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Accepting Multi-Agent Systems II 

Henning FERNAU * * * Markus HOLZER * * 

Abstract 

We continue our previous research on cooperating distributed grammar 
systems (CDGS) and variants thereof as language acceptors [16]. Here, we 
classify the accepting capacity of CDGS working in the modes recently intro-
duced by the authors together with Freund [14]. Moreover, we study (pre-
scribed) teams as language accepting mechanisms. 

In this way, we solve an open problem from the area of accepting gram-
mars: there exists a grammar family such that its generating capacity is 
strictly more powerful that its accepting capacity, see [6] for a recent survey. 

1 Introduction 
In Artificial Intelligence (AI) , a common methodology in order to achieve a goal, 
which can hardly be done by a single expert or agent, is to create a so-called 
multi-agent system which solves the task using distributed and cooperating agents, 
see [29] for a survey on this area. Blackboard architecture models [10] can be seen 
eis an approach to model the communication aspects of the agents. 

On the other hand, one general concept in problem solving methods in AI are 
production systems [23], which arise from a computational formalism proposed by 
Post [27] that was based on string replacement. Many generalizations of produc-
tion systems are proposed in AI, e.g., rule-based systems, blackboard systems, or 
pattern-directed-inference systems. Production systems are closely connected to 
string rewriting, one of the backbones of formal language theory. In order to un-
derstand the nature of production systems, it is therefore natural to study them on 
well-known and traditional formal language theoretical devices. Based on black-
board systems, Csuhaj-Varjii and Dassow [7] introduced cooperating distributed 
grammar systems (CDGS), where each component (grammar) corresponds to the 
particular knowledge source of the system (this is an expert or agent), and the global 
database—the blackboard—is modelled by a common sentential form, where the 
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components perform their rewritings. Independently and sometimes with different 
motivation, also other authors introduced similar computational models, see, e.g., 
[1 ,20 ,21 ] . 

In the systems considered by Csuhaj-Varjú and Dassow and in a series of subse-
quent papers, all components work according to the same strategy; more precisely, 
the rewriting by another component can be done, e.g., after a given number of 
steps. For an overview on this topic, refer to [8, 25]. This model of multi-agent sys-
tems is not very realistic, because usually such agents have different capabilities. 
Therefore, a generalization of CDGS called hybrid CDGS has been investigated 
[22, 24, 25]. Another idea is to allow the formation of teams of agents, as proposed 
in [18, 19, 26]. 

In this paper, we take the original above-sketched idea of CDGS, but contrary 
to the approach of Csuhaj-Varjú et al. [8], we take, instead of generating grammars, 
accepting grammars as agents. They try to derive a given goal word (axiom) in 
a cooperating and distributive manner. In this way, we pursue our studies on 
accepting grammars and systems [3, 4, 5, 6, 11]. Accepting CDGS have been 
investigated in the works of the authors together with Bordihn [16] and Freund [12, 
13]. For an intermediate approach, combining generating and accepting grammars 
in CDGS, we refer to Fernau and Holzer [15]. 

Depending on the mode in which the grammars cooperate, we obtain, on the 
one hand, equivalences between the accepting and generating case, but also, on the 
other hand, results which are fundamentally different, this means that accepting 
devices are much more powerful than generating ones or vice versa, thereby solving 
an open problem in the theory of accepting grammars [3]. 

Observe that, when defining accepting counterparts of existing generating de-
vices, we want to carry over the original idea and motivation of the generating 
mechanism in order to define the corresponding accepting mechanism. Formally, 
such accepting grammars look like their generating counterparts, just turning the 
core productions "around" and keeping the control mechanism ruling the applica-
tion of these productions textually the same. In the case of CDGS, this procedure 
is very well motivated by the original ideas stemming from AI: while generating 
devices correspond to forward deduction system, accepting devices correspond to 
backward deduction systems. 

The present paper extends our studies on accepting CDGS in three directions: 
(1) We consider other working modes of the components which have been intro-
duced in [14] and (2) we consider (external) hybridizations of these new modes 
(with the new and old ones). Finally (3) we briefly consider accepting CDGS with 
(prescribed) teams. 

This is reflected in the organization of our paper. In the next section, we in-
troduce the necessary notions. Section 3 lists the easy cases (the interval mode 
and t combined with greater than or equal to k) where we can profit from our 
previous results [16] on the i-mode. Section 4 contains the more interesting case 
incorporating the i-mode combined with either equal than or less equal than k. 
Strange things can be observed here, e.g., no unary infinite language can be ac-
cepted by CDGS working in (t A < fc)-mode. This leads to the first examples of 
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grammar mechanisms where the generating power of such CDGS is greater than 
their accepting power. In Section 5, we we consider accepting hybrid CDGS, where 
the (external) hybridization incorporates also the modes (t A < k), (t A = k), and 
(t A >k). Furthermore, we consider the number of components in a CDGS as a 
natural measure of descriptional complexity for CDGS. Since each component cor-
responds to one expert according to the original AI motivation, we may paraphrase 
our results as follows: in backward deduction systems, two experts are enough. 
This contrasts to the situation found in forward deduction systems where it is only 
known that three or four experts are enough. Finally, we consider in Section. 6 
CDGS with (prescribed) teams as language acceptors. Observe that similar sys-
tems have been studied in the context of array grammars from a quite practical 
viewpoint, see [12, 13]. 

2 Definitions 
We assume the reader to be familiar with some basic notions of formal language 
theory, as contained in Dassow and Paun [9]. Especially, we consider two lan-
guages Li,L2 to be equal if and only if L\ \ {A} = L2 \ {A}, where A denotes 
the empty word. We use C to denote inclusion, while C denotes strict inclusion. 
The set of positive integers is denoted by N. The end of a proof or of a proved 
statement is marked by Let £(FIN) be the family of finite languages. The 
families of languages generated by regular, linear context-free, context-sensitive, 
type-0 Chomsky grammars, ETOL systems, context-free ordered, context-free pro-
grammed, and context-free programmed grammars with appearance checking are 
denoted by £« e n (REG), £" c n(LIN), £* e n (CF), £» e n (CS), £* e"(RE), £ 9 e n (ET0L), 
£ g e n ( 0 , CF), Cgen(P, CF), and Cgen(P, CF, ac), respectively. A subscript fin (k, 
or 1, respectively) denotes the family of languages generated by the appropriate 
device restricting the derivation to be of finite index (finite index k, finite index 1, 
respectively). For a definition of the finite index property we refer to [9]. 

A superscript acc instead of gen is used to denote the family of languages 
accepted by the appropriate device. If we want to exclude A-rules, we. add —A in 
our notations. 

We use bracket notations like £gen(P, CF[-A]) C £ ? e n (P , CF[-A], ac) in order 
to say that the equation holds both in the case of forbidding A-rules and in the case 
of admitting A-rules (neglecting the bracket contents). 

For the convenience of the reader, we repeat the basic definitions of CDGS, 
hybrid CDGS, respectively, adapted from Paun [24], in a way suitable for the 
interpretation both as generating and accepting systems. 

A cooperating distributed grammar system (CDGS for short) of degree n, with 
n > 1, is a (n + 3)-tuple G — (N, T, S, Pi,..., P„), where N, T are disjoint alpha-
bets of nonterminal and terminal symbols, respectively, S E N is the axiom, and 
Pi,... ,Pn are finite sets of rewriting rules over N UT. 

Throughout this paper, we consider only context-free rewriting rules. Since we 
are interested in generating and accepting systems, we further distinguish between 
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so-called generating rules, which have the form A —• w, with A £ N and w E 
(N U T)*, and accepting rules, which are of the form w —*• A, with A E N and 
w € (NUT)m. 

Let G be a CDGS with only generating rules. For x, y E (NUT )* and 1 < i < n, 
we write x =>,• y if and only if x = x\Axi, y = x\zx2 for some A —• z E Pi- Hence, 
subscript i refers to the component to be used. By =>f k , =>Tt > w e denote 
a derivation consisting of at most k steps, exactly k steps, at least k steps, an 
arbitrary number of steps, respectively. We also write x =>,' y if and only if x =>* y 
and there is no 2 such that y =>•; z. Combining the former three modes with the 
<-mode requirement we obtain the modes (t A <k), (t A = k), and (t A > k) which 
are defined as follows: there exists a derivation which satisfies both properties e.g., 
x y if and only if there exists an m-step derivation from x to y using P< 
such that m < k and there is no z such that y =>j z. 

Let D := { *,t } U { < k, = k, > k \ k EN}U{(>k1A<k2),(tA<k),(tA=k),(tA 
>k) | ki,k2,k € N and ki < k2 }. 

The language generated in the /-mode, / E D, by a CDGS G with only gener-
ating rules is defined as: 

Lg/n(G) := { w E T* | 5 =>l ai =>{a... =>{m_t Qm-l Mm <*m=w with 
m > 1, 1 < ij < n, and 1 < j < m }. 

If / E D, the families of languages generated in / -mode by [A-free] CDGS with 
at most n components are denoted by £ s e"(CD„,CF[—A], / ) . If the number of 
components is not restricted, we write £ j 7 e"(CD0 0 , CF[—A],/). 

For CDGS with only accepting rules, we define the relations x =i>,- y and x y 
accordingly. Hence, we define the language accepted in /-mode, f £ D, by a 
CDGS G with only accepting rules as follows: 

Lf\G) := { w E T* | w a x =>{m_x a m _ x =>{m am = S with 
m > 1, 1 < ij < n, and 1 < j < m } 

If / E D, the families of languages accepted in / -mode by [A-free] CDGS with 
at most n components are denoted by £ a c c (CD„ ,CF[—A], / ) . If the number of 
components is not restricted, we write £a c c(CDoo, CF[—A],/). 

If each component of a CDGS may work in a different mode, then we get the 
notion of (externally) hybrid CDGS of degree n, with n > 1, which is a (n + 3)-tuple 
G = (N, T, S, (Pi, / 1 ) , . . . , (Pn,fn)), where N,T,S, Pu ..., P„ are as in CDGS, and 
/, 6 D, for 1 < i < n. Thus, we can define the language generated by a hybrid 
CDGS with only generating rules as: 

L°en(G) := {w£T* \S ^ W! ^ ... 1 « W i =>{? wm = w with 
m > 1, 1 < ij < n, and 1 < j < rn } 

Accordingly, accepting hybrid CDGS can be defined. If F C D, the family of 
languages generated (accepted, respectively) by [A-free] CDGS with at most n 
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components, each component working in one of the modes contained in F, are 
denoted by £« e n (HCD„, CF[-A], F) (£0 C C(HCD„, CF[-A], F), respectively). Simi-
larly, ^ " ( H C D o c C F l - A ] , ^ ) , and £a c c(HCDoo, CF[—A], F), respectively, is writ-
ten when the number of components is not restricted. 

3 When generating is weaker than accepting 
The easiest case from the new modes is the interval mode. Fortunately, the ob-
servations given in [16, page 128, Theorem 3.2] showing that in case of classical 
modes, except for the i-mode, equivalence between generating and accepting de-
vices prevails, readily transfers to the (>ki A < ¿2)-mode. Hence, we get: 

Theorem 3.1 If N 6 N U {oo } and f £ {(> Jfcj A <k2) \ kx,k2 £ N.fci < k2}, 
then C"n(CDN,CF[-\],f) = £0 C C(CDW , C F [ - A ] , / ) . • 

We turn our attention to grammar systems working in (t A > fc)-mode. Note 
that (t A > 1)- and the classical i-mode trivially coincide, which leads us to: 

Theorem 3.2 / / N £ N U {oo} , then, for any N > 3, 

£ j e n ( C F ) = £ s e " ( C D i , CF[—A], (< A > 1)) = £ i e n ( C D 2 , CF[—A], (i A > 1)) 
C £ s c n ( C D ; v , CF[—A], (t A > 1)) = £ i e n ( E T 0 L ) . 

For k in general, the situation is a little bit different from the previous one. 

Theorem 3.3 If N £ N U {oo} , then, for any N > 3 and for each k > 2, 

£ i e n ( C F ) = £ i e n ( C D i , CF[ -A] , (i A > k)) C £ a e n ( C D 2 , CF[-A] , (t A > jfc)) 
C C°en(CDN, CF[-A] , (t A > fc)) = £ s e n ( C D o o , CF[-A] , (t A > k)). 

The latter class coincides with the family of E[P]T0L languages with random 
context conditions [9, 28], as shown in [14], a special case of £ s e " (P , CF[—A], ac). 

The case is totally different for accepting CDGS. Nevertheless, as in the case of 
<-mode, the admittance of A-productions does not enhance the accepting power of 
CDGS working in (t A > fc)-mode. 

Theorem 3.4 If N £ N U {oo} , then, for any N > 2 and for each k > 1, 

£ * e n ( C F ) = £ a c c(CDi,CF[—A],(< A >k)) C £0CC(CDat, CF[—A], (i A > k)) 
= £ a c c ( C D 0 0 , CF[—A], (t A > k)) = C9en(CS). 

Proof. The first relation is obvious. By [16, Theorem 4.5], we know that, for 
each N > 2, ¿ « « (CDjv .CFt -A] ,* ) = £ a c c (CDoo,CF[-A] , t ) = £*e n(CS). Since t-
and (t A > l)-mode trivially coincide, the results carry over to the (t A > l)-mode. 
By introducing prolongating rules, we obtain the desired result for (i A > fc)-mode 
for k in general. • 
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Corollary 3.5 Let k £ N. Then, we have 

C9'n(CF) = ¿ » • " ( C D i . C F H M * A > * ) ) = £ a c c ( C D i , CF[—A], (t A> k)). 

Moreover, if N 6 N U {oo} with N >2, we get 

Cgen(CDN, CF[-A], (t A > k)) C Cacc(CDN, CF[-A], (< A > it)), 

where the inclusion is known to be strict only in the absence of X-rules. • 

4 When accepting is weaker than generating 
In the present section, we deal with CDGS working in (t A < k)- and (t A = i ) -mode 
with context-free components. Again, at first we mention the known results in the 
generating case [14]. 

Theorem 4 . 1 If f 6 { (t A < k), (t A = k) | k 6 N} , then there exists a function 
sj : N —* N so that for each n € N, 

£(FIN) = £ j e n ( C D i , C F [ - A ] , / ) C £* e n (CD„, CF[-A], / ) 
C £ i e n ( C D 5 / ( n ) , CF[-A], / ) C £ s e n (CDoo, CF[—A], / ) = £ £ n ( P , CF[-A] , ac). 

The preceding theorem demonstrates that both the (t A < k)- and the (t A = k)-
mode nicely fit into the known framework of formal language families. On the 
other hand, the accepting counterparts behave very strange in comparison to earlier 
results on accepting CDGS. This is shown in the next lemma. 

Lemma 4.2 For every k E N, no infinite one-letter language can be accepted by a 
CDGS working either in (t A < k) or (t A = k)-mode. 

Proof. We only prove the statement for the (t A = fc)-mode. Assume that the 
CDGS G = (N,T,S,Pi,.. .,Pn) accepts an infinite one-letter language L C {a}* 
in (t A = fc)-mode. Set M = max{ m | am —> A € Pi for 1 < i < n } . Since L is 
infinite, there exists a word am in L such that m > 3k • M. On this word, there is 
no way to start the (accepting) derivation process, since every component is only 
able to handle at most k • M symbols a due to the (t A = fc)-mode. Thus, am does 
not belong L, which contradicts our assumption that L is infinite. • 

Thus, {a}* G £» e n (REG) \ £ a c c ( C D N , C F [ - A ] , / ) , if N e N U { o o } and / 6 
{ (t A < it), (t A = k) | Jfc e N } , but { # } { a } * € £ a " ( C D 2 , CF - A, (t A = 1)), which 
is shown in the following example. 

Example. Let G = ( {5 , A, A', B], { # , a} , 5, Pi,P2) be a CDGS with the sets 
/>! = {#-* B, Aa A', Aa 5 } and P2 = { £ —• A, A' A}. It is easy to see 
that G working in (< A = l)-mode accepts { # } { a } * . 
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The idea of a special marking symbol generalizes to arbitrary regular languages. 
This shows that every marked regular language belongs to, e.g., the language family 
£ a c c ( C D 2 , C F - A,(< A = l ) ) . 

Before we consider CDGS with an arbitrary number of components, we study 
the case where two components are working in (<A< k)- or (t A — k)-mode together. 
Again, we recall what is known for these language families [14]. 

Theorem 4.3 If f G { (t A < k), (t A = k) | k G N }, then 

£« e n (LIN) C £ » e n ( C D 2 , C F [ - A ] , / ) C C3ken(P, CF[-A],ac). 

The latter inclusion is known to be strict only in case k — 1. 

First, consider the trivially coinciding modes (<A< 1) and (t A = 1) for accepting 
CDGS with two components. Surprisingly, we find: 

Theorem 4.4 £ a c c (CD 2 , CF[ -A } , ( t A = 1)) C £*e"(LIN). 

Before we prove this theorem, let us mention that the preceding theorem answers 
an open question stated in [3]: is there a grammar family such that the generating 
mode is strictly more powerful than the accepting mode? Combining the previous 
two theorems, we obtain: 

Corollary 4.5 £ a c c (CD 2 , CF[-A], (i A = 1)) C £ f l e n (CD 2 , CF[-A], (t A = 1)). • 

For the proof of the theorem, we need a detailed analysis of the accepting (t A= 1) 
derivation of the grammar system. Assume that we are given a grammar system 
G = (N,T, S, Pi, Pi). On input w the system can mainly behave as follows. By 
the (< A = l)-mode (like in the t-mode), the only way to accept a word is by an "in-
terplay" of the two components, i.e., the sequence of production sets applied looks 
like . . . , Pi, P2 , Pi, P 2 , . . . . W.l.o.g. assume that Pi starts the derivation process, 
reducing a subword of w to some nonterminal, say A. The only way to continue is 
an application of a rule of P2. At this point of derivation, we have to distinguish 
two cases, as illustrated in Figure 1. 
1. The rule chosen from P2 contains the previously introduced nonterminal A on the 
left-hand side. Hence, A with a left- and right-context is replaced by another non-
terminal again. The only way to successively continue the derivation is to apply Pi 
again, reducing a sub-word that contains the previously introduced nonterminal. 
Otherwise, the previous application of a rule of Pi would have not been possible. 
Further analysis of the derivation process shows that in this case the derivation has 
a "fish-bone" structure like in a linear grammar. 
2. The rule chosen from P2 does not contain the previously introduced nontermi-
nal A. Hence, after its application the derived sentential form contains exactly 
two nonterminals, say A and B. Pi is not able to handle a derivation where A is 
involved, as long as P2 has not changed the left- or right-context of A properly. 
Otherwise, the previous application of a rule of Pi would have not been possible. 
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Figure 1: The cases 1. (left) and 2. (right; the case where A and B change their 
roles are symmetric) of a (t A = 1) derivation of a CDGS with two components. 

Thus, the applicable rule from Pi must contain nonterminal B on the left-hand side. 
This interplay between Pi and P2 goes on while successively reducing the word at 
the point where P2 has made the first application of a.rule at all. The derivation 
is nothing else than a fish-bone again. Then at some point P,-, for 1 < i < 2, 
has prepared the context for the other to make an application of a rule where 
the nonterminal A is involved; this rule application breaks the fish-bone into two 
parts, when looking at the derivation as a whole. Afterwards, the interplay of the 
components continues, leading to a linear derivation structure. 

We sketch the construction of a linear grammar that simulates the accepting 
derivation of G in a generative manner. Let LS(Pi) denote the left-hand sides of 
the product ions in P,-, i.e., LS(Pi) = {w\w—>BEPi}. 

The nonterminal of the linear grammar contains the following (finite amount 
of ) information: (1) the actual nonterminal, (2) which component and rule starts 
the original derivation, (3) the control for the interplay, (4) the information which 
left-hand sides of the productions in both components are contained as sub-words 
in the sentential form derived so far, and (5) additional information to compute (4). 

Thus, the generating linear grammar'first guesses the component that starts 
and ends the original derivation process. Additionally, the first rule ever applied in 
the original derivation is guessed, say this is a —• A. Further, also the form of the 
derivation (case 1. or 2.) is guessed. These cases are treated separately: 
1. A linear derivation has to be performed, starting with the rule set that ends the 
original derivation. The interplay as well as the application of a rule is controlled by 
the information stored in the current nonterminal. In this situation, a rule u —• B (a 
linear one!) from Pi, for 1 < i < 2, is applicable if and only if the sentential form 7 
contains one occurrence of B, and no word from £S(P,) occurs in 7 . The latter can 
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be tested with information (4). During the derivation simulation, the information 
(1), (3), (4), and (5) is updated. When terminating (simulating a —• ^4) in addition 
it is checked (using information (2) and (3)) whether we actually simulate the 
component that starts the original derivation process. 
2. The second case consists of two symmetric cases (see Figure 1). Assume ¡3 —> 
B is the rule applied in the second step of the original derivation. In the first 
part of the derivation a linear derivation is done (see above). At some point, the 
grammar guesses to apply the rule (which is member of the component Pi, for 
1 < i < 2) that breaks the linear structure of the original derivation. This rule is 
not linear anymore, i.e., it looks like, e.g., C —* uAvBw (the symmetric case C —» 
uBvAw is similar). Then the derivation is continued as follows: apply the rule C —• 
uavBw under the condition that no word of LS(Pi) is stored as information (4), 
and then update information (4) and (5) according to C —* uAvBw. Thereafter, 
the derivation process is continued in a linear manner like in case 1. The only 
difference lies in the termination, because we already applied a —>• A. Therefore, 
we must test that /? —• B is member of the set Pj, for 1 < j < 2, which does 
not start the original derivation and that no word from { a } U LS(Pj) is stored as 
information (4). 

This completes our construction for £0CC(CD2, CF[-A], (t A = 1)) C £«e n(LIN). 
The strictness of the inclusion follows from the lemma on one-letter languages. • 

The question arises whether Theorem 4.4 generalizes to CDGS with more than 
two components and for derivation modes (t A < k) or (t A = k) in general. First, 
let us analyze the derivation trees obtained by such systems. We only discuss the 
(t A — ik)-mode, but it generalizes to the other mode as well. 

Let G be a two component system working in (t A = 2)-mode. Again, we must 
have an interplay between the two grammars to accept a word successfully. The 
number of possible tree structures, compared to the (t A = l)-case, increases sig-
nificantly, but remains finite. Why this? The start component can introduce at 
most two nonterminals. Then, the application of the other grammar increases the 
number of occurrences of nonterminals again at most by two. Now, there are only 
three possibilities to continue the accepting derivation: either we reduce sub-words 
in a linear manner (sequential rule application), or we replace two nonterminals 
with some context in an application of a production set (parallel rule application), 
or we combine several nonterminals into one (union step). Moreover, the first and 
second step of the derivation can be only a sequential or a parallel one, but from 
then on, a sequence of parallel steps can only be followed by a sequence of sequen-
tial steps, and afterwards a union step. Finally, only a sequence of sequential steps 
mixed with a finite number of union steps can be performed until the axiom is 
reached. At this point, one observes that the number of nonterminals occurring 
in a sentential form is bounded. Obviously, with a similar construction as in the 
preceding (t A = 1) case, a programmed grammar with appearance checking can do 
the simulation job. Note that the whole derivation is of finite index, too. 

With a much more detailed analysis also the case of CDGS with three grammars 
working in (t A = 1) mode can be done. In general, for arbitrary number n and k, 
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the number of possible structures for the derivation trees is bounded, so that a pro-
grammed grammar with appearance checking fulfilling the finite index restriction is 
able to simulate the original grammar system in a generating way. Thus, together 
with the lemma on one-letter languages and Theorem 4.1) we obtain: 

Theorem 4.6 Iff £ { (i A < k), (t A = k) \ k £ N }, then, for any N £ N U {oo}, 

£ f l C C (CDjv,CF[-A] , / ) C £ i e n (CDoo, CF[-A], / ) = £ £ n ( P , C F [ - A ] , ac). 

5 More on hybrid CDGS 
As already observed in the previous section (see also [16]), accepting and generating 
modes coincide when only considering the *-, < k-, = k-, > k, and ( > ki A < k2)-
modes. We summarize these facts in the following theorem without proof. 

Theorem 5.1 If F C {*} U { < k, = k, >k \ k £ N } U { (> ¿1 A < k2) | ¿1, k2 £ N, 
ki < k2 }, then, for any N £ N U { 0 0 } , 

¿^"(HCDtv, CF[-A], F) = £a c c(HCDjv, CF[-A], F). 

To exhibit the relations between other mode combinations, we have to explore 
their generating and accepting power in more detail. From [14], we summarize: 

Theorem 5.2 1. If® £ F C {*, t} U { < k | k £ N } U { = 1, > 1}, then 

£ s e n(HCDoo, CF[-A], F U {(t A = 1)}) = Cgen{O, CF[-A]). 

2. If F C{.= k,>k \k>2}u{(tA>k)\k >2}, then 

£ s e n(HCDoo, CF[—A], F U { ( i A = 1)}) = C9en{ P, CF[-A], ac). 

3. If to ± F C {*, t) U { < k, = k, > k, (t A > k) | k £ N} U { ( > fci A < k2) \ 
k\,k2 6 N and k 1 < k2 }, then 

£ s e"(HCDoo, CF[—A], F U {(< A = 2)} ) = £* e" (P, CF[-A], ac). 

4. Let 0 ^ F C {*, t} U { < k | k £ N }. For every k £ N, k > 2, 

Cgen(0, CF[-A]) C £ i e n (HCDoo, CF[—A], F U { ( M < k)}) C £ i e n ( P , CF[-A], ut). 

Since ordered languages are strictly included in programmed languages with 
unconditional transfer, at least one of the inclusions is strict. 

Theorem 5.3 Let F C D contain one mode from {*} U{<fc , = fc,>fc|fcGN}U 
{ (> * iA < k 2 ) \k1,k2£'N and ki < k2 } and one from { (tA< k), (<A= k) \ k £ N }. 
Then, we have: 
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1. £a c c (HCDoo,CF — A, F ) = £ s e n (CS) , and 

2. r ^ i H C D o o . C F . F ) = £" e n (RE) . 

Proof. Our proof is very similar to the i-mode case shown in [16, Theorem 4.2]. 
We give only technical details here. First, we consider the A-free case. It is easy 
to construct a simulating linear bounded automaton accepting Lacc(G) in case not 
admitting A-rules. Therefore, the inclusion ¿"" (HCD,*, , CF[—A], F) C £9 e n (CS) is 
clear. We have to show the other inclusion. 

By a standard argument, it can be shown that (*) £a c c(HCDoo, CF[— A], F) is 
closed under union and embraces the context-free languages. Let L G £ 5 e n (CS) , 
LCT*. Then, L = Ua.ft .cerCW^i&c} n L) U (L n T) U (L n T 2 ) U (L n T3). 
Since L is context-sensitive, Latc — { w G T+ \ awbc EL) is context-sensitive due 
to the closure of C g e n (CS) under derivatives. By (*), it is sufficient to show that 
{a}M{bc} G £a c c(HCDoo, CF - A, F) provided that M C T+ is context-sensitive. 

By simple prolongation arguments, it suffices to show that { a } M { 6 c } belongs to 
£ a c c ( H C D c o , C F - A , { * } U { ( < A = l ) } ) provided that M C T + i s context-sensitive. 

Let G — (N, T, S, P) be a context-sensitive grammar without A-productions in 
Kuroda normal form generating M. Let us assume a unique label r being attached 
to any genuine context-sensitive rule of the form XU —* YZ with X, U,Y, Z G N'y 

the set of labels is denoted by Labcs = {r\,... ,r a}. 
We construct a (HCDoo, CF - A, { * } U {(< A = 1)}) system 

G' = (N', T, S',P0, Pi,i, Pi,2, Pi,3, Pi,4 .... PR,I,PR,2, PR, 3, PR,A) 

accepting { a } M { 6 c } . The common terminal alphabet of these grammars is T, and 
their nonterminal alphabet is 

N' = N U { C i , . . .Cr) U { £>', £>" | DeNuT}u{A,B,C,S',F} 

(the unions being disjoint). 
The component PQ working in *-mode equals { a —• A,b —+ B,c C } U 

{ASBC —* S'} U {w D \ D E N and D^wEP,w£T}U{D —* D', D —* 
D" | D E N } and is used for four purposes: (1) It turns the left delimiter a into A 
and the right delimiters b and c into B and C (initialization). (2) The check of the 
correctness of this initialization application is postponed until the last applicable 
production ASBC —• S' does its work (termination). (3) Context-free rules can be 
simulated here. (4) Colouring of nonterminals into (double-)primed counterparts 
prepares the simulation of a genuine context-sensitive rule. 

Finally, we introduce four production sets working in (t A = l)-mode for the 
simulation of a genuine context-sensitive production rp : XU —+ YZ £ P: 

PpA = {C->Cp}U{Y'z^F\zj:Z"}U{yZ" ^F\y?Y'}, 
Pp,i = {C^F}U{C„ ^F | <r±p}\J 

{Y' — X} U { D' F, E" F | D, E E N A E" £ Z"}, 
Pp,3 = {C^F}u{Ca^F\<r?p}U 
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{Z" U}U {L/ -* F, D" F \ D £ N}, and 
PpA = {CP^C}U{C0^F\(T^P}U{D' ^F,D" ~^F\D€N). 

Observe that the second production set only serves for checking whether the 
first production set has correctly nondeterministically selected two adjacent marked 
occurrences Y and Z. These checks are always possible, since we introduced left 
and right end-markers A and B, respectively. 

If we allow A-productions, these can be put in the Po-component, too. • 

Corollary 5.4 Let F C {<} U { (t A < k), (t A = it), (t A > k) \ k £ N } . If F contain 
one of the modes {<}Ll{ (t A> k) \ k £ N } and one of the modes { (t A< k), (t A = k) \ 
k e N } , then we have Cacc(RCD00,CF[-\],F) = Cgen(CS). 

Proof. By our result [16, Theorem 4.2] regarding ¿-components only, it is only to 
prove that additional components working in one of the { (t A < k), (t A = k) \ k £ 
N }-modes do not enhance the accepting power. Again, A-rules do not add to the 
power, and an easy simulation by a linear bounded automaton shows the assertion. 

• 
When contrasting generating and accepting grammars, we obtain: 

Theorem 5.5 1. Let F C D contain one of the modes {*, U { < k, — k, > k, 
(t A > ifc) | ifc € N } U { (> ¿i A < k2) | Jbi, k2 £ N and kx < k2 } and one of the 
modes {(t A <k),{t A — k) | k £ N }. Then, we have: 

¿^" (HCDco , CF — A, F) c £ o c c (HCDoo, CF — A , F ) . 

2. Assume that F C D contains one of the modes {*} U { < k, = k, > k \ k £ 
N }U{ (> k iA< k2) | Jfei, k2 £ N, k\ < k2 } and one of the modes { (tA< k), (tA 
— k) | k £ N } . Then, we have: 

C9tn{HCDoo, CF, F) C £a c c(HCDoo, CF, F). 

(a) This inclusion is known to be strict in case F contains none of the modes 
{ (* A < k), (< A = k) | ifc £ N, k > 2 }. 

(b) This inclusion is known to be non-strict in case F contains one of the 
modes { ( < A = i f c ) | j b £ N , j f c > 2 } . 

3. Let F C {<} U { (t A > ifc), (< A < k), (t A = k) \ k £ N } and let F contain one of 
the modes {<}u{ (tA>k) \ k £ N } and one of the modes {(tA<k),(tA = k) \ 
ke N } . 

(a) If F n ({ (t A = k) | k £ N, k > 2 } U { (t A > k) \ k £ N, k > 2 } ) ^ 0, we 
have 

Cgen(CS) = £a c c(HCDoo, CF, F) C £ ? e n (HCDoo, CF, F) = Cgen(RE). 
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(b) Otherwise, ¿ " « ( H C D « , , CF, F) ts not contained in ¿ ^ " ( H C D ^ , CF, F), 
since Cgen(CS) 2*5 not contained in C9en{0,CF). • 

T h e o r e m 5.6 Let F C D contain one of the modes {*,t} U {<k, = k,>k \ k £ 
N } U { (> ¿i A < k2) | Jfei, k2 £ N and fci < k2 } U { (t A > k) \ k £ N } and one of 
the modes { (t A < k), (t A = k) \ k £ N } . Then, we have: 

£a c c(HCDoo, CF[—A], F ) = £ a c c (HCD 2 , CF[-A], F). 

Proo f . We can distinguish two cases: 

1. If F D ({*} U { (t A > k) | k £ N } ) 0, then [16, Theorem 4.5] is applied. 

2. If F n ( { * } U { <k, = k,>k | k £ N } U { (> A <k2) \ klt k2 £ N A fci < 
k2 } ) ^ 0, then following idea is helpful: First, due to our last theorem, it 
is sufficient to consider *- and (t A = l)-components, because every context-
sensitive (or even recursively enumerable, if A-rules are admitted) language 
can be accepted in such a way. Then, possibly a prolongation argument is 
applied. It is possible to colour each symbol of the originally given hybrid 
CDGS with a special colour indicating the (t A = l)-component we are going 
to apply next. Furthermore, we assume only coloured versions of terminals 
appearing in the sentential form. All original (t A = l)-components are put 
together, where each set of productions only works on its private alphabet. In 
addition, mixtures are excluded introducing productions of the form XY —• F 
(where X and Y are from different colours or terminal symbols). • 

Naturally, Theorem 5.6 cannot be improved, since (hybrid) CDGS with context-
free rules having one component can accept at most the context-free languages. Just 
as an aside, we remark in this place: 

T h e o r e m 5.7 For every k £ N, 

£(FIN) = £ a c c (CDi , CF[—A], (i A = k)) = £ 9 e " (CDi , CF[—A], (< A = k)) 
= £ o c c (CDi , CF[—A], (t A< k)) = £ s e " ( C D i , CF[—A], (t A< k)). • 

Theorem 5.6 contrasts sharply with our results in the generating case. Unfortu-
nately, many points are still open here. Therefore, we only quote two preliminary 
results which prove that accepting hybrid systems are much more powerful than 
their generating counterparts in many cases. 

T h e o r e m 5.8 1. Iff £ {(i A < 1), (t A = 1)}, then, for n £ {1, 2}, we have 

£ s e n (HCD„ , CF[—A], {* ,*} U { < k | k £ N } U { / } ) = £« e n (CF) . 

2. Let 0 # F C { i } U { (tA > k) \ k £ N } . For every f £ { (t A < k), (t A = k) \ 
k £ N } , we have 

£5e"(HCDoo, CF[—A], F U { / } ) = £ i e n (HCD 4 , CF[-A], FU {/}). 
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Especially, observe that 

£ i e n ( C F ) = £ f f e"(HCD2 , CF[—A], { * } U {(< A = 1)}) 
C £ a c c (HCD 2 , CF[-A], { * } U {(< A = 1)}) = £ j e n ( R E ) 

is an amazing jump from the generating to the accepting power. 
Moreover, it is always interesting to see for what hybridization is really good. In 

this respect, we want to contrast £ f e n ( C F ) = £ a c c (CD 2 , CF, *) and £* e n (LIN) = 
£ o c c (CD 2 , CF, (< A = 1)) with £ i e n ( R E ) = £ a c c (HCD 2 , CF, {* } U {(< A = 1)}). 

6 (Prescribed) Teams as acceptors 
A cooperating distributed grammar system with prescribed teams (PTCDGS for 
short), confer [17, 18, 19, 26], is a construct G = (N, T,S, Pi,..., P„, Q i , . . . , Qm), 
with n,m £ N, where (N , T, S, P i , . . . , P„) is a usual CDGS and Qi,..., Qm are 
teams, i.e., subsets of { P i , . . . , P n } . If each subset of { P i , . . . , P „ } can be a team, 
then we say that G has free teams, G is called a cooperating distributed grammar 
system with teams (TCDGS for short). 

For x, y £ (N U T)*, we write x y for some team Q, = {Pj1,..., P , , } if and 
only if x = xiAix2A2 • ..x!A,xi+i,y = xiyix2y2 • • x,y,xi+i, where xt £ (NUT)*, 
l<£<s+l,Ar—*yr£ Pjr, 1 < r < s. Having defined the one-step derivation, 
we can easily define derivations in Qi of k steps, at most k steps or at least k steps, 
and of any number of steps, denoted again by = > q > =>q, 1 respectively. 
For maximal derivations in a team Q,, we can consider three variants: 

1. x =>q y if and only if x y and there is no z such that y =><?; z [18]. 

2. x y if and only if x y and for no component PJr G Qi and no z 
there is a derivation y =>pjr z [19]. 

3. x =>Q. y if and only if x y and there is a component PjT £ Qi such that 
for no z there is a derivation y =>pjr z [26]. 

Given a (P)TCDGS G working in mode / G {*,<o, tiM) U{ < k, = k, > k | k £ N } , 
we define the derivation relation x => y if and only if there exists a team Qi such 
that x =>q. y. As usual, the language generated in / -mode by G is defined as 

Ljen{G) := {w £T* | 5 ai ^ . . . ^ ^ ^ = with 

I > 1, 1 < ij < m . a n d 1 < i < ^} -

We denote by £* e n ( (P)TCD, CF[-A], / ) the family of languages generated by [A-
free] (P)TCDGS. Correspondingly, accepted languages and language classes are 
defined. We summarize the known results on generating (P)TCDGS. 

Theorem 6.1 1. For all f £ {*} U { < k, = k, > k \ k £ N }, 

£ * e n ( P T C D , C F [ - A ] , / ) = £ ? e n ( P , CF[-A]). 
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2. For all f e {t0,tut2), 

£ s e n ( T C D , CF[—A], / ) = £ s e " ( P T C D , C F [ - A ] , / ) = £ s e n (P , CF[-A], ac). 

The strictness of the inclusion £« e n (TCD, CF[-A], / ) C £ f e n ( P , CF[-A]), for 
/ G { * } U { < k, = k,> k | k € N } is open. However, it is quite clear that the 
generating and accepting capacity of (P)TCDGS working in one of the modes / G 
{ * } U { < fc, = fc, > fc | Jfc G N } coincides. 

Theorem 6.2 For all f G { * } U { < k, = k, > k \ k G N }, we have: 

1. £ a c c (PTCD, CF[—A], / ) = £ 5 e n (PTCD, CF[-A], / ) = £* e n (P, CF[-A]), 

2. £ a c c (TCD,CF[—A], / ) = £ * e n ( T C D , C F [ - A ] , / ) . • 

As regards the different i-modes, the observations sketched in the following 
allow us to carry over our result contained in [16, Theorems 4.2, and 4.5]: 

1. If we have only one-element teams, all i-modes introduced for PTCDGS co-
incide (with the classical i-mode). Hence, such PTCDGS accept all context-
sensitive languages. 

2. The simulation also works when permitting larger (arbitrary) teams, since 
it is possible to use different colours in the simulation of different genuine 
context-sensitive rules (simulating a context-sensitive grammar in Kuroda 
normal form). "Wrong" colours are alway sent to the failure symbol. Possibly, 
if we choose teams containing more than one component, two or more rules of 
the originally given context-sensitive grammar are simulated in parallel, but 
this does no harm, since a sequentialization choosing singleton teams is always 
possible. Further observe that a simulation of a genuine context-sensitive rule 
by a i-mode component as given in [16, Theorems 4.2, and 4.5] always takes 
the same number of steps, so that no garbage can be derived employing the 
<2-mode. Hence, such TCDGS can also accept all context-sensitive languages. 

3. As regards A-rules, they are simply useless in case of classical CDGS working 
in i-mode, since such a rule is always applicable. A similar argument is 
applied to (P)TCDGS working in <i-mode. The situation is different for 
CDGS working in io-mode or in <2-m°de. Why? First, we can assume that 
the type-O-grammar we are going to simulate has only one production of 
the form E —» A, where £ is a special nonterminal symbol serving as a 
place-holder for the empty word. Moreover, due to the closure properties 
of £ 9 e " (RE) , we can assume an additional left-marker symbol # . Now, A-
productions can be simulated by three components, P\,i = { # —1* # , # —* 
# ' } , PK2 = { # ' — # } , and Px,3 = {A — E}. When 'combining PXA and 
P\ 3 into one team, arbitrarily many E's can be introduced. When using 
free teams, other combinations are now possible which may block a <-mode 
derivation prematurely. Therefore, this case remains as an open question. 
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We collect our observations in the following. 

Theorem 6.3 For each f £ {<O1<I1<2}, we find in general 

1. £ a " ( P T C D , CF - A, / ) = £ a c c (TCD, CF - A, / ) = £» e n (CS), and 

2. C°en{CS) C £ a c c (TCD, CF, / ) C £ a c c (PTCD, C F , / ) C £ f e n ( R E ) . 

More specifically, we obtain by our third observation: 

3. £ a c c (PTCD,CF,<i ) = £ a c c (TCD,CF,<i ) = £« e n (CS), and 

4. £ a c c (PTCD, CF, t0) = £ a c c (PTCD, CF, t2) = £sen(RE). • 

Comparing the generating versus the accepting capacity, we get: 

Corollary 6.4 For each f £ { < o , < i , < 2 } , we find 

1. £ f e n ( (P )TCD, CF - A, / ) C £ a c c ( (P )TCD, CF - A, / ) ; 

2. £ a c c ( (P )TCD, CF, / ) C £ i c n ( (P )TCD, CF, / ) ; 

3. £ a c c ( (P)TCD,CF,<i ) C £ 9 e n ( (P)TCD,CF,< 1 ) ; 

4. ^acc^pTCD, CF, g) — £ s e n (PTCD,CF, g), for g £ {<o,<2}- • 

7 Conclusions 

We continued our studies on accepting systems of grammars, paying special at-
tention towards internally hybrid modes and teams. In this way, we also found 
first examples of grammar mechanisms whose generating power is greater than its 
accepting power. 

In [2], two variants of the <-mode, namely weak t and stagnation, have been 
introduced: In weak <-mode a component Pj works on a string up to the point a 
sentential form w is obtained with w =>pj v implies w = v. This corresponds to the 
adult mechanism known from the theory of Lindenmayer systems. Now, another 
component may start its work with w. 

The stagnation-mode is defined as follows: a component Pj works on a string 
deriving subsequently w\ =>pj w2 • • • wn, and wn v implies 
W{ = v for some 1 < i < n. Now, another component may start its work with wn. 

Analyzing the proof of [16, Theorem 4.2], we see that both variants also char-
acterize the context-sensitive languages when seen as language acceptors. These 
results on the accepting capacity of these modes have been independently obtained 
from [2]. 
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