
Acta Cybernetica 12 (1996) 361-379.

Accepting Multi-Agent Systems II

Henning FERNAU * * * Markus HOLZER * *

Abstract

We continue our previous research on cooperating distributed grammar
systems (CDGS) and variants thereof as language acceptors [16]. Here, we
classify the accepting capacity of CDGS working in the modes recently intro-
duced by the authors together with Freund [14]. Moreover, we study (pre-
scribed) teams as language accepting mechanisms.

In this way, we solve an open problem from the area of accepting gram-
mars: there exists a grammar family such that its generating capacity is
strictly more powerful that its accepting capacity, see [6] for a recent survey.

1 Introduction
In Artificial Intelligence (AI) , a common methodology in order to achieve a goal,
which can hardly be done by a single expert or agent, is to create a so-called
multi-agent system which solves the task using distributed and cooperating agents,
see [29] for a survey on this area. Blackboard architecture models [10] can be seen
eis an approach to model the communication aspects of the agents.

On the other hand, one general concept in problem solving methods in AI are
production systems [23], which arise from a computational formalism proposed by
Post [27] that was based on string replacement. Many generalizations of produc-
tion systems are proposed in AI, e.g., rule-based systems, blackboard systems, or
pattern-directed-inference systems. Production systems are closely connected to
string rewriting, one of the backbones of formal language theory. In order to un-
derstand the nature of production systems, it is therefore natural to study them on
well-known and traditional formal language theoretical devices. Based on black-
board systems, Csuhaj-Varjii and Dassow [7] introduced cooperating distributed
grammar systems (CDGS), where each component (grammar) corresponds to the
particular knowledge source of the system (this is an expert or agent), and the global
database—the blackboard—is modelled by a common sentential form, where the

*Wilhelm-Schickard- Institut für Informatik, Universität Tübingen, Sand 13, D-72076
Tübingen, Germany. E-mail:fernau/holzer@informatik.uni-tuebingen.de

t Supported by Deutsche Forschungsgemeinschaft grant DFG La 618/3-1.
'Supported by German-Hungarian Research Project "Formal Languages, Automata and Petri-

Nets" (1995-1997), No. D/102 (formerly: No. OMFB-NPI-102) of the T&T Foundation, Bu-
dapest, Hungary, and No. 233.6. of Forschungszentrum Karlsruhe, Germany

361

mailto:holzer@informatik.uni-tuebingen.de

362 Henning Fern au, Markus Holzer

components perform their rewritings. Independently and sometimes with different
motivation, also other authors introduced similar computational models, see, e.g.,
[1 ,20 ,21] .

In the systems considered by Csuhaj-Varjú and Dassow and in a series of subse-
quent papers, all components work according to the same strategy; more precisely,
the rewriting by another component can be done, e.g., after a given number of
steps. For an overview on this topic, refer to [8, 25]. This model of multi-agent sys-
tems is not very realistic, because usually such agents have different capabilities.
Therefore, a generalization of CDGS called hybrid CDGS has been investigated
[22, 24, 25]. Another idea is to allow the formation of teams of agents, as proposed
in [18, 19, 26].

In this paper, we take the original above-sketched idea of CDGS, but contrary
to the approach of Csuhaj-Varjú et al. [8], we take, instead of generating grammars,
accepting grammars as agents. They try to derive a given goal word (axiom) in
a cooperating and distributive manner. In this way, we pursue our studies on
accepting grammars and systems [3, 4, 5, 6, 11]. Accepting CDGS have been
investigated in the works of the authors together with Bordihn [16] and Freund [12,
13]. For an intermediate approach, combining generating and accepting grammars
in CDGS, we refer to Fernau and Holzer [15].

Depending on the mode in which the grammars cooperate, we obtain, on the
one hand, equivalences between the accepting and generating case, but also, on the
other hand, results which are fundamentally different, this means that accepting
devices are much more powerful than generating ones or vice versa, thereby solving
an open problem in the theory of accepting grammars [3].

Observe that, when defining accepting counterparts of existing generating de-
vices, we want to carry over the original idea and motivation of the generating
mechanism in order to define the corresponding accepting mechanism. Formally,
such accepting grammars look like their generating counterparts, just turning the
core productions "around" and keeping the control mechanism ruling the applica-
tion of these productions textually the same. In the case of CDGS, this procedure
is very well motivated by the original ideas stemming from AI: while generating
devices correspond to forward deduction system, accepting devices correspond to
backward deduction systems.

The present paper extends our studies on accepting CDGS in three directions:
(1) We consider other working modes of the components which have been intro-
duced in [14] and (2) we consider (external) hybridizations of these new modes
(with the new and old ones). Finally (3) we briefly consider accepting CDGS with
(prescribed) teams.

This is reflected in the organization of our paper. In the next section, we in-
troduce the necessary notions. Section 3 lists the easy cases (the interval mode
and t combined with greater than or equal to k) where we can profit from our
previous results [16] on the i-mode. Section 4 contains the more interesting case
incorporating the i-mode combined with either equal than or less equal than k.
Strange things can be observed here, e.g., no unary infinite language can be ac-
cepted by CDGS working in (t A < fc)-mode. This leads to the first examples of

Accepting Multi-Agent Systems II 363

grammar mechanisms where the generating power of such CDGS is greater than
their accepting power. In Section 5, we we consider accepting hybrid CDGS, where
the (external) hybridization incorporates also the modes (t A < k), (t A = k), and
(t A >k). Furthermore, we consider the number of components in a CDGS as a
natural measure of descriptional complexity for CDGS. Since each component cor-
responds to one expert according to the original AI motivation, we may paraphrase
our results as follows: in backward deduction systems, two experts are enough.
This contrasts to the situation found in forward deduction systems where it is only
known that three or four experts are enough. Finally, we consider in Section. 6
CDGS with (prescribed) teams as language acceptors. Observe that similar sys-
tems have been studied in the context of array grammars from a quite practical
viewpoint, see [12, 13].

2 Definitions
We assume the reader to be familiar with some basic notions of formal language
theory, as contained in Dassow and Paun [9]. Especially, we consider two lan-
guages Li,L2 to be equal if and only if L\ \ {A} = L2 \ {A}, where A denotes
the empty word. We use C to denote inclusion, while C denotes strict inclusion.
The set of positive integers is denoted by N. The end of a proof or of a proved
statement is marked by Let £(FIN) be the family of finite languages. The
families of languages generated by regular, linear context-free, context-sensitive,
type-0 Chomsky grammars, ETOL systems, context-free ordered, context-free pro-
grammed, and context-free programmed grammars with appearance checking are
denoted by £« e n (REG), £" c n(LIN), £* e n (CF), £» e n (CS), £* e"(RE), £ 9 e n (ET0L),
£ g e n (0 , CF), Cgen(P, CF), and Cgen(P, CF, ac), respectively. A subscript fin (k,
or 1, respectively) denotes the family of languages generated by the appropriate
device restricting the derivation to be of finite index (finite index k, finite index 1,
respectively). For a definition of the finite index property we refer to [9].

A superscript acc instead of gen is used to denote the family of languages
accepted by the appropriate device. If we want to exclude A-rules, we. add —A in
our notations.

We use bracket notations like £gen(P, CF[-A]) C £ ? e n (P , CF[-A], ac) in order
to say that the equation holds both in the case of forbidding A-rules and in the case
of admitting A-rules (neglecting the bracket contents).

For the convenience of the reader, we repeat the basic definitions of CDGS,
hybrid CDGS, respectively, adapted from Paun [24], in a way suitable for the
interpretation both as generating and accepting systems.

A cooperating distributed grammar system (CDGS for short) of degree n, with
n > 1, is a (n + 3)-tuple G — (N, T, S, Pi,..., P„), where N, T are disjoint alpha-
bets of nonterminal and terminal symbols, respectively, S E N is the axiom, and
Pi,... ,Pn are finite sets of rewriting rules over N UT.

Throughout this paper, we consider only context-free rewriting rules. Since we
are interested in generating and accepting systems, we further distinguish between

364 Henning Fern au, Markus Holzer

so-called generating rules, which have the form A —• w, with A £ N and w E
(N U T)*, and accepting rules, which are of the form w —*• A, with A E N and
w € (NUT)m.

Let G be a CDGS with only generating rules. For x, y E (NUT)* and 1 < i < n,
we write x =>,• y if and only if x = x\Axi, y = x\zx2 for some A —• z E Pi- Hence,
subscript i refers to the component to be used. By =>f k , =>Tt > w e denote
a derivation consisting of at most k steps, exactly k steps, at least k steps, an
arbitrary number of steps, respectively. We also write x =>,' y if and only if x =>* y
and there is no 2 such that y =>•; z. Combining the former three modes with the
<-mode requirement we obtain the modes (t A <k), (t A = k), and (t A > k) which
are defined as follows: there exists a derivation which satisfies both properties e.g.,
x y if and only if there exists an m-step derivation from x to y using P<
such that m < k and there is no z such that y =>j z.

Let D := { *,t } U { < k, = k, > k \ k EN}U{(>k1A<k2),(tA<k),(tA=k),(tA
>k) | ki,k2,k € N and ki < k2 }.

The language generated in the /-mode, / E D, by a CDGS G with only gener-
ating rules is defined as:

Lg/n(G) := { w E T* | 5 =>l ai =>{a... =>{m_t Qm-l Mm <*m=w with
m > 1, 1 < ij < n, and 1 < j < m }.

If / E D, the families of languages generated in / -mode by [A-free] CDGS with
at most n components are denoted by £ s e"(CD„,CF[—A], /) . If the number of
components is not restricted, we write £ j 7 e"(CD0 0 , CF[—A],/).

For CDGS with only accepting rules, we define the relations x =i>,- y and x y
accordingly. Hence, we define the language accepted in /-mode, f £ D, by a
CDGS G with only accepting rules as follows:

Lf\G) := { w E T* | w a x =>{m_x a m _ x =>{m am = S with
m > 1, 1 < ij < n, and 1 < j < m }

If / E D, the families of languages accepted in / -mode by [A-free] CDGS with
at most n components are denoted by £ a c c (CD„ ,CF[—A], /) . If the number of
components is not restricted, we write £a c c(CDoo, CF[—A],/).

If each component of a CDGS may work in a different mode, then we get the
notion of (externally) hybrid CDGS of degree n, with n > 1, which is a (n + 3)-tuple
G = (N, T, S, (Pi, / 1) , . . . , (Pn,fn)), where N,T,S, Pu ..., P„ are as in CDGS, and
/, 6 D, for 1 < i < n. Thus, we can define the language generated by a hybrid
CDGS with only generating rules as:

L°en(G) := {w£T* \S ^ W! ^ ... 1 « W i =>{? wm = w with
m > 1, 1 < ij < n, and 1 < j < rn }

Accordingly, accepting hybrid CDGS can be defined. If F C D, the family of
languages generated (accepted, respectively) by [A-free] CDGS with at most n

Accepting Multi-Agent Systems II 365

components, each component working in one of the modes contained in F, are
denoted by £« e n (HCD„, CF[-A], F) (£0 C C(HCD„, CF[-A], F), respectively). Simi-
larly, ^ " (H C D o c C F l - A] , ^) , and £a c c(HCDoo, CF[—A], F), respectively, is writ-
ten when the number of components is not restricted.

3 When generating is weaker than accepting
The easiest case from the new modes is the interval mode. Fortunately, the ob-
servations given in [16, page 128, Theorem 3.2] showing that in case of classical
modes, except for the i-mode, equivalence between generating and accepting de-
vices prevails, readily transfers to the (>ki A < ¿2)-mode. Hence, we get:

Theorem 3.1 If N 6 N U {oo } and f £ {(> Jfcj A <k2) \ kx,k2 £ N.fci < k2},
then C"n(CDN,CF[-\],f) = £0 C C(CDW , C F [- A] , /) . •

We turn our attention to grammar systems working in (t A > fc)-mode. Note
that (t A > 1)- and the classical i-mode trivially coincide, which leads us to:

Theorem 3.2 / / N £ N U {oo} , then, for any N > 3,

£ j e n (C F) = £ s e " (C D i , CF[—A], (< A > 1)) = £ i e n (C D 2 , CF[—A], (i A > 1))
C £ s c n (C D ; v , CF[—A], (t A > 1)) = £ i e n (E T 0 L) .

For k in general, the situation is a little bit different from the previous one.

Theorem 3.3 If N £ N U {oo} , then, for any N > 3 and for each k > 2,

£ i e n (C F) = £ i e n (C D i , CF[-A] , (i A > k)) C £ a e n (C D 2 , CF[-A] , (t A > jfc))
C C°en(CDN, CF[-A] , (t A > fc)) = £ s e n (C D o o , CF[-A] , (t A > k)).

The latter class coincides with the family of E[P]T0L languages with random
context conditions [9, 28], as shown in [14], a special case of £ s e " (P , CF[—A], ac).

The case is totally different for accepting CDGS. Nevertheless, as in the case of
<-mode, the admittance of A-productions does not enhance the accepting power of
CDGS working in (t A > fc)-mode.

Theorem 3.4 If N £ N U {oo} , then, for any N > 2 and for each k > 1,

£ * e n (C F) = £ a c c(CDi,CF[—A],(< A >k)) C £0CC(CDat, CF[—A], (i A > k))
= £ a c c (C D 0 0 , CF[—A], (t A > k)) = C9en(CS).

Proof. The first relation is obvious. By [16, Theorem 4.5], we know that, for
each N > 2, ¿ « « (CDjv .CFt -A] ,*) = £ a c c (CDoo,CF[-A] , t) = £*e n(CS). Since t-
and (t A > l)-mode trivially coincide, the results carry over to the (t A > l)-mode.
By introducing prolongating rules, we obtain the desired result for (i A > fc)-mode
for k in general. •

366 Henning Fern au, Markus Holzer

Corollary 3.5 Let k £ N. Then, we have

C9'n(CF) = ¿ » • " (C D i . C F H M * A > *)) = £ a c c (C D i , CF[—A], (t A> k)).

Moreover, if N 6 N U {oo} with N >2, we get

Cgen(CDN, CF[-A], (t A > k)) C Cacc(CDN, CF[-A], (< A > it)),

where the inclusion is known to be strict only in the absence of X-rules. •

4 When accepting is weaker than generating
In the present section, we deal with CDGS working in (t A < k)- and (t A = i) -mode
with context-free components. Again, at first we mention the known results in the
generating case [14].

Theorem 4 . 1 If f 6 { (t A < k), (t A = k) | k 6 N} , then there exists a function
sj : N —* N so that for each n € N,

£(FIN) = £ j e n (C D i , C F [- A] , /) C £* e n (CD„, CF[-A], /)
C £ i e n (C D 5 / (n) , CF[-A], /) C £ s e n (CDoo, CF[—A], /) = £ £ n (P , CF[-A] , ac).

The preceding theorem demonstrates that both the (t A < k)- and the (t A = k)-
mode nicely fit into the known framework of formal language families. On the
other hand, the accepting counterparts behave very strange in comparison to earlier
results on accepting CDGS. This is shown in the next lemma.

Lemma 4.2 For every k E N, no infinite one-letter language can be accepted by a
CDGS working either in (t A < k) or (t A = k)-mode.

Proof. We only prove the statement for the (t A = fc)-mode. Assume that the
CDGS G = (N,T,S,Pi,.. .,Pn) accepts an infinite one-letter language L C {a}*
in (t A = fc)-mode. Set M = max{ m | am —> A € Pi for 1 < i < n } . Since L is
infinite, there exists a word am in L such that m > 3k • M. On this word, there is
no way to start the (accepting) derivation process, since every component is only
able to handle at most k • M symbols a due to the (t A = fc)-mode. Thus, am does
not belong L, which contradicts our assumption that L is infinite. •

Thus, {a}* G £» e n (REG) \ £ a c c (C D N , C F [- A] , /) , if N e N U { o o } and / 6
{ (t A < it), (t A = k) | Jfc e N } , but { # } { a } * € £ a " (C D 2 , CF - A, (t A = 1)), which
is shown in the following example.

Example. Let G = ({5 , A, A', B], { # , a} , 5, Pi,P2) be a CDGS with the sets
/>! = {#-* B, Aa A', Aa 5 } and P2 = { £ —• A, A' A}. It is easy to see
that G working in (< A = l)-mode accepts { # } { a } * .

Accepting Multi-Agent Systems II 367

The idea of a special marking symbol generalizes to arbitrary regular languages.
This shows that every marked regular language belongs to, e.g., the language family
£ a c c (C D 2 , C F - A,(< A = l)) .

Before we consider CDGS with an arbitrary number of components, we study
the case where two components are working in (<A< k)- or (t A — k)-mode together.
Again, we recall what is known for these language families [14].

Theorem 4.3 If f G { (t A < k), (t A = k) | k G N }, then

£« e n (LIN) C £ » e n (C D 2 , C F [- A] , /) C C3ken(P, CF[-A],ac).

The latter inclusion is known to be strict only in case k — 1.

First, consider the trivially coinciding modes (<A< 1) and (t A = 1) for accepting
CDGS with two components. Surprisingly, we find:

Theorem 4.4 £ a c c (CD 2 , CF[-A } , (t A = 1)) C £*e"(LIN).

Before we prove this theorem, let us mention that the preceding theorem answers
an open question stated in [3]: is there a grammar family such that the generating
mode is strictly more powerful than the accepting mode? Combining the previous
two theorems, we obtain:

Corollary 4.5 £ a c c (CD 2 , CF[-A], (i A = 1)) C £ f l e n (CD 2 , CF[-A], (t A = 1)). •

For the proof of the theorem, we need a detailed analysis of the accepting (t A= 1)
derivation of the grammar system. Assume that we are given a grammar system
G = (N,T, S, Pi, Pi). On input w the system can mainly behave as follows. By
the (< A = l)-mode (like in the t-mode), the only way to accept a word is by an "in-
terplay" of the two components, i.e., the sequence of production sets applied looks
like . . . , Pi, P2 , Pi, P 2 , W.l.o.g. assume that Pi starts the derivation process,
reducing a subword of w to some nonterminal, say A. The only way to continue is
an application of a rule of P2. At this point of derivation, we have to distinguish
two cases, as illustrated in Figure 1.
1. The rule chosen from P2 contains the previously introduced nonterminal A on the
left-hand side. Hence, A with a left- and right-context is replaced by another non-
terminal again. The only way to successively continue the derivation is to apply Pi
again, reducing a sub-word that contains the previously introduced nonterminal.
Otherwise, the previous application of a rule of Pi would have not been possible.
Further analysis of the derivation process shows that in this case the derivation has
a "fish-bone" structure like in a linear grammar.
2. The rule chosen from P2 does not contain the previously introduced nontermi-
nal A. Hence, after its application the derived sentential form contains exactly
two nonterminals, say A and B. Pi is not able to handle a derivation where A is
involved, as long as P2 has not changed the left- or right-context of A properly.
Otherwise, the previous application of a rule of Pi would have not been possible.

368 Henning Fern au, Markus Holzer

Figure 1: The cases 1. (left) and 2. (right; the case where A and B change their
roles are symmetric) of a (t A = 1) derivation of a CDGS with two components.

Thus, the applicable rule from Pi must contain nonterminal B on the left-hand side.
This interplay between Pi and P2 goes on while successively reducing the word at
the point where P2 has made the first application of a.rule at all. The derivation
is nothing else than a fish-bone again. Then at some point P,-, for 1 < i < 2,
has prepared the context for the other to make an application of a rule where
the nonterminal A is involved; this rule application breaks the fish-bone into two
parts, when looking at the derivation as a whole. Afterwards, the interplay of the
components continues, leading to a linear derivation structure.

We sketch the construction of a linear grammar that simulates the accepting
derivation of G in a generative manner. Let LS(Pi) denote the left-hand sides of
the product ions in P,-, i.e., LS(Pi) = {w\w—>BEPi}.

The nonterminal of the linear grammar contains the following (finite amount
of) information: (1) the actual nonterminal, (2) which component and rule starts
the original derivation, (3) the control for the interplay, (4) the information which
left-hand sides of the productions in both components are contained as sub-words
in the sentential form derived so far, and (5) additional information to compute (4).

Thus, the generating linear grammar'first guesses the component that starts
and ends the original derivation process. Additionally, the first rule ever applied in
the original derivation is guessed, say this is a —• A. Further, also the form of the
derivation (case 1. or 2.) is guessed. These cases are treated separately:
1. A linear derivation has to be performed, starting with the rule set that ends the
original derivation. The interplay as well as the application of a rule is controlled by
the information stored in the current nonterminal. In this situation, a rule u —• B (a
linear one!) from Pi, for 1 < i < 2, is applicable if and only if the sentential form 7
contains one occurrence of B, and no word from £S(P,) occurs in 7 . The latter can

Accepting Multi-Agent Systems II 369

be tested with information (4). During the derivation simulation, the information
(1), (3), (4), and (5) is updated. When terminating (simulating a —• ^4) in addition
it is checked (using information (2) and (3)) whether we actually simulate the
component that starts the original derivation process.
2. The second case consists of two symmetric cases (see Figure 1). Assume ¡3 —>
B is the rule applied in the second step of the original derivation. In the first
part of the derivation a linear derivation is done (see above). At some point, the
grammar guesses to apply the rule (which is member of the component Pi, for
1 < i < 2) that breaks the linear structure of the original derivation. This rule is
not linear anymore, i.e., it looks like, e.g., C —* uAvBw (the symmetric case C —»
uBvAw is similar). Then the derivation is continued as follows: apply the rule C —•
uavBw under the condition that no word of LS(Pi) is stored as information (4),
and then update information (4) and (5) according to C —* uAvBw. Thereafter,
the derivation process is continued in a linear manner like in case 1. The only
difference lies in the termination, because we already applied a —>• A. Therefore,
we must test that /? —• B is member of the set Pj, for 1 < j < 2, which does
not start the original derivation and that no word from { a } U LS(Pj) is stored as
information (4).

This completes our construction for £0CC(CD2, CF[-A], (t A = 1)) C £«e n(LIN).
The strictness of the inclusion follows from the lemma on one-letter languages. •

The question arises whether Theorem 4.4 generalizes to CDGS with more than
two components and for derivation modes (t A < k) or (t A = k) in general. First,
let us analyze the derivation trees obtained by such systems. We only discuss the
(t A — ik)-mode, but it generalizes to the other mode as well.

Let G be a two component system working in (t A = 2)-mode. Again, we must
have an interplay between the two grammars to accept a word successfully. The
number of possible tree structures, compared to the (t A = l)-case, increases sig-
nificantly, but remains finite. Why this? The start component can introduce at
most two nonterminals. Then, the application of the other grammar increases the
number of occurrences of nonterminals again at most by two. Now, there are only
three possibilities to continue the accepting derivation: either we reduce sub-words
in a linear manner (sequential rule application), or we replace two nonterminals
with some context in an application of a production set (parallel rule application),
or we combine several nonterminals into one (union step). Moreover, the first and
second step of the derivation can be only a sequential or a parallel one, but from
then on, a sequence of parallel steps can only be followed by a sequence of sequen-
tial steps, and afterwards a union step. Finally, only a sequence of sequential steps
mixed with a finite number of union steps can be performed until the axiom is
reached. At this point, one observes that the number of nonterminals occurring
in a sentential form is bounded. Obviously, with a similar construction as in the
preceding (t A = 1) case, a programmed grammar with appearance checking can do
the simulation job. Note that the whole derivation is of finite index, too.

With a much more detailed analysis also the case of CDGS with three grammars
working in (t A = 1) mode can be done. In general, for arbitrary number n and k,

370 Henning Fern au, Markus Holzer

the number of possible structures for the derivation trees is bounded, so that a pro-
grammed grammar with appearance checking fulfilling the finite index restriction is
able to simulate the original grammar system in a generating way. Thus, together
with the lemma on one-letter languages and Theorem 4.1) we obtain:

Theorem 4.6 Iff £ { (i A < k), (t A = k) \ k £ N }, then, for any N £ N U {oo},

£ f l C C (CDjv,CF[-A] , /) C £ i e n (CDoo, CF[-A], /) = £ £ n (P , C F [- A] , ac).

5 More on hybrid CDGS
As already observed in the previous section (see also [16]), accepting and generating
modes coincide when only considering the *-, < k-, = k-, > k, and (> ki A < k2)-
modes. We summarize these facts in the following theorem without proof.

Theorem 5.1 If F C {*} U { < k, = k, >k \ k £ N } U { (> ¿1 A < k2) | ¿1, k2 £ N,
ki < k2 }, then, for any N £ N U { 0 0 } ,

¿^"(HCDtv, CF[-A], F) = £a c c(HCDjv, CF[-A], F).

To exhibit the relations between other mode combinations, we have to explore
their generating and accepting power in more detail. From [14], we summarize:

Theorem 5.2 1. If® £ F C {*, t} U { < k | k £ N } U { = 1, > 1}, then

£ s e n(HCDoo, CF[-A], F U {(t A = 1)}) = Cgen{O, CF[-A]).

2. If F C{.= k,>k \k>2}u{(tA>k)\k >2}, then

£ s e n(HCDoo, CF[—A], F U { (i A = 1)}) = C9en{ P, CF[-A], ac).

3. If to ± F C {*, t) U { < k, = k, > k, (t A > k) | k £ N} U { (> fci A < k2) \
k\,k2 6 N and k 1 < k2 }, then

£ s e"(HCDoo, CF[—A], F U {(< A = 2)}) = £* e" (P, CF[-A], ac).

4. Let 0 ^ F C {*, t} U { < k | k £ N }. For every k £ N, k > 2,

Cgen(0, CF[-A]) C £ i e n (HCDoo, CF[—A], F U { (M < k)}) C £ i e n (P , CF[-A], ut).

Since ordered languages are strictly included in programmed languages with
unconditional transfer, at least one of the inclusions is strict.

Theorem 5.3 Let F C D contain one mode from {*} U{<fc , = fc,>fc|fcGN}U
{ (> * iA < k 2) \k1,k2£'N and ki < k2 } and one from { (tA< k), (<A= k) \ k £ N }.
Then, we have:

Accepting Multi-Agent Systems II 371

1. £a c c (HCDoo,CF — A, F) = £ s e n (CS) , and

2. r ^ i H C D o o . C F . F) = £" e n (RE) .

Proof. Our proof is very similar to the i-mode case shown in [16, Theorem 4.2].
We give only technical details here. First, we consider the A-free case. It is easy
to construct a simulating linear bounded automaton accepting Lacc(G) in case not
admitting A-rules. Therefore, the inclusion ¿"" (HCD,*, , CF[—A], F) C £9 e n (CS) is
clear. We have to show the other inclusion.

By a standard argument, it can be shown that (*) £a c c(HCDoo, CF[— A], F) is
closed under union and embraces the context-free languages. Let L G £ 5 e n (CS) ,
LCT*. Then, L = Ua.ft .cerCW^i&c} n L) U (L n T) U (L n T 2) U (L n T3).
Since L is context-sensitive, Latc — { w G T+ \ awbc EL) is context-sensitive due
to the closure of C g e n (CS) under derivatives. By (*), it is sufficient to show that
{a}M{bc} G £a c c(HCDoo, CF - A, F) provided that M C T+ is context-sensitive.

By simple prolongation arguments, it suffices to show that { a } M { 6 c } belongs to
£ a c c (H C D c o , C F - A , { * } U { (< A = l) }) provided that M C T + i s context-sensitive.

Let G — (N, T, S, P) be a context-sensitive grammar without A-productions in
Kuroda normal form generating M. Let us assume a unique label r being attached
to any genuine context-sensitive rule of the form XU —* YZ with X, U,Y, Z G N'y

the set of labels is denoted by Labcs = {r\,... ,r a}.
We construct a (HCDoo, CF - A, { * } U {(< A = 1)}) system

G' = (N', T, S',P0, Pi,i, Pi,2, Pi,3, Pi,4 PR,I,PR,2, PR, 3, PR,A)

accepting { a } M { 6 c } . The common terminal alphabet of these grammars is T, and
their nonterminal alphabet is

N' = N U { C i , . . .Cr) U { £>', £>" | DeNuT}u{A,B,C,S',F}

(the unions being disjoint).
The component PQ working in *-mode equals { a —• A,b —+ B,c C } U

{ASBC —* S'} U {w D \ D E N and D^wEP,w£T}U{D —* D', D —*
D" | D E N } and is used for four purposes: (1) It turns the left delimiter a into A
and the right delimiters b and c into B and C (initialization). (2) The check of the
correctness of this initialization application is postponed until the last applicable
production ASBC —• S' does its work (termination). (3) Context-free rules can be
simulated here. (4) Colouring of nonterminals into (double-)primed counterparts
prepares the simulation of a genuine context-sensitive rule.

Finally, we introduce four production sets working in (t A = l)-mode for the
simulation of a genuine context-sensitive production rp : XU —+ YZ £ P:

PpA = {C->Cp}U{Y'z^F\zj:Z"}U{yZ" ^F\y?Y'},
Pp,i = {C^F}U{C„ ^F | <r±p}\J

{Y' — X} U { D' F, E" F | D, E E N A E" £ Z"},
Pp,3 = {C^F}u{Ca^F\<r?p}U

372 Henning Fern au, Markus Holzer

{Z" U}U {L/ -* F, D" F \ D £ N}, and
PpA = {CP^C}U{C0^F\(T^P}U{D' ^F,D" ~^F\D€N).

Observe that the second production set only serves for checking whether the
first production set has correctly nondeterministically selected two adjacent marked
occurrences Y and Z. These checks are always possible, since we introduced left
and right end-markers A and B, respectively.

If we allow A-productions, these can be put in the Po-component, too. •

Corollary 5.4 Let F C {<} U { (t A < k), (t A = it), (t A > k) \ k £ N } . If F contain
one of the modes {<}Ll{ (t A> k) \ k £ N } and one of the modes { (t A< k), (t A = k) \
k e N } , then we have Cacc(RCD00,CF[-\],F) = Cgen(CS).

Proof. By our result [16, Theorem 4.2] regarding ¿-components only, it is only to
prove that additional components working in one of the { (t A < k), (t A = k) \ k £
N }-modes do not enhance the accepting power. Again, A-rules do not add to the
power, and an easy simulation by a linear bounded automaton shows the assertion.

•
When contrasting generating and accepting grammars, we obtain:

Theorem 5.5 1. Let F C D contain one of the modes {*, U { < k, — k, > k,
(t A > ifc) | ifc € N } U { (> ¿i A < k2) | Jbi, k2 £ N and kx < k2 } and one of the
modes {(t A <k),{t A — k) | k £ N }. Then, we have:

¿^" (HCDco , CF — A, F) c £ o c c (HCDoo, CF — A , F) .

2. Assume that F C D contains one of the modes {*} U { < k, = k, > k \ k £
N }U{ (> k iA< k2) | Jfei, k2 £ N, k\ < k2 } and one of the modes { (tA< k), (tA
— k) | k £ N } . Then, we have:

C9tn{HCDoo, CF, F) C £a c c(HCDoo, CF, F).

(a) This inclusion is known to be strict in case F contains none of the modes
{ (* A < k), (< A = k) | ifc £ N, k > 2 }.

(b) This inclusion is known to be non-strict in case F contains one of the
modes { (< A = i f c) | j b £ N , j f c > 2 } .

3. Let F C {<} U { (t A > ifc), (< A < k), (t A = k) \ k £ N } and let F contain one of
the modes {<}u{ (tA>k) \ k £ N } and one of the modes {(tA<k),(tA = k) \
ke N } .

(a) If F n ({ (t A = k) | k £ N, k > 2 } U { (t A > k) \ k £ N, k > 2 }) ^ 0, we
have

Cgen(CS) = £a c c(HCDoo, CF, F) C £ ? e n (HCDoo, CF, F) = Cgen(RE).

Accepting Multi-Agent Systems II 373

(b) Otherwise, ¿ " « (H C D « , , CF, F) ts not contained in ¿ ^ " (H C D ^ , CF, F),
since Cgen(CS) 2*5 not contained in C9en{0,CF). •

T h e o r e m 5.6 Let F C D contain one of the modes {*,t} U {<k, = k,>k \ k £
N } U { (> ¿i A < k2) | Jfei, k2 £ N and fci < k2 } U { (t A > k) \ k £ N } and one of
the modes { (t A < k), (t A = k) \ k £ N } . Then, we have:

£a c c(HCDoo, CF[—A], F) = £ a c c (HCD 2 , CF[-A], F).

Proo f . We can distinguish two cases:

1. If F D ({*} U { (t A > k) | k £ N }) 0, then [16, Theorem 4.5] is applied.

2. If F n ({ * } U { <k, = k,>k | k £ N } U { (> A <k2) \ klt k2 £ N A fci <
k2 }) ^ 0, then following idea is helpful: First, due to our last theorem, it
is sufficient to consider *- and (t A = l)-components, because every context-
sensitive (or even recursively enumerable, if A-rules are admitted) language
can be accepted in such a way. Then, possibly a prolongation argument is
applied. It is possible to colour each symbol of the originally given hybrid
CDGS with a special colour indicating the (t A = l)-component we are going
to apply next. Furthermore, we assume only coloured versions of terminals
appearing in the sentential form. All original (t A = l)-components are put
together, where each set of productions only works on its private alphabet. In
addition, mixtures are excluded introducing productions of the form XY —• F
(where X and Y are from different colours or terminal symbols). •

Naturally, Theorem 5.6 cannot be improved, since (hybrid) CDGS with context-
free rules having one component can accept at most the context-free languages. Just
as an aside, we remark in this place:

T h e o r e m 5.7 For every k £ N,

£(FIN) = £ a c c (CDi , CF[—A], (i A = k)) = £ 9 e " (CDi , CF[—A], (< A = k))
= £ o c c (CDi , CF[—A], (t A< k)) = £ s e " (C D i , CF[—A], (t A< k)). •

Theorem 5.6 contrasts sharply with our results in the generating case. Unfortu-
nately, many points are still open here. Therefore, we only quote two preliminary
results which prove that accepting hybrid systems are much more powerful than
their generating counterparts in many cases.

T h e o r e m 5.8 1. Iff £ {(i A < 1), (t A = 1)}, then, for n £ {1, 2}, we have

£ s e n (HCD„ , CF[—A], {* ,*} U { < k | k £ N } U { / }) = £« e n (CF) .

2. Let 0 # F C { i } U { (tA > k) \ k £ N } . For every f £ { (t A < k), (t A = k) \
k £ N } , we have

£5e"(HCDoo, CF[—A], F U { / }) = £ i e n (HCD 4 , CF[-A], FU {/}).

374 Henning Fern au, Markus Holzer

Especially, observe that

£ i e n (C F) = £ f f e"(HCD2 , CF[—A], { * } U {(< A = 1)})
C £ a c c (HCD 2 , CF[-A], { * } U {(< A = 1)}) = £ j e n (R E)

is an amazing jump from the generating to the accepting power.
Moreover, it is always interesting to see for what hybridization is really good. In

this respect, we want to contrast £ f e n (C F) = £ a c c (CD 2 , CF, *) and £* e n (LIN) =
£ o c c (CD 2 , CF, (< A = 1)) with £ i e n (R E) = £ a c c (HCD 2 , CF, {* } U {(< A = 1)}).

6 (Prescribed) Teams as acceptors
A cooperating distributed grammar system with prescribed teams (PTCDGS for
short), confer [17, 18, 19, 26], is a construct G = (N, T,S, Pi,..., P„, Q i , . . . , Qm),
with n,m £ N, where (N , T, S, P i , . . . , P„) is a usual CDGS and Qi,..., Qm are
teams, i.e., subsets of { P i , . . . , P n } . If each subset of { P i , . . . , P „ } can be a team,
then we say that G has free teams, G is called a cooperating distributed grammar
system with teams (TCDGS for short).

For x, y £ (N U T)*, we write x y for some team Q, = {Pj1,..., P , , } if and
only if x = xiAix2A2 • ..x!A,xi+i,y = xiyix2y2 • • x,y,xi+i, where xt £ (NUT)*,
l<£<s+l,Ar—*yr£ Pjr, 1 < r < s. Having defined the one-step derivation,
we can easily define derivations in Qi of k steps, at most k steps or at least k steps,
and of any number of steps, denoted again by = > q > =>q, 1 respectively.
For maximal derivations in a team Q,, we can consider three variants:

1. x =>q y if and only if x y and there is no z such that y =><?; z [18].

2. x y if and only if x y and for no component PJr G Qi and no z
there is a derivation y =>pjr z [19].

3. x =>Q. y if and only if x y and there is a component PjT £ Qi such that
for no z there is a derivation y =>pjr z [26].

Given a (P)TCDGS G working in mode / G {*,<o, tiM) U{ < k, = k, > k | k £ N } ,
we define the derivation relation x => y if and only if there exists a team Qi such
that x =>q. y. As usual, the language generated in / -mode by G is defined as

Ljen{G) := {w £T* | 5 ai ^ . . . ^ ^ ^ = with

I > 1, 1 < ij < m . a n d 1 < i < ^} -

We denote by £* e n ((P)TCD, CF[-A], /) the family of languages generated by [A-
free] (P)TCDGS. Correspondingly, accepted languages and language classes are
defined. We summarize the known results on generating (P)TCDGS.

Theorem 6.1 1. For all f £ {*} U { < k, = k, > k \ k £ N },

£ * e n (P T C D , C F [- A] , /) = £ ? e n (P , CF[-A]).

Accepting Multi-Agent Systems II 375

2. For all f e {t0,tut2),

£ s e n (T C D , CF[—A], /) = £ s e " (P T C D , C F [- A] , /) = £ s e n (P , CF[-A], ac).

The strictness of the inclusion £« e n (TCD, CF[-A], /) C £ f e n (P , CF[-A]), for
/ G { * } U { < k, = k,> k | k € N } is open. However, it is quite clear that the
generating and accepting capacity of (P)TCDGS working in one of the modes / G
{ * } U { < fc, = fc, > fc | Jfc G N } coincides.

Theorem 6.2 For all f G { * } U { < k, = k, > k \ k G N }, we have:

1. £ a c c (PTCD, CF[—A], /) = £ 5 e n (PTCD, CF[-A], /) = £* e n (P, CF[-A]),

2. £ a c c (TCD,CF[—A], /) = £ * e n (T C D , C F [- A] , /) . •

As regards the different i-modes, the observations sketched in the following
allow us to carry over our result contained in [16, Theorems 4.2, and 4.5]:

1. If we have only one-element teams, all i-modes introduced for PTCDGS co-
incide (with the classical i-mode). Hence, such PTCDGS accept all context-
sensitive languages.

2. The simulation also works when permitting larger (arbitrary) teams, since
it is possible to use different colours in the simulation of different genuine
context-sensitive rules (simulating a context-sensitive grammar in Kuroda
normal form). "Wrong" colours are alway sent to the failure symbol. Possibly,
if we choose teams containing more than one component, two or more rules of
the originally given context-sensitive grammar are simulated in parallel, but
this does no harm, since a sequentialization choosing singleton teams is always
possible. Further observe that a simulation of a genuine context-sensitive rule
by a i-mode component as given in [16, Theorems 4.2, and 4.5] always takes
the same number of steps, so that no garbage can be derived employing the
<2-mode. Hence, such TCDGS can also accept all context-sensitive languages.

3. As regards A-rules, they are simply useless in case of classical CDGS working
in i-mode, since such a rule is always applicable. A similar argument is
applied to (P)TCDGS working in <i-mode. The situation is different for
CDGS working in io-mode or in <2-m°de. Why? First, we can assume that
the type-O-grammar we are going to simulate has only one production of
the form E —» A, where £ is a special nonterminal symbol serving as a
place-holder for the empty word. Moreover, due to the closure properties
of £ 9 e " (RE) , we can assume an additional left-marker symbol # . Now, A-
productions can be simulated by three components, P\,i = { # —1* # , # —*
' } , PK2 = { # ' — # } , and Px,3 = {A — E}. When 'combining PXA and
P\ 3 into one team, arbitrarily many E's can be introduced. When using
free teams, other combinations are now possible which may block a <-mode
derivation prematurely. Therefore, this case remains as an open question.

376 Henning Fern au, Markus Holzer

We collect our observations in the following.

Theorem 6.3 For each f £ {<O1<I1<2}, we find in general

1. £ a " (P T C D , CF - A, /) = £ a c c (TCD, CF - A, /) = £» e n (CS), and

2. C°en{CS) C £ a c c (TCD, CF, /) C £ a c c (PTCD, C F , /) C £ f e n (R E) .

More specifically, we obtain by our third observation:

3. £ a c c (PTCD,CF,<i) = £ a c c (TCD,CF,<i) = £« e n (CS), and

4. £ a c c (PTCD, CF, t0) = £ a c c (PTCD, CF, t2) = £sen(RE). •

Comparing the generating versus the accepting capacity, we get:

Corollary 6.4 For each f £ { < o , < i , < 2 } , we find

1. £ f e n ((P)TCD, CF - A, /) C £ a c c ((P)TCD, CF - A, /) ;

2. £ a c c ((P)TCD, CF, /) C £ i c n ((P)TCD, CF, /) ;

3. £ a c c ((P)TCD,CF,<i) C £ 9 e n ((P)TCD,CF,< 1) ;

4. ^acc^pTCD, CF, g) — £ s e n (PTCD,CF, g), for g £ {<o,<2}- •

7 Conclusions

We continued our studies on accepting systems of grammars, paying special at-
tention towards internally hybrid modes and teams. In this way, we also found
first examples of grammar mechanisms whose generating power is greater than its
accepting power.

In [2], two variants of the <-mode, namely weak t and stagnation, have been
introduced: In weak <-mode a component Pj works on a string up to the point a
sentential form w is obtained with w =>pj v implies w = v. This corresponds to the
adult mechanism known from the theory of Lindenmayer systems. Now, another
component may start its work with w.

The stagnation-mode is defined as follows: a component Pj works on a string
deriving subsequently w\ =>pj w2 • • • wn, and wn v implies
W{ = v for some 1 < i < n. Now, another component may start its work with wn.

Analyzing the proof of [16, Theorem 4.2], we see that both variants also char-
acterize the context-sensitive languages when seen as language acceptors. These
results on the accepting capacity of these modes have been independently obtained
from [2].

Accepting Multi-Agent Systems II 377

References

[1] A. Atanasiu and V. Mitrana. The modular grammars. International Journal
of Computer Mathematics, 30:101-122, 1989.

[2] H. Bordihn and E. Csuhaj-Varjú. On Competence and Completeness in CD
Grammar Systems. In this volume.

[3] H. Bordihn and H. Fernau. Accepting grammars with regulation. International
Journal of Computer Mathematics, 53:1-18, 1994.

[4] H. Bordihn and H. Fernau. Accepting programmed grammars without non-
terminals. In 5. Gl Theorietag "Automaten und Formale Sprachen", Technical
Report 9503, Universität Gießen, Arbeitsgruppe Informatik, pages 4-16, 1995.

[5] H. Bordihn and H. Fernau. Accepting grammars and systems: an overview. In
J. Dassow, G. Rozenberg, and A. Salomaa, editors, Developments in Language
Theory II; at the crossroads of mathematics, computer science and biology,
pages 199-208. Singapore: World Scientific, 1996.

[6] H. Bordihn and H. Fernau. Accepting grammars and systems via context
condition grammars. Journal of Automata, Languages and Combinatorics,
1(2):97—112, 1996.

[7] E. Csuhaj-Varjú and J. Dassow. On cooperating/distributed grammar sys-
tems. J. Inf. Process. Cybern. EIK (formerly Elektron. Inf.verarb. Kybern.),
26(l/2):49-63, 1990.

[8] E. Csuhaj-Varjú et al. Grammar Systems: A Grammatical Approach to Dis-
tribution and Cooperation. London: Gordon and Breach, 1994.

[9] J. Dassow and Gh. Päun. Regulated Rewriting in Formal Language Theory,
volume 18 of EATCS Monographs in Theoretical Computer Science. Berlin:
Springer, 1989.

[10] R. Engelmore and T. Morgan. Blackboard Systems. Addison-Wesley, 1988.

[11] H. Fernau and H. Bordihn. Remarks on accepting parallel systems. Interna-
tional Journal of Computer Mathematics, 56:51-67, 1995.

[12] H. Fernau and R. Freund. Accepting array grammars with control mechanisms.
Unpublished manuscript, 1996.

[13] H. Fernau and R. Freund. Bounded parallelism in array grammars used for
character recognition. In P. Perner, P. Wang, and A. Rosenfeld, editors, Ad-
vances in Structural and Syntactical Pattern Recognition (Proceedings of the
SSPR'96), volume 1121 of LNCS, pages 40-49. Berlin: Springer, 1996.

378 Henning Fern au, Markus Holzer

[14] H. Fernau, R. Freund, and M. Holzer. External versus internal hybridization for
cooperating distributed grammar systems. Technical Report T R 185 -2 /FR-
1/96, Technische Universität Wien (Austria), 1996.

[15] H. Fernau and M. Holzer. Bidirectional cooperating distributed grammar
systems. Technical Report WSI-96-1, Universität Tiibingen (Germany),
Wilhelm-Schickard-Institut für Informatik, 1996.

[16] H. Fernau, M. Holzer, and H. Bordihn. Accepting multi-agent systems: the
case of cooperating distributed grammar systems. Computers and Artificial
Intelligence, 15(2-3):123-139, 1996.

[17] R. Freund. Array grammars with prescribed teams of array productions. In
Developments in Language Theory II; at the crossroads of mathematics, com-
puter science and biology, pages 220-229. London: Gordon and Breach, 1996.

[18] R. Freund and Gh. Päun. A variant of team cooperation in grammar systems.
Journal of Universal Computer Science, 1(2): 105-130, 1995.

[19] L. Kari, A. Mateescu, Gh. Päun, and A. Salomaa. Teams in cooperating
distributed grammar systems. Journal of Experimental and Theoretical AI,
7:347-359, 1995.

[20] R. Meersman and G. Rozenberg. Cooperating grammar systems. In Proceed-
ings of Mathematical Foundations of Computer Science MFCS'78, volume 64
of LNCS, pages 364-374. Berlin: Springer, 1978.

[21] R. Meersman, G. Rozenberg, and D. Vermeir. Persistent ETOL systems. In-
formation Sciences, 18:189-212, 1979.

[22] V. Mitrana. Hybrid cooperating/distributed grammar systems. Computers
and Artificial Intelligence, 12(l):83-88, 1993.

[23] N. J. Nilsson. Principles of Artificial Intelligence. Berlin: Springer, 1982.

[24] Gh. Päun. On the generative capacity of hybrid CD grammar systems. J. Inf.
Process. Cybern. EIK (formerly Elektron. Inf.verarb. Kybern.), 30(4):231-244,
1994.

[25] Gh. Päun. Grammar systems: a grammatical approach to distribution and
cooperation. In Automata, Languages and Programming; 22nd International
Colloquium, ICALP'95, Szeged, Hungary, volume 944 of LNCS, pages 429-443.
Berlin: Springer, 1995.

[26] Gh. Päun and G. Rozenberg. Prescribed teams of grammars. Acta Informatica,
31:525-537, 1994.

[27] E. L. Post. Formal reductions of the general combinatorial decision problem.
American Journal of Mathematics, 65:197-215, 1943.

Accepting Multi-Agent Systems II 379

[28] S. H. von Solms. Some notes on ETOL-languages. International Journal of
Computer Mathematics, 5(A):285-296, 1976.

[29] M. J. Wooldridge and N. R Jennings. Agent theories, architectures and lan-
guages: a survey. In M. J. Wooldridge and N. R. Jennings, editors, Intelligent
Agents; ECAI-94 Workshop on Agent Theories, Architectures, and Languages
(Amsterdam 1994), volume 890 of LNCS (LNAI), pages 1-39. Berlin: Springer,
1994.

