs between t and places are those from •£, with their weights). The Petri nets 
that will be considered in this paper are without isolated places or transition, that 
is for any x £ S U T the set 'x U x' is non-empty. 

A marked PTN, abbreviated. mPTN, is a pair 7 = ( £ , M 0 ) , where £ is a 
PTN and Mo, the initial marking of 7 , is a marking of £ . An mPTN with final 
markings, abbreviated mPTNf, is a 3-tuple 7 = (£,MQ , M), where the first two 
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components form an mPTN and M, the set of final markings of 7 , is a finite 
set of markings of E. A labelled mPTN (mPTNf, resp.), abbreviated ImPTN 
(ImPTNf, resp.), is a 3-tuple (4-tuple, resp.) 7 = (E ,MQ ,l) (7 = (E, M0, M, I), 
resp.) where the first two (three, resp.) components form an mPTN (mPTMf, 
resp.) and I, the labelling function of 7 , assigns to each transition a letter. A 
A-labelled mPTN (mPTNf, resp.), abbreviated lxmPTN (lxmPTNf, resp.), is 
defined as an ImPTN (ImPTMf, resp.) with the difference that the labelling 
function, called now the A-labelling function of 7 , assigns to each transition either 
a letter or the empty word A. In the sequel we shall often use the term "Petri 
net" or "net" whenever we refer to a structure 7 defined as above. In all the above 
definitions E is called the underlying net of 7 . A marking (place, transition, arc, 
weight, resp.) of a net 7 is any marking (place, transition, arc, weight, resp.) of the 
underlying net of 7. Pictorially, a net 7 is represented by a graph. Then the places 
are denoted by circles and transitions by boxes; the flow relation is represented by 
arcs. The arc / G F is labelled by W(f) whenever W(f) > 1. The initial marking 
Mo is presented by putting MQ(S) tokens into the circle representing the place s. 
The labelling function is denoted by placing letters into the boxes representing 
transitions and the final markings are explicitly listed. 

Let 7 be a net, M a marking and t a transition. We say'that t is enabled 
at M, denoted M[i)7 , if M(s)<> W(s,t) for all s G 5. If t is enabled at M 
then t may occur yielding a new marking M', abbreviated M[t)7M', given by 
M'{s) = M(s) - W(s,t) + W(t, s) for all s G S. The notation "[•)-/' will be 
simplified to "[•)" whenever 7 is understood from the context. 

The concurrent behaviour of Petri nets is well-expressed by the notion of a 
process. Generally speaking, processes of Petri nets are obtained by running the 
nets and solving conflicts in an arbitrary fashion as and when they arise. A process 
of a net is also a net; these nets are called occurrence nets and they are classical 
nets N = (B, E, R) (R is the flow relation and the weights of arcs are 1) satisfying: 

(i) |'6| < 1 and |6*| < 1, for all b G B\ 

(ii) R+ is acyclic, i.e. for all x,y G B U E if (x,y) G R+ then ( y , x ) £ R+. 

Usually the elements of B are called conditions whereas the elements of E are 
called events. If N is an occurrence net we define its final cut as being the set 
№ = {b e B||6*| = 0}; the partially ordered set induced by TV is (B U E,<N), 
where -<N= R+. In defining processes we will use labelled occurrence nets which are 
couples (N,p) , where N is a occurrence net and p is a total function from B\JE into 
an alphabet V. For a Petri net E = (5, T, F, W) and a labelled occurrence net (N,p ) 
such that p is a function from Bl>E into S U T satisfying p(B) C 5 and p(E) C T, 
define the marking induced by № in E as being Mjv°(s) = |{i> G №\p(b) = s}|, for 
all s G S. In what follows we adopt the inductive definition of processes ([2]). Let 
7 = (E, M0) be an mPTN. Define inductively the sets J^o' Oi> • • • by: 

- Ho contains only couples (N,p), where N = ( S , 0 , 0 ) , |B| = £ s 6 S 

and for each s G S, B contains Mo ( s ) distinct conditions b with p(b) — s (this 
defines p as well); 
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- suppose Hi, i > has already been constructed. For each IT = ( N , p ) G ]~[i! 

N = (B,E,R), and each t £ T such that M^o[t), we define a new labelled 
occurrence net TT' = (N',p' ) , N' = (B',E',R'), as follows: 

(a) B', E' and R' will contain B, E and respectively, i?; 

(b) for each x G B U E, p'(x) = p(x)\ 

(c) supplimentary, we add to N a new event e with p'(e) = t. For each 
s G S with W{s,t) > 0 we choose (from №) W(s,t) distinct conditions 
b labelled by s (p(b) = s) and we add the arcs (b, e) to R' for each such 
b. Similarly, for each s G S with W( f , s ) > 0 we add (to N) W(t,s) 
distinct conditions b labelled by s (p'(b) = s); the arcs (b, e), for each 
such b, are also added; 

(we shall sometimes write IT IT'). Finally, consider n»+i a s being the set 
of all the labelled occurrence nets defined as above. 

Now, a process of 7 is any element IT of Uj>o n*- ^ c l e a r that for any such TT 
there is at least a sequence TTQ,ITI, ... ,IRM = TT with ITI G n* a n d 7ri+1 m a y be 
constructed from 7Tj as described above, for all 0 < i < m — 1. This sequence is 
called an inductive definition of TT. AS we can see events without pre-conditions 
or post-conditions are allowed too. In order to obtain processes of A-labelled nets 
7 = (E, Mo, I) what we have to do is to consider each process TT = (N,P ) of (E, Mo) 
and to replace the function p by p', where p'(x) = p(x) for all the conditions x, 
and p'{x) = (I o p){x) for all the events x\ that is, the events will be labelled by 
I o p. Processes of labelled nets with final markings 7 = (E, M0,l, M) are defined 
as being those processes TT of (E, M0,1) such that M , . G M. 

To compare concurrent behaviour of nets we will use the process and partial word 
equivalence. Two processes TT = (N,p ) and TT' = (N',p' ) (not necessary of the same 
net) are isomorphic, abbreviated -TT = TT', if there is a bijection / : BUE —> B'uE' 
such that: 

(1) p(x) = p'(f(x)) for all x G E, and 
p\x) = p'(f {x)) whenever x G B and p{x) G 5 n S' or p'(f{x)) G S n 5 ' ; 

(2) x ^ y iff f(x) f(y) for all x,y 6 B U E. 

If 7 and 7 ' are two nets such that for any process TT of 7 there is a process IT' of 7 ' 
such that TT = TT' , and conversely, we say that 7 and 7 ' are process equivalent. 

Partial words are obtained in a similar way to processes by recording only the 
events which are not labelled by A. Let TT = (N,P ) be a process of a A-labelled Petri 
net 7 . An abstraction of TT is any labelled partially ordered set (E' ,A ,p ' ) , where: 

- E' = {e G E\p{e) # A} and p' =p\E'\ 

- (e, e') G A iff there is a path in IT leading from e to e'. 
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The equivalence class with respect to isomorphism induced by (E', A+ ,p'), denoted 
PW(ir), is called the partial word associated to TT. The set of all partial words of 
7, denoted PWL{pf), is called the partial language of 7. Two nets with the same 
partial languages are called partial word equivalent. 

For finite (infinite) transition sequence behaviour and step behaviour of Petri 
nets the reader is referred to [4], [6], [9], [14], [15]; the languages generated under 
these behaviours are called finite (infinite) sequential languages and step languages. 

2 Normalization of A-labelled Petri Nets 
The notion of a normalized Petri net plays an important role in Petri net theory 
([6], [7]). A Petri net is normalized if the weight function and the initial and 
final markings take values in {0,1}. E. Pelz developed in 1990 an algorithm for 
normalizing labelled Petri nets (with or without final markings) by preserving their 
processes. That is, for any labelled Petri net 7 one can effectively compute a 
normalized labelled Petri net 7' such that 7 and 7' are process equivalent. The 
Pelz's algorithm for normalizing Petri nets can be applied to A-labelled Petri nets 
as well (the label A is treated liké any other label). So we can formulate the Pelz's 
result in a more general way, that is: 

Theorem 2.1 (E. Pelz, 1990) 
Let 7 be a X-labelled Petri net (with or without final markings). Then a normalized 
X-labelled Petri net 7' can be effectively constructed such that 7 and 7' have the 
same processes up to an isomorphism. Consequently, these two nets will have the 
same partial languages, step languages,, and (finite or infinite) sequential languages. 

We recall now a few notations and results concerning transition restricted Petri 
nets. A Petri net 7 is called (n,m)-transition restricted, where n and m are non-
zero natural numbers, if the range of the weight function is {0,1} and 1 < |*t| < n 
and 1 < |t*| < m for all transitions t of 7. In [13] it has been shown that any A-
labelled Petri net is equivalent to a (2,2)-transition restricted Petri net, with respect 
to the finite transition sequence behaviour. In what follows we show that this result 
can be extented to the partial word behaviour but not to process behaviour. Let 
7 be a A-labelled net. In the view of the Pelz's theorem we may assume that 7 is 
normalized. Now we have to do two basic transformations on 7. The first one is to 
eliminate the cases |*i| = 0 and |i*| = 0, and it is in fact the same as in [13]. 
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Transformation-A: Let 7 be a normalized net. The next procedure yields 
a normalized net 7 ' satisfying |*i| > 1 and |t*| > 1 for all transitions t. 
Moreover, 7 and 7 ' will have the same partial words. 

For any transition t of E such that |*f| = 0 or |i*| = 0 we replace the 
subnet Et by the net Et as follows: if E t is the net in Figure 2.1(a) 
(2.1(c), resp.) then Et is the net in Figure 2.1(b) (2.1(d), resp.). Let E' 

r — O 
t\a 

o 
(a) 

Si O "i 
g]t 

s . o — T 

(c) 

be the net thus obtained (for technical reasons we rename the transitions 
t of E' which have not been processed as above, by i'; thus, the set of 
transitions of E' is V = {t'\t € T A \'t\ > 1 A \t'\ > 1} U {t',t"\t 6 
T A (|*t| = 0 V |i'| = 0)}). For each M € N s we define the marking 
M' by: 

r M(s), if s £ 5 
M'(s) = < 1, if s = qt for some t 

\ 0, otherwise, 

for all places s of E', and let V be the labelling given by Z'(i') = l(t) 
and l'{t") = A for all t £ T (I being the labelling of 7). If 7 has 
final markings, M, then we add to (E', M'Qy I') the set of final markings 
M' = {M'\M£M}. Let 7 ' be the net obtained in this way. 

End of Transformation-A. 

(b) 

(e) 

Figure 2.1 
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It is clear that the net 7 ' yielded by Transformation-A is normalized and satisfies 
|V| > 1 and |f| > 1 for all transitions t. We show that: 

Theorem 2.2 Let 7 be a normalized net and 7 ' the net yielded by Transformation 
A applied to 7 . Then 7 and 7 ' are partial word equivalent. 

Proof Let 
, \ ei(ti) e2(t 2) en (tn) 
(,*,) TTO * 7Ti > ••• > 7Tn = 7T 

be an inductive definition of a process 7r of 7 . We will replace each by a sequence 
> • • • 1 Ttf' (1 - ^ - 2) of processes of 7 ' such that: 

(1) (TT*-)0 = (TTj)0 u Qi, where Qt is a set of cardinality |{i € T\\*t\ = 0 V |i*| = 
0}|, disjoint from (7Ti)°, and whose elements are one-to-one labelled from 
elements of the form qf, 

(2) PW(TTi) = PW{-Kkii). 

Therefore, we will obtain a sequence 

which is an inductive definition of a process TT' = ITof 7 ' and PW(IR) = PW(IR'). 
This will prove the inclusion PWL(7) C PWL(7') (if 7 has final markings and 
Mjr» is such a marking then M <̂> will be a final marking of 7') . 

First we remark that we can define -K}> such that (1) and (2) be satisfied because 
S C S'. Then, we set k0 = 1 and so (1) and (2) hold. 

Suppose the process has already been replaced by a sequence n f , . . . , 
(1 < ki < 2) of at most two processes of 7' , satisfying (1) and (2). For irl+\ we 
have to consider three cases: 
Case 1: ti+i has not been processed by Transformation-A. Since (1) holds for 
irki it follows that we may define a process nj+1 of 7 ' from and t'i+l. Moreover, 
we may define ir\+1 such that (7r|+1)° = (7ri+i)° U Qi (by setting *(ej+ 1) = *ei+1, 

(ei+I)" - E'+1, and PJ+1(I) = pki(x) for all A: € (e j+ 1 ) ' , where TT*' TT^). 
We set now ki+i = 1 and Qs+i = Qi, and it is easy to see that (1) and (2) are 
satisfied for • 
Case 2: |*ij+i| = 0. Since (1) holds for it follows that we may define a process 
7ij+1 of 7 ' from 7rtfci and t'-+1. Moreover, we will have (tt|+1)° = (tt,)0 U Q[ U { 6 } 
and PW{IX\+L) = PW(IRKI), where Q[ is a set with the same properties as Qi 
and b is a new condition (b £ (i"i)° U Q\) labelled by pt i+1. Define now a new 
process 7r?+1 from 7r|+1 and t'i+1 such that (7r?+1)° = (7ri+i)° U Q[ (by setting 
*(ei+i) = W * (e?+i)* = e*+1. and Pi+ i ( x ) = P»+i(x) for all a; € (ef+ 1)*, where 

e2 (t' ) 

7r*+1 ,+i—>+1 7r2+1). We set now fci+1 = 2 and Qi+i = Q\, and so (1) holds true for 
TT^J1. In order to show that (2) also holds for TT^1 it is sufficient to notice that 
any path b0,xi,bi,.. .,bk,xk+i 
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such that 60 6 (T^)°, p2i+1(bk) = qti+1 and p?+1(xk+i) = l'(t'i+1) (= / ( t i + 1 ) ) has the 
properties: 

(a ) p f + i ( b o ) = •••= p f + 1 ( b k - 1 ) = qti+i; 

(b) P?+i(zi) = ••• =Pl+i(zk) = A. 

Using the construction of t t ^ 1 it is now easy to show that (2) holds true for i r ^ 1 . 
Case 3 |i*i+i| = 0. This case is similar to the previous one: we have to define 
first TT}+1 from 7Ttfci and i-+ 1 and then 7r2+1 from 7rt-+1 and t"+1. 

Let us consider now the other inclusion. Let 
(* * * ) ^ _ > . •nl — > • • • — 7 T m — 7T 

be a process of 7' . The basic idea is to transform the sequence (* * *) into a 
(**)-like sequence. To do that we define first the next two elementary transfor-
mations (initially, all the transitions Xi £ T' which have not been processed by 
Transformation-A, that is no q- or p-like place is in *Xj U x*. are marked whereas 
the others are unmarked): 

• (T l ) determine the first i such that Xi is unmarked, is of the form t' for some 
t 6 T, and |*f| = 0. We rearrange the sequence (* * *) such that t is directly 
located after its unmarked matching pair Xj — t", j < i (it is easy to see 
that there is an unmarked matching pair t"; moreover, this rearrangement 
does not affect the process IT'). Mark XI and XJ and denote the result also by (* * *); 

• (T2) determine the first i such that Xi is unmarked, is of the form t' for some 
t € T, and |f*| = 0. We rearrange the sequence (* * *) such that t' is directly 
located before its unmarked matching pair xj = t", j > i (if there does not 
exist a matching pair t" for this transition t' we introduce one and apply it at 
TTj+i)- It is easy to see that we can do that and this rearrangement does not 
affect the process 7r'; mark X{ and x3 and denote the result also by ( * * * ) . 

Now, we apply these two transformations to the sequence (* * *) as long as they 
are possible and we obtain a new inductive definition of 7r'. Then we remove all the 
unmarked elemets of the form t" and we recompute all the processes. Finally, we 
get a (**)-like sequence defining a process IT" with the property that PW(TT") = 
PW(TT'). NOW we "pack" this sequence into a (*)-like sequence (this operation is 
in fact the reverse of that which permitted us the passing from (*) to (**))• The 
sequence obtained in this way defines a process IT of 7 such that PW(TT") = PW(TT) 
(the case of final markings is discussed as in the first part of the proof). 

The theorem is completely proved. • 

We want to point out that the structure in Figure 2.1(b) cannot be simplified to 
that in Figure 2.1(e) because in the first one the transition a can occur concurrently 
with itself but not in the second one. 
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Transformation-B: Let 7 be a normalized net satisfying |*ij > 1 and |/*| > 
1 for all transitions t. The next procedure yields a normalized and 
(2,2)-transition restricted net with the same partial language as 7. 

For each transition t£T such that |*t| > 3 or |i*| > 3 replace the subnet 
Si by the net ££ as given in Figure 2.2, but with the next remarks: 

- in the case n = 1 or n = 2 the places si or Sj and s2 respectively 
are directly connected to i"; 

- in the case m = 1 or m = 2 the only successors of tn are sn_|_i or 
s„+i and sn+2 respectively 

(in Figure 2.2 it was assumed that *t = { s i , . . . , s n } , t' = {sn+i> • • •, 
s n + m } , s'i, • • •, s'n+m_3 are new places, and i 1 , . . . , tn+m~2 are new tran-
sitions. Moreover, it was assumed that 'tilt' = 0; the case *t fl t* ^ 0 
can be easily imagined). Let E' be the net such obtained. For each 

+n—1 

O f O 
5 1 I « i o 

«2 

^n+TO—2 

3 - 0 ••• o & o 
sn+m-3 Sn+m 

Sn+1 

Figure 2.2 

marking M of E we consider the marking M' given by: 

M(s), i f s e S 

Ô 
•Sn+m —1 

M '(s) = I K ' [ 0 , otherwise 

for all places s of £ ' , and let I' be the labelling mentioned in each subnet 
(I' agrees with the labelling I of 7 on all the transitions t which were 
not modified by the transformation). If 7 has final markings, M , we 
add to (S',Mo,l') the set of final markings M' = {M'\M £ M} and 
let 7' be the net such obtained. 

End of Transformation-B. 

It is clear that the net 7' yielded by Transformation-B is normalized and (2,2)-
transition restricted. We have: 

Theorem 2.3 Let 7 be a normalized net satisfying |*f| > 1 and |t*| > 1 for all 
transitions t, and 7 ' the net yielded by Transformation-B applied to 7 . Then 7 and 
7' are partial word equivalent. 
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Proof The proof of this theorem is similar to the previous one. Therefore we will 
only sketch the differences (we use the same notations as in the proof of Theorem 2.2 
and Transformation-A). Consider first the inclusion PWL(7) C PWL(7'). In the 
proof of Theorem 2.2 each transition t with |*t| = 0 or [i"| = 0 has been simulated 
by the "sequence" t"t' or t't" respectively. As a result any process 7r{ in the sequence 
(*) has been either kept unchanged or replaced by at most two processes (obtained 
by applying t" and t' or conversely). In the case of this theorem each transition t 
with |*i| > 3 or |i*| > 3 is simulated by a "sequence" t1 • •tn •• •tn+m and so any 
process 7Tj in the sequence (*) will be replaced by at most max{\'t\ + |i*||t G T } 
processes (in the same manner as in the proof of Theorem 2.2). 

The inclusion PWL(7') C PWL(7) is based on the fact that any transition 
tn may occur only after i 1 , . . . , £ n - 1 . Therefore, t 1 , . . . ,tn can be rearranged (in a 
(* * *)-like sequence) one after the other. The transitions i n + 1 , . . . , tn+m~2 can also 
be applied after tn (the missing transitions are supplimentary added). • 

The position of the label a in Figure 2.2 cannot be changed, as the net in Figure 
2.3 shows us. That is, ax is a partial word of the net in Figure 2.3(a) but not 
ct2, whereas the net in Figure 2.3(b), obtained from the net in Figure 2.3(a) by 
applying Transformation-B and changing the position of the label a, has as a 
partial word but not a\. 

(a) 

(b) 

b a 1 : a —> b c*2 • a 

Figure 2.3 

Transformation-B and Theorem 2.3 show us that each Petri net is partial word 
equivalent with a (2,2)-transition restricted Petri net. This result cannot be ex-
tended to processes and to see that it is enough to consider the net in Figure 
2.3(a) and to apply to it the Transformation-B. But, what we have to say is that 
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our transformations preserve the finite sequential language and all types of infini-
tary languages (see [6]). Abbreviate "(n, m)-transition restricted Petri net" by 
PTN(tn<m) and denote then 

P P W A ( t n , m ) = {PWL(J)\J is an lXMPT N (tn,m)}, 
LPWA(tn ,m) = {PWL(J)\J is an lxmPTN(tn:in)f}, 

for all n , m > 1. 

Corollary 2.1 For all X G {P, L} we have: 

1. XPW A ( t n ,m) - X P W A ( t 2 2 ) , Vrvn > 2; 

X P W A ( t n l ) = XPW A ( t 2 i i ) , Vn > 2; 

3. X P W A ( t l m ) = X P W A ( t 1 2 ) , Vm > 2. 

Proof 1 directly follow from Transformation-B and Theorem 2.3. 2 and 3 follows 
the same line as 1 with the remark that 7' yielded by Transformation-B is (2,1)-
transition restricted ((1,2)-transition restricted, resp.) whenever the input net 7 is 
(n, l)-transition restricted ((1, m)-transition restricted, resp.). • 

Theorem 2.4 The diagram, in Figure 2-4 holds ("—>" indicates a proper inclu-
sion; the unrelated families are incomparable). 

X P W A ( t u ) 

X P W * ( t n l ) = X P W * ( t 2 i i ) XPW*(t 1 > 2 ) = X P W A ( t l m ) 

X P W A ( t 2 2 ) = XPW A (t n ,m) 

Figure 2.4 

Proof The inclusions follows from definitions, and the equalities from Corollary 
2.1. To prove that the inclusions are proper it is enough to show that the families 
X P W A ( t j 2 ) and X P W A ( t 2 1) are incomparable. Consider the partial language 
L ~ { a } , where a is the partial word in Figure 2.5(a). It is clear that L G 
XPW A ( t 1 2 ) . Suppose for the sake of contradiction that there is a (2, l)-transition 
restricted net 7 generating this partial word. Then, there is a process IT of 7 such 
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b a 

a 

c b 

(a) (b) (c) 

Figure 2.5 

that PW(IR) = a. The process IT will contain three events E\, e2, e3 labelled by 
a, b, c. There are paths from e\ to e2 and from e\ to e3; let V\ and T>2 be two 
such paths. It is clear that there is no path from e2 to e3 or conversely. T)\ and 
V2 have in common e¡ and therefore it must exist a common branching element, x. 
This x cannot be an event because the net 7 is (2, l)-transition restricted, and it 
cannot be a condition because the conditions in occurrence nets are not branching 
elements; a contradiction. Hence, L $ X P W A ( t 2 1). 

Similarly one can prove that L' = {/3}, where (3 is the partial word in Fig-
ure 2.5(b), is a member of X P W A ( t 2 1 ) but not of X P W A ( t 1 2 ) . Therefore, 
X P W A ( t 1 2 ) and X P W A ( t 2 1 ) are incomparable. • 

It is interesting to compare the results in Theorem 2.4 with that in [13] where it 
was shown that PA(tn l ) = P A ( t 1 : 1 ) and L A ( t n l) '̂ = - L ^ t ^ ! ) = L A ( t l m ) , for 
all n ,m > 2. To have full comparisons with [13] let us denote 

for all n, m > 1. 
A partial word as that in Figure 2.5(c) is called an (n,m)-star, n ,m > 0. Let 

7Ti and 712 be two labelled partially ordered sets. We say that 7Ti is embedable in 
if 7Ti is isomorphic with a part (subset) ir2 of tt2. If the condition a x (^ n i 

iff x(-<ni2 — ) y for all re,?/" is suplimentary added then we say that 7rj is strictly 
embedable in tr2. Any (n,m)-transition restricted net has (n,m)-stars as partial 
words, but one can easily get (as in the proof of Theorem 2.4) that no (n,m)-star 
is strictly embedable in any process of an (n', m')-transition restricted net without 
A-labels if n' <n or m' < m. As a result we have: 

PPW f(tri ,m) = {PWL(7)| 7 i sanmPTiV( i n , m ) } , 
PPW(t n ,m) . = {PWL(J)\7 is an lmPTN(tn,m)}, 
LPW f ( t n ,m) = {PVFZ/(7)|7 is an mPTN(tnm)f}, 
LPW(tn ,m) = {PWL^h is an lmPTN(tntm)f}, 

Theorem 2.5 The diagram in Figure 2.6 holds, for all Y € {PPWf ,PPW, 
LPW?, LPW}. 
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Y ( t i , i ) 

Y(t 2 , i ) Y( t i , 2 ) 

Y( t 3 , i ) Y(t 2 , 2 ) Y( t i , 3 ) 

Figure 2.6 
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