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A note on connection between PNS and set 
covering problems 

Z. Blazsik * B. Imreh * 

Abstract 
Process network synthesis (PNS) has enormous practical impact; however, 

its mixed integer programming model is tedious to solve because it usually 
involves a large number of binary variables. Using a combinatorial approach, 
a structural model of PNS can be given, and a branch-and-bound technique 
can be applied for searching an optimal solution. In some realistic examples of 
PNS, this method is efficient. Nevertheless, efficient methods are unavailable 
for solving these models generally. In this note, we describe a special class of 
PNS-problems as set-covering or set-partitioning problems. These problems 
are well-known to be NP-complete, thus, a PNS-problem is NP-hard. 

1 Introduction 
In a manufacturing system, materials of different properties are consumed through 
various mechanical, physical and chemical transformation to yield desired products. 
Devices in which these transformations are carried out are called operating units, 
e.g., a lathe or a chemical reactor. Thus, a manufacturing system can be considered 
as a network of operating units which is called process network. The importance 
of process network synthesis (PNS) arises from the fact that such networks are 
ubiquitous in the chemical and allied industries. Naturally, the cost minimization 
of a process network is indeed essential. Several papers have appeared in the 
literature on the application of global optimization in PNS (see, e.g., [1] and [5]). 
Another approach is a combinatorial one based on the feasible graphs of processes 
(cf.[2],[3] and [4]). This approach makes possible to show that the search of an 
optimal solution is difficult in general. Here, we prove this statement. 

2 Definitions 
Let M be a given set of objects which are materials capable of being converted 
or transformed by the processes under consideration. Transformation between two 
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subsets of M occurs in an operating unit. It is necessary to link this operating unit 
to others through the elements of these two subsets of M. The resultant structure 
is a process graph which is a bipartite directed graph (see [3] and [4]). Its formal 
definition is given as follows: 

Definition 1. Let M be a finite nonempty set, and let 0 ^ O C p ' ( M ) x p ' (M) 
with M f | 0 = 0, where p'(M) denotes the set of all nonempty subsets of M. The 
elements of O are called operating units and for an operating unit u = (a. ¡3) G O, 
a and /3 are called the input-set and output-set of u, respectively. Pair (M, O) is 
defined to be a process graph. The set of vertices of this graph is M |J O, and the 
set of arcs is A = U A2 with Ax = { (X, Y) :Y = (a, (3) eO and X G a } and 
A2 = { ( y , X ) : Y = {a,/3) G O and X 6 /3}. If there exist vertices X1,X2,...,Xn, 
such that ( X i , X 2 ) , (X2,X3),..., (Xn_i, Xn) are arcs of process graph (M, O), then 
[Xi, X„] is defined to be a path from vertex Xi to vertex Xn. 

Let process graphs (TO, O) and (M, O) be given, (to, o) is defined to be a subgraph 
of (M, 0), if TO C M and o C O. 

Let us now consider a process design problem in which the nonempty set of 
desired products is P C M, the set of raw materials is RC M, and the nonempty set 
of available operating units is O C p'{M) x p'(M). Let us suppose that P f | i i = 0 
and M|~| 0 = 0- Then, process graph ( M , 0 ) contains the interconnections among 
the operating units of O. 

On the other hand, let us observe that each feasible process, producing the 
given set P of products from the given set R of raw materials using operating 
units from O, corresponds to a subgraph of ( M , 0 ) . It can be visualised as the 
structure of the considered process. By appropriately examining the corresponding 
subgraphs of (M tO), therefore, we can determine an optimal process in principle. 
Since (P, R, O) describes the considered process design problem in structural point 
of view, this triplet is called the structural model of PNS. 

If we do not consider further constraints such as material balance, then the 
subgraphs of ( M , 0 ) which can be assigned to a feasible process have common 
combinatorial properties. They are studied in [3] and their description is given by 
the following definition. 

Definition 2. Subgraph (TO, O) of (M, O) is called a solution-structure of (P, R, O) 
if the following properties are satisfied. 

(51) P C m, 
(52) VX G TO, X G R <=> no (Y, X) arc in the process graph (TO, O), 
(53) VFo 6 o , 3 path [Y0, Yn] with Yn G P, 
(54) VX G TO, 3(a,(3) G o such that X ea{j/3. 

Let us denote the set of solution-structures of (P, R, O) by 5(P, R, O). Now we 
are ready to define a simple subclass of PNS-problems. 
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3 PNS-problems with weights 
Let us consider PNS-problems in which each operating unit has a weight. We are 
to find a feasible process with the minimal weight where by weight of a process we 
mean the sum of the weights of the operating units belonging to the process under 
consideration. Each feasible process in such a class of PNS-problems is determined 
uniquely from the corresponding solution- structure and vice versa. Thus, the above 
problem can be formalized as follows: 

PNS-problem with weigths 

Let a structural model of PNS-problem (P, R, O) be given. Moreover, let w be 
a real-valued function defined on O, the weight function. The basic model is then 

mm{J2w(u) •{m,o).e S{P,R,0)}. 
u£o 

We refer to the problem defined above as a PNSw-problem\ we denote the class of 
such problems by PNS™. In what follows, we define a subclass of PNS™, which is 

.equivalent to the class of the classical set covering problems. 
Let us denote by PNSu,i the subclass of PNSW for which a problem from PNS№ 

given by ( P , R , 0 ) and w is contained in PNSu,i if and only if O C p'(R) x p'(P). 
The visual meaning of this subclass can be given as follows: 

It contains such process design problems in which the operating units use only 
the raw materials as inputs and yield only the desired materials as outputs; more-
over, they perform in parallel. (We note that the performance in paralell.way yields 
a difficult scheduling in the general case.) 

Now let us consider an arbitrary PNSwi-problem, given by ( P , R , 0 ) and w. 
Let O = { w i , . . . , u n } and Uj = (ctj,Pj) € p'(R) X p'{P), j — 1,... ,n. Then, it 
is easy to see that this PNSu,i-problem is equivalent to the set covering problem 
determined by the set P, the system of its subsets, Pj, j = 1 •,..., n, and the weights, 
w'(/3j) =w(uj), j = l,...,n. 

Conversely, let us consider an arbitrary set covering problem. Let it be given 
by the set P, the system of its subsets, Pj, j = 1,.... ,n, and the weights, w'(Pj), 
j = 1 , . . . ,n. Now let R be an arbitrary nonempty finite set with P f ) R = 0. Fur-
thermore, let Uj = (R, Pj), j = 1,... ,n, O = { u i , . . . , u„ } . If we define the function 
w on O by w(uj) = w'(pj), j = 1, . . . ,n, then the PNS,„i-problem determined by 
(P, R, 0) and ui is equivalent to the set covering problem under consideration. 

The above observations gives rise to the following statement. 

Theorem. The class PNSwi ¿5 equivalent to the class of the set covering problems. 

Obviously, if a PNStui-problem is equipped with the condition that each desired 
product can be produced by at most one operating unit in each solution-structure, 
then we can construct an equivalent set partitioning problem and vice versa. Since 
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both the set covering and set partitioning problems are well-known to be NP-
complete, the PNS „,1-problem must be NP-complete. This leads immediately to 
the next corollary. 

Corollary. The PNS-problem is NP-hard. 

Let us observe that in a PNS^j-problem the set of materials is divided into two 
disjoint sets P and R, and each operating unit has a nonempty subset of R as inputs 
and a nonempty subset of P as outputs. Generalizing this feature, we can define 
a further subclass of PNSw-problems. Specifically, let k > 1 be an arbitrary fixed 
integer in order for us to consider the problems in which M = Mi ( J . . . (J Mfc+i 
where the sets M i , . . . , Mf.+i are pairwise disjoint nonempty sets. Furthermore, let 
o = Oi U • • • U Ok with Oi C p ' (Mi U-.-UMi) X p'(Mi+1), i = 1 , . . . , k. Let us 
call such a PNStu-problem a PNSwk-problem. It is of interest to know if there an 
equivalent known optimization problem exists. 

Acknowledgement. The authors thank Professor L.T. Fan of Department 
of Chemical Engineering, Kansas State University, Manhattan, for his valuable 
suggestions. 

References 
[1] Floudas, C. A. and I. E. Grossmann, Algorithmic Approaches to Process 

Synthesis: Logic and Global Optimization, International Symposium on 
Foundations of Computer Aided Process Design, Snowmass Village, CO, 
U.S.A., July 10-15, 1994 (in press). 

[2] Friedler, F., L. T. Fan, B. Imreh, Process Network Synthesis: Problem 
Definition, Networks, to appear. 

[3] Friedler, F., K. Tarjan, Y. W. Huang, and L. T. Fan, Graph-Theoretic 
Approach to Process Synthesis: Axioms and Theorems, Chem. Eng. Sci., 
47(8), 1992, 1973-1988. 

[4] Friedler, F., K. Tarjan, Y. W. Huang, and L. T. Fan, Combinatorial Struc-
ture of Process Network Synthesis, Sixth SIAM Conference on Discrete 
Mathematics, Vancouver, Canada, 1992. 

[5] Grossmann, I. E., V. T. Voudouris, 0 . Ghattas, Mixed-Integer Linear Pro-
gramming Reformulations for Some Nonlinear Discrete Design Optimization 
Problems, In: Recent Advances in Global Optimization (Eds: C. A. Floudas 
and P. M. Pardalos) Princeton University Press, New Jersey, 1992. 

Received October, 1995 


