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Parallel Communicating Grammar Systems: 
Recent Results, Open Problems* 

Gheorghe PAUN* 

Abstract 

First, we recall several recent results concerning the generative power of 
parallel communicating (PC) grammar systems, including characterizations 
of recursively enumerable (RE) languages starting from PC grammar systems 
and their languages. Then, we prove that the simple matrix languages can be 
generated by PC grammar systems and finally we introduce a new class of PC 
grammar systems: when a component has to communicate, it may transmit 
any non-empty prefix of its current sentential form. Each RE language is 
the morphic image of the intersection with a regular language of a language 
generated by such a system. A series of open problems are pointed out in this 
context. 

1 Introduction 

This paper deals with only one class of grammar systems, the parallel communicat-
ing (PC) grammar systems, introduced in [24]. We do not discuss here cooperating 
distributed (CD) grammar systems, introduced in [4]. Of course, also in the case 
of PC grammar systems we do not cover all the recent results; for instance, we are 
not concerned here at all with a series of variants introduced in the last time. 

Informally speaking, a PC grammar system consists of several usual grammars, 
each of them having its own sentential form. In each time unit (a common clock 
divides the time in units, in a uniform way for all components) each component 
uses a rule, rewriting the associated sentential form. Special (query) symbols .are 
provided, pointing to components of the system. When a component i introduces 
the query symbol Qj, then the current sentential form of the component j will 
be sent to the component i, replacing the occurrence(s) of Qj. One component is 
distinguished as the master, and the language generated by it, alone or involving 
communications, is the language generated by the system. Several variants can be 
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considered, depending on the shape of the communication graph, on the action a 
component has to perform after communicating, and so on. 

The work of PC grammar systems is quite intricate, systems with a small num-
ber of components can generate one-letter non-regular languages, [5], characteri-
zations of recursively enumerable languages are obtained by (non-centralized) sys-
tems with context-sensitive components, [12], [25], each matrix language (generated 
without appearance checking) can be generated by a PC grammar system, too, 
[17], etc. Moreover, many basic questions proved to be very resistent and (with 
the exception of some particular cases) are still open. For instance, does the num-
ber of components induce an infinite hierarchy of families of languages generated 
by PC grammar systems with context-free components ? Which is the relation 
between families of languages generated by non-centralized PC grammar systems 
with context-free (arbitrary or A-free) rules and the family of context-sensitive lan-
guages ? Both grammatical techniques and complexity techniques were used, but 
without settling this latter question. 

Recently, several results were obtained which shed more light on the power of 
PC grammar systems. We recall some of them in the next section. Without solving 
the above mentioned questions, they provide a new indication about the difficulty of 
these questions: characterizations of recursively enumerable (RE) languages were 
obtained by adding to PC grammar systems certain features usual in language 
theory (for instance, lefmost derivation). We shall recall some results of this type 
in Section 3 below. 

These results are not the first of this type. For instance, characterizations of 
RE appear also in [19], using query words instead of query symbols, and in [6] 
and [14], using a variant of PC grammar systems where the communication is done 
by command, not on request (the component which sends the string to another 
component starts the communication and the communicated string is accepted 
only if it passes a given filter associated with the receiving component). 

Because PC grammar systems with leftmost derivation characterize RE, they 
trivially generate each simple matrix language; this has been proved in [17] without 
noticing the equality with RE. However, the leftmost restriction is not necessary 
in order to cover the power of simple matrix languages; we prove this in Section 4. 

Then, we introduce a new class of PC grammar systems, where prefixes of the 
current sentential forms may be communicated. Such systems are both very natural 
from the point of view of the returning-non-returning feature (when the whole 
string is communicated, then the component resumes working from its axiom; if 
a part of the sentential form remains, then one continue from it) and because a 
nice characterization of RE languages is again obtained: as the morphic image of 
the intersection of a regular language with a language generated by a system as 
above. (This is similar to the well-known Chomsky-Schützenberger characterization 
of context-free languages.) The proof makes use of a powerful result in formal 
language theory: a characterization of recursively enumerable languages starting 
from a rather restricted class of languages, the so-called twin-shuffle languages, and 
the operations of intersection with regular languages and erasing morphisms. This 
result appears in [11]; a proof can be also found in [28]. A twin-shuffle language 
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over a given alphabet V is the set of all strings obtained by arbitrarily shuffling 
each string over V with a "twin" of the string, obtained by marking each symbol 
with a bar. Modulo an intersection with a regular language, such a language can be 
generated in a relatively easy way by a PC grammar system with (A-free) context-
free rules allowed to communicate prefixes. 

Several open problems are formulated, both for usual PC grammar systems and 
for the new variant of PC grammar systems. 

2 Parallel communicating grammar systems 

As usual, for an alphabet V we denote by V* the free monoid generated by V under 
the operation of concatenation; the empty string is denoted by A and V* — {A} 
is denoted by V+. For x £ V*,U C V, |x| is the length of x and |x|c/ is the 
number of occurrences in x of symbols in U. A Chomsky grammar is denoted by 
G = (N, T, S, P), where N is the nonterminal alphabet, T is the terminal alphabet, 
S is the axiom and P is the set of rewriting rules. The language generated by G 
is denoted by L(G) and REG, LIN, CF, CS, RE are the families of regular, linear, 
context-free, context-sensitive, and recursively enumerable languages, respectively. 
We also denote by MAT, MATX the families of languages generated by matrix 
grammars (without appearance checking) with A-free context-free rules, and with 
arbitrary context-free rules, respectively. Two languages L\, L-> are considered 
equal if they differ only in the empty string, that is if L\ — {A} = Lo — {A}. 

For basic elements of formal language theory we refer to [7], [26], [27]. 
A parallel communicating (PC, for short) grammar system of degree n,n > 1 

([24], [5]), is a construct 

T = (N,T,K,(P1,S1),...,(Pn,S„)), 

where N,T,K are pairwise disjoint alphabets, with I\ = { Q i , . . . , Qn}, Si £ N, 
and Pi are finite sets of rewriting rules over N U T U A", 1 < i < n; the elements of 
N are nonterminal symbols, those of T are terminals-, the elements of K are called 
query symbols, the pairs (Pi, Si) are the components of the system (often, the sets 
Pi are called components). Note that the query symbols are associated in a one-to-
one manner with the components. When discussing the type of the components in 
Chomsky hierarchy, the query symbols are interpreted as nonterminals. In general, 
the axiom of component i is denoted by Si and its associated query symbol by 
Qi] when this is the case, we do not explicitly specify these elements; if this is not 
the case, then the axioms and the query symbols are explicitly defined for each 
component of a PC grammar system. 

For ( x i , . . . , xn),(yi,..., yn), with Xi, yi £ (TVUTU A')*, \ < i < n (we call such 
an n-tuple a configuration), and x\ £T*, we write ( x i , . . . , x„) = > r (yi, • • •, yn) if 
one of the following two cases holds: 

(i) \xi\k = 0 for all 1 < i < n\ then x,- =>pt yi or Xj = yi £ T*, 1 < i < n; 
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(ii) there is i, 1 < i < n, such that \xi\n > 0; we write such a string x,- as 

x,- = ziQilz2Qi3 • • • ztQi,zt+i, 

for t > 1,2,- G (N U T ) ' , 1 < i < t + 1; if |x { j\K = 0 for all 1 < j < t, then 

Vi = z1xilz2Xi2 .. ,ZtXitZt+1, 

[and i/ij = Si^ 1 < j < <]; otherwise y,- = x,-. For all unspecified i we have 
Vi = Si-

Point (i) defines a rewriting step (componentwise, synchronously, using one rule 
in all components whose current strings are not terminal), (ii) defines a commu-
nication step: the query symbols QXj. introduced in some x,- are replaced by the 
associated strings i,- ., providing that these strings do not contain further query 
symbols. The communication has priority over rewriting (a rewriting step is al-
lowed only when no query symbol appears in the current configuration). The work 
of the system is blocked when circular queries appear, as well as when no query 
symbol is present but point (i) is not fulfilled because a component cannot rewrite 
its sentential form, although it is a nonterminal string. 

The above considered relation = > r is said to be performed in the returning 
mode: after communicating, a component resumes working from its axiom. If the 
brackets, [and y,- . = 5 t j , 1 < i < t], are removed, then we obtain the non-returning 
mode of derivation: after communicating, a component continues the processing of 
the current string. We denote by the obtained relation. 

The language generated by T is the language generated by its first component 
(Gi above), when starting from ( S i , . . . , 5„ ) , that is 

LF(T) = {WET* | ( 5 i 1 . . . , 5 „ ) = > ; (u>, a 2 ) . . . ,<*„), 
for ai G (N U T U / { ) * , 2 < i < n} , / G { r ,n r } . 

(No attention is paid to strings in the components 2 , . . . , n in the last configuration 
of a derivation; moreover, it is supposed that the work of F stops when a terminal 
string is obtained by the first component.) 

Let us consider two examples. For the system 

Ti = ( { 5 i , 5 2 , 53 } , { a ,6 , c } ,A ' , (P 1 , 5 i ) , (P 2 , 52 ) , ( / J 3 ,5 3 ) ) , 
Pi = {Si —> abc, Si —• a2b2c2,Si —• aSi, Si —• a3Q2, S2 —*• b2Q3, S3 —• c}, 
P2 = {S2 - 6 S 2 } , 

P3 = { S 3 - c S 3 } , 

we obtain 
Lr(r) = Lnr(T) = {anbncn | n > 1}. 

Here is a derivation in IV 

( S 1 . S 2 . S 3 ) = > / ( a S i , 6 S 2 , c S 3 ) = > / - . . = > / ( a n S i , 6 n S 2 , c n S 3 ) , 

( a " + 3 Q 2 , 6 " + 1 S 2 , c " + 1 S 3 ) = » / ( a n + 3 6 n + 1 S 2 , y 2 , c " + 1 S 3 ) 

(an+3bn+3Q3,y'2,cn+2S3) =>} (a" + 3 6 n + 3 c n + 2 S 3 , y'2, y3) 
= > , ( a n + 3 6 n + 3 c n + 3 , y2, ¡/3), n > 0, 
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for / 6 { r ,nr } ; in the returning case we have y2 = S2,I/2 = bS2, ]/2 — 
b2S2,y3 = S3,?/i, = cS3, in the non-returning case y2 = 6n+1S2,t/2 = bn+2S2,x/2 = 
bn + 3S2 ,y3 = cn + 2S3,y^ = cn + 3S3- Because the second and the third components 
communicate only once to the first component, there is no difference between the 
language generated in the returning mode and the language generated in the non-
returning mode. This is not the case for the following system. 

T2 = ( { S i , S 2 } , { « } , K, (Pi, S1),(P2, S2)), 
Pi = {Si aQ2, S2 —• aQ2, S2 —> a} , 
P2 = {S2 - aS2} . 

The reader might check that we obtain 

L r ( r 2 ) = { a 2 " + 1 | n > 1}, 
( m + l ) ( m + 2 ) 

Lnr(r2) = {aL <J 1 \m> 1}. 

Two basic classes of PC grammar systems can be distinguished: centralized. 
(only G i, the master of the system, is allowed to introduce query symbols), and non-
centralized (no restriction is imposed on the introduction of query symbols). There-
fore, we get four basic families of languages: denote by PCn(X), n > 1, the family of 
languages generated in the returning mode by non-centralized PC grammar systems 
with at most n components and with rules of type .Y; when centralized systems are 
used, we add the symbol C, when the non-returning mode of derivation is used, we 
add the symbol N, thus obtaining the families CPCn(X), NPCn(X), NCPCn(X). 
When no restriction on the number of components is imposed, then we remove the 
subscript n, obtaining PC(X), CPC(X), NPC(X), NCPC(X). In what concerns 
the type X of rules, they can be A-free right-linear (denoted by RL), A-free context-
free ( C F ) , arbitrary right-linear (denoted by RLX), arbitrary context-free ( C F X ) , 
and so on. Note that because we consider as equal the languages differing at most 
by A, we need no A-rule for introducing the empty string in our languages. 

The diagram in Figure 1 indicates the relations between the eight basic families 
of languages defined above, for the A-free case, as well as their relationships with 
families in the Chomsky hierarchy. The arrows indicate inclusions, not necessarily 
proper; the families not connected by a path are not necessarily incomparable. 

Among the newest relations contained in this diagram, we mention: 

1. NPC(RL) C PC(RL) and NPC(CF) C PC(CF). (The first result of this 
type has been given in [18], NCPC(CF) C PC(CF), hence starting from 
centralized systems, then a proof for the inclusion NPC(LIN) C PC(LIN) 
has been done in [29]; the question was settled in [9].) 

2. MAT C PC(CF) ([17]). 

3. CPC(RL) C MAT ([20]). 

4. LIN C PC(RL) ([10]). 
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5. The families CPC(RL), NCPC(RL) are incomparable and also incomparable 
with LIN ([5] and [10]). 

From the last item above we get the strictness of the inclusions of families 
CPC(RL), NCPC(RL) in the families above them in this diagram. Not contained 
in the diagram is the inclusion PC(RL) Ç CS proved in [3] (where, in fact, the 
stronger result is proved that PC(LIN) Ç CS; the inclusion PC(RL) Ç CS is 
already proved in [2]). 

RE 

Figure 1 

Several problems concerning the generative power of PC grammar systems are 
still open. We list here some of them. 

1. Which of the hierarchies Yn(X),n> 1, Y 6 {PC,CPC, N PC, NCPC},X e 
{RL,CF}, are infinite ? The answer is known only for CPCn(RL) and 
NCPCn(RL), which, as expected, are infinite hierarchies; see [15]. 

2. Which of the inclusions not mentioned above as being proper are proper ? 

3. Which is the relation between families CPC(CF) and NCPC(CF) ? 



PC Grammar Systems: Recent Results, Open Problems 387 

4. Which of the inclusions Y(X) C Y(Xx), for all possible X, Y, are proper ? 

5. Which is the relation between PC(CF), NPC(CF) and CS ? The same when 
A-rules are allowed. Several authors have announced proofs of the inclusion 
PC(CF) C CS, but none of them is confirmed yet. 

6. Which are the relations between LIN and NPC(RL) ? The same for the 
families MAT and each of PC(RL), NPC(RL), NPC(CF). 

3 Characterizing RE 
First, we recall a result in [23], concerning PC grammar systems with leftmost 
derivation. It is known from regulated rewriting area, [7], that such a restriction 
increases the power of grammars with controlled derivation. This is the case also 
for PC grammar systems. Moreover, the rather surprising result is obtained that 
RE can be characterized by such systems with A-free rules. (The explanation lies 
in the fact that we can use the components of the system other than the master 
as working space where no erasing is necessary, because we ignore the contents of 
these components at the end of a derivation.) 

We say that a context-free rule A —» v is applied in the leftmost mode to a 
string x, and we denote by x =>, y the derivation, if x = x\Ax2,y = X]_vx2 

and |xi| dom(Pi) = 0, where dom(Pi) = {B£N\B-^z£ P,}. We denote 
by Lg i(T),g G {r, nr}, the language generated by a PC grammar system T in 
the mode g when using leftmost derivations. By PC,(X) we denote the family of 
languages L r , ( r ) , for T a PC grammar system of type X\ in the non-returning case 
we write NPCi(X). 

The inclusions PC,(CP) C PC,(CPA), NPC,(CF) C NPC,(CFX) are obvi-
ous. We do not know how large the families NPCi(CF), NPCi(CFx) are, but, 
surprisingly, we have 

T h e o r e m 1. P C , ( C P ) = P C , ( C P A ) = RE. 

The idea of the proof is the following. 
Take a language L C T*, L G RE. It is known (see [27]) that there are two new 

symbols ci,c2 and a language L' G CS such that L' C LlC\C2 and for each w G L 
there is i > 0 such that wc\cl2 G L'. 

Take a (A-free) grammar G = (NQ,TU { c i , C 2 } , So, Po) for the language L', 
in Kuroda normal form, with the non-context-free rules labelled in a one-to-one 
manner, r : AB —• CD. Assume that for all A, B G No there also is a rule AB —• AB 
in P 0 . 

One constructs the PC grammar system T working as follows. 
Certain components of it generate strings of the form w'c'^'E, for №CjC2 G L' 

(w' is obtained from w by priming its symbols). Then, other components take the 
string W'C'YC^E generated by the previous group and adjoin to it a string y"Z, where 
y G T+ and y" contains double primes. At the same time, one of the components 
(specifically, P4 in the construction) produces a terminal string equal to y. The 
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string w'c'1c'2'Ey"Z is took by another group of components which check whether 
or not w = y. When this is true, the master component can ask for the string of 
P4. In this way, Pi receives a terminal string equal to w, hence a string in L. 

In the characterization above, the use of context-free rules is esential. Because 
LIN is incomparable with CPC(RLX) and NCPC(RLX) and it is conjectured 
that the same result holds true for NPC(RLX), the known characterizations of RE 
languages starting from linear languages, [1], [16], cannot be directly extended to 
these classes of PC grammar systems. Still, such results are true for the family 
NPC(RLX) at least. Moreover, the proof shows a very close similarity of linear 
languages and copy languages. Note that every linear language L can be written 
in the form L = {h(x mi(x)) \ x £ Lo}, for a regular language Lo and a morphism 
h. Removing the mirror image, we get the copy languages, which characterize RE 
in the same way as linear languages. 

For a language L, denote copy(L) = { 11 | x £ L}. Proofs of the following 
lemmas can be found in [23]. 

Lemma 1. For each language L £ RE there are two regular languages L\,L2 

and three morphisms hi,h2,h3 such that L = h3(hi(copy(L\)) f) h2(copy(L2))). 

Lemma 2. For each language L £ RE there are two regular languages L\,L2 

and two morphisms h\,h2 such that L — hi(copy(Li))\h2(copy(L2)). 
(\ denotes the left quotient: L\L' = {x \ zx E L', z £ L}.) 

Lemma 3. For each regular language L and morphism h we have h(copy(L)) £ 
NPC(RLX). 

Synthesizing Lemmas 1, 2, 3 above, we get 

Theorem 2. For each language L £ RE we can find L\, L2, ¿3, £4 £ 
NPC(RLX) and a morphism h such that L = h(L 1 fl L2) = L3\L4. 

In the proofs of Theorems 1, 2 above no bound on the number of components 
of PC grammar systems characterizing the family RE is imposed. This is not the 
case in [25] and [12], where two context-sensitive components in the non-returning 
case and three in the returning case are enough (and necessary) for characterizing 
RE using PC grammar systems. It is an open problem whether or not a bounded 
number of components is enough also in the above theorems. It is also open the 
case of non-returning PC grammar systems with context-free rules and leftmost 
derivation; we conjecture that such systems cannot characterize RE. 

4 Simple matrix grammars versus PC grammar 
systems 

In [17] it is proved that PC grammar systems with leftmost derivation can generate 
each simple matrix language of [13]. The previous Theorem 1 trivially implies this 
result. Still, one can prove that the simple matrix languages can be generated by 
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PC grammar systems with arbitrary context-free components in the usual mode of 
derivation. 

A simple matrix grammar (of degree n, n > 1) is an (n + 3)-tuple G = 
(Ni,..., Nn,T, S, M), where 

1. N\,..., Nn,T are disjoint alphabets (N{, 1 < i < n, are nonterminal alpha-
bets and T is the terminal one); we denote N = (J"=1 TV,-; 

2. S £ NUT (the axiom); 

3. M is a finite set of matrix rules of the forms: 

a) ( 5 — ®), x&T*-

b) AXA2 ...An), Ai eNi,l<i< n,; 

c) (Ai ->• ^n * xn ), Ai £ Ni,Xi £ (Ni UT)*,\<i<n, 

and = |xj |jVj for all 1 < i,j < n. 

For w,z £ (N U T)* we write w ==> z if one of the following two cases holds: 

(i) w = S and (5 — z) £ M ; 

(ii) w = UIAIVIU2A2V2 .. .unAnvn, z = 111x^111-2x^2 . • .unxnv„, where Ui £ T*, Vi £ (Ni U T)*, 1 < i < n, and (^1 xu . .., A n * ) £ M. 

Therefore, the derivation is done in the leftmost manner on each of the n sub-
strings in (Ni U T)* of the derived string. Then, 

L(G) = {X£T* I S =>* x}. 

We denote by SM the family of languages generated by simple matrix grammars 
(of arbitrary degree) with A-free context-free rules; when A-rules are allowed, we 
write SMX for the corresponding family. 

The following results are known (see proofs and references in [7]): 

1. CF C SM C SMX C CS; 

2. Each language in SMX is semilinear. 

We shall essentially use below the following characterization of languages in the 
family SMX. 

Let V be an alphabet and n be a natural number. Denote 

[V,n] = {(a,i) | a £ V, 1 < i < n), 

and define the mapping rn : [V, n]* — • (K*)n by 

1. r„(A) = (A , . . . ,A) , 
2. rn((a,i)x) = (xi,... ,xi-i,axi,xi+i,.. .,xn), 

for a £ V, 1 < i < n, x £ [V, n]*,rn(x) = ( x i , . . . , xn). 
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Consider also the mapping / : (V*)N —• V* defined by 

f(xi,x2,• • • ,xn) = X1X2...x„. 

Extend these mappings in the natural way to languages. 
From Lemma 1.5.2 in [7] we get 

Lemma 4. A language L C T* is in the family SMX if and only if there is an 
integer n > 1 and a language L' £ CF, L C [T, n]*, such that L = f(rn(L')). 

Using this characterization, we can obtain the following result. 

Theorem 3. SMX C PC(CFX). 

Proof. Because PC(CFX) contains non-semilinear languages (see [5]), it is 
enough to prove the inclusion. 

Consider a simple matrix language L C T*. If £ is finite, then trivially L £ 
PC(CFX). Assume that L is infinite. According to Lemma 4, consider V £ 
CF, L' C [T, n]*, such that L = / ( r n (!'))• Let G = (N0, [T, n], S0, P0) be a context-
free grammar for the language L'. We construct the PC grammar system 

r = (N, T, I<, (Su Pi), (S2, P2), (S3, P3), (S4, P4), (S4+1, P4+1), • • •, ( 5 4 + „ , P4+n)), 

with 

N = {Si,S< | 1 < i < 4 + n} U {(a, i) | a 6 T, 1 < i < n) U A 0̂ U {Z}, 

Pi = {•?! —»• Si, Si —• QsQG .. .Qa+U}, 
P2 = —• S2, S2 —> Q3, S'3 —> 53}, 
P3 = — Z , S 3 —• S3,53 —»• 53}, 
P4 = {5 4 - 5 0 } U P0, 

P4+> = {^-(-i —» 54+i, 54+i —> 54+i, S'4+i —i> Q3, Z —• Q4} 
U {(a, j) — A | a £ T, 1 < j < n, j ± »} U {(a, i) — a | a £ T } , 

for 1 = 1 ,2 , . . . ,n. 

The idea behind this construction is the following. The component P4 gener-
ates a string in the language L' (over the alphabet [T, n]). When the work of P4 
is finished, all the components PA+i,i = l , 2 , . . . , n , ask for the produced string. 
The synchronization of these queries (and the fact that each component Pi+,- can 
introduce only once the query symbol Q3) is ensured by the "trigger technique" 
made possible by the synchronization feature of PC grammar systems and accom-
plished here by the components P 2 ,p3 (see details below). Each component Pj+i 
erases from the received string all symbols (a,j) with j / i, and replaces (a, i) by 
a, a £ T. In this way, together with Pi, they simulate at the same time the action 
of Tn and of / : when communicated to the master, which introduces the string 
QzQq • • • QA+n, the strings of P 5 , . . . , P4+n must contain only terminals and they 
are now arranged in the order imposed by rn and / . 
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Here are some details of the work of I\ 
If P2 starts by introducing the symbol Q3, then it will receive either the symbol 

Z and the derivation is blocked, or the symbol S3 and no terminal string will be 
obtained, because Pj+j, 1 < i < n, cannot ask for Z at the first step. Thus, we have 
to start with S2 —* S2 in the second component and S3 —• S'3 in the third one (if we 
introduce Z in the third component, then the derivation is blocked, Z cannot be 
rewritten here or communicated). This means that P3 will work an arbitrarily large 
number of steps just using S'3 —• S'3. It can return to S3 only when P2 introduces 
Q3. After receiving S3, the component P> will continue for ever with the rule 
S3 —• S3. Therefore, at the next step P3 has to use S3 —• Z, otherwise Z will be 
never introduced. If not all components P4+1, 1 introduce Q3 at the same 
time, they must introduce it at the next step, otherwise they cannot receive the 
symbol Z. But, after receiving Z, any component P4+i has to use Z —• Q4. At the 
same step, P3 will either introduce S3 and no terminal string will be obtained (S3 

is communicated to components P4+i which have not introduced Q3 before), or P3 

will introduce Z. After satisfying the query symbols, P3 returns to its axiom, and 
P4 does the same; the components which have received the symbol Z will introduce 
Q4 and they will receive So from the fourth component. The derivation is blocked. 

The only case when the derivation will continue leading to a terminal string is 
that when all components P4+i, 1 < i < n, ask for the string of P4 at the same 
time. 

At any moment, the component P\ can ask for the strings of P4+i, 1 < i < n. 
If it receives strings containing symbols in No or in [T, n], then the derivation is 
blocked. Thus, the only terminal strings produced by T are those in / ( r „ (L(G0) ) ) , 
which completes the proof. • 

5 Prefix communication in PC grammar systems 

Let us consider a slight modification in the definition of a communication step in a 
PC grammar system: when a component i introduces the query symbol Qj, then 
component j communicates to component i a non-empty prefix of its current senten-
tial form. If the whole string is communicated, then component j resumes working 
from its axiom; if a non-empty string remains in component j, then component j 
continues processing this string. We denote by Lp (T) the language generated by a 
system T in this way. We denote by PPCn{X) the family of languages generated 
by prefix communicating PC grammar systems with at most n, n > 1, components 
of type X; when n is not specified, we remove it. When centralized systems are 
used, then we add the letter C, as usual. 

One can consider several variants: to communicate only a terminal prefix, or, 
deterministically, the maximal terminal prefix, or to allow also the communication 
of the empty word. Their study, as well as the systematic study of the non-restricted 
class considered above, is left to the reader. Here we give only one result, again a 
characterization of RE languages. 
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Let x, y be strings over some alphabet V. Their shuffle is the set 

x 111 y = {xiyix2y-2 • -.xnyn | x = x x x 2 ...xn,y = yxy2 •••yn, 
Xi,Vi € V*,l < i < n,n > 1}. 

Consider an alphabet V, take a new symbol a for each a £ V, denote V = {a | 
a £ V} , and define the coding h : V* —• V by h(a) = a, a £ V. The string h(x) 
is also denoted by x. 

The twin-shuffle language over V, denoted twin(V), is defined by 

twin(V) = y (x 111 x). 
rev-

In [11] (see also [28], Theorem 6.10) one proves the following characterization 
of recursively enumerable languages: 

Lemma 5. For every recursively enumerable language L there is a twin-
shuffle language twin(V), a regular language R and a weak coding h such that 
L = h(twin(V) n R). 

Based on this result, we can obtain 

Theorem 4. For every recursively enumerable language L there is a PC gram-
mar system r, a regular language R, and a weak coding h such that 

L = h(Lp(T)nR). 

Proof. For a language L £ RE, consider the morphism h and the regular 
language R as in the previous lemma. Construct the PC grammar system 

r = (N, 1/ U ? U {c, c}, I<, (Pi, Si), (P2, s2), (P3, S3), (P4, S4 ) ) , 

with 

N = { S i , S 2 , S 3 , S 4 , X } u { X a \a£V}, 

P i = { S i ^ S i , S i - ^ Q 2 S u S i Q 3 S 1 , S i - > Q2Q3, S i - Q3Q2}, 

P2 = {S2 Qa, X - T c } U {Xa aS2 | a £ V), 
P3 = {S 3 - Qa, X c} U {Xa - aS3 | a £ V } , 
P4 = {S4 - Xa, Xa X a | a £ V} U {S4 X}. 

No communication from the first component to another component is ever per-
formed. Component P4 introduces symbols Xa for a £ V, at each step components 
P 2 ,P 3 ask for these symbols, hence component P4 has to send it to P 2 ,p3 and 
resume working from its axiom. Components P 2 ,p3 produce in this way strings 
x ,x , for the same x £ V*. When P4 introduces the symbol X, then it becomes 
c in P2 and c in P3. Asking for prefixes of the strings produced by P2 and P3 , 
in all possible orders, component P\ builds a shuffle of the two strings, x and x. 
Therefore, twin(V) C Lp(T). 
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The opposite inclusion is not true, because of the possibility of sending any prefix 
to Pi (not necessarily covering the whole strings of P2, P3). However, L p ( r ) n ( ( V U 
V)*{cc} ) = twin(V){cc\: we have to communicate to Pi a string of the form xc 
from P2 and a string yc from P3 (and nothing else); as we have seen above, we 
must have x = y. 

Consequently, L = h(Lp(T) fl R'), where 

R' = J R n ( ( i / u F ) * { c c } ) . 

This completes the proof. • 

Corollary 1. For each family FL of language such thai FL C RE and FL is 
closed under intersection with regular languages and arbitrary morphisms we have 
PPC4(CF) -FL±%. 

Proof. In view of Lemma 5 and the properties of family FL, the inclusion 
PPCA(CF) C FL would imply RE C FL, a contradiction. • 

Important families having the properties of FL above are MATX and ETOL (the 
family of languages generated by tabled extended L systems without interaction, 
known to be a full AFL strictly included in CS, [26]). Therefore, PPCn(CF), con-
tains languages outside these families for all n > 4. On the other hand, we believe 
that MAT and ETOL contain languages which are not in PPC(CFX). If confirmed, 
this conjecture will imply the incomparability of PPC(CF), PPC(CFX) with these 
families, as well as the fact that PPC(CFX) is not closed under intersection with 
regular languages (it is obviously closed under arbitrary morphisms). 
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