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Parallel Communicating Grammar Systems 
with Separated Alphabets* 

Valeria MIHALACHE t 

Abstract 

The generative capacity of parallel communicating grammar systems is 
considered in the context that the component grammars have distinct ter-
minal and nonterminal sets. In the regular case, this results in strictly more 
powerful systems in comparison to the classical ones. In the context-free case, 
characterization of recursively enumerable languages is obtained when A-rules 
are allowed in non-centralized returning systems, deriving in the synchronized 
mode. Unsynchronized context-free systems with separated alphabets have 
the same power as the corresponding usual systems. 

1 Introduction 
One of the main trends of our days in several fields of computer science is to solve 
a complex problem by dividing it into subproblems, and then having it solved in 
a cooperative mode by several "processors". The concretization of this trend in 
grammar theory are the so-called grammar systems. 

There are two basic models of grammar systems: cooperating distributed (CD, 
for short) grammar systems, which have been introduced in [2] (a former variant can 
be found in [7]; a particular case appears also in [1]), and parallel communicating 
(PC, for short) grammar systems, which have been introduced in [10]. 

Roughly speaking, a grammar system consists of several (Chomsky) grammars 
(called components) working together, towards generating a common language. In a 
CD grammar system the component grammars work in turn, on the same sentential 
form, only one being active at a given moment, according to a predefined protocol. 
In a PC grammar system the components work simultaneously, in a synchronized 
manner, each having its own sentential form and cooperating with the others by 
communication, which is done by request. The Artificial Intelligence counterpart 
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of a CD grammar system is the blackboard model in problem solving, whereas to 
PC grammar system the classroom model corresponds (see [3]). 

In the original definition, for parallel communicating grammar systems it is as-
sumed that all the grammars have the same terminal and nonterminal sets. This 
is very convenient in terms of the classroom model. Thus, it is rather natural to 
assume that all the pupils in a classroom have similar background and similar ab-
bilities (that is, the associated grammars in the system share the same nonterminal 
set), and also that they are asked to perform similar tasks (in the corresponding 
formal modélisation, this implies the same terminal set for all the grammars). How-
ever, if one considers that not pupils are working towards solving a problem, but 
agents, instead, the working protocol being the same as in the classroom model, 
such assumptions are not natural anymore. Agents can have to perform totally 
different tasks, and they can have different skills. 

Such a set-up can be modeled in the grammar systems framework by a slightly 
modification of the original variant of PC grammar systems. One can consider that 
any of the component grammars of the system has its own terminal and nonterminal 
sets ([3], [9]). The main difference between these systems and the usual ones is that 
here the same letter can act as terminal symbol in one grammar and nonterminal 
in another one. In the regular case, PC grammar systems modified like that are 
proved to be more powerful than systems of the initial form. Furthermore, in the 
context-free case, characterization of recursively enumerable languages is obtained. 

2 Preliminary definitions 
Throughout this paper, we use the notation and basic results of formal language 
theory from [4], [11] ; for grammar systems notions we refer to [3], [5]. We specify 
here only some notation. 

For an alphabet V, V* denotes the free monoid generated by V] the empty 
string is denoted by A, |x| is the length of x G V* and \x\u is the number of 
occurrences in x G V* of symbols of U C V. The classes of regular, context-free, 
type-0 grammars and matrix grammars with appearance checking are denoted by 
REG, CF, RE, MATac, respectively. Unless otherwise specified, we consider in this 
paper only generative tools without A-productions. 

For a class X of generative mechanisms, the family of languages generated by 
elements of X is denoted by L (X) . 

Definition 1 Let n > 1 be a natural number. A parallel communicating grammar 
system of degree n with separated alphabets (PC grammar system of type s, for 
short) is an (n + 1 )-tuple 

T = (K,G1,...,Gn), 
where K — {Qi, ..., Q„} and 

Gi = (Nil>I<,Ti,Pi,Si),l<i<n, 

are usual Chomsky grammars (the sets Ni,Ti,K being mutually disjoint, for any 
i, 1 < i < n). 



PC Grammar Systems with Separated Alphabets 399 

We write Vi = Nt U T{ U K and Vr = \J"=i(Ni u Ti) u K- T h e grammars 
G>11 < 1 < i ) are called components of the system, and the elements of K are 
called query symbols; their indices, 1 , . . . , n, point to the components G\, • •., Gn, 
respectively. 

Remark that the definiton of PC grammar systems of type s does not require 
Ni n Tj = 0 for 1 < i,j <n,i± j. 

The convention throughout this paper is to denote the start symbol and the 
production set of a component of a system with the same indices as the grammar 
component is denoted. This convention holds for query symbols, too, so we do not 
need to specify in details the set of query symbols for a given system. 

The derivation in PC grammar systems of type s is defined in a similar manner 
as for usual PC grammar systems, that is 

Definition 2 Given a PC grammar system T = (K, Gi,..., Gn) as above, for two 
n-tuples (xi,x2,...,xn),(yi, y2, ...,J/n), 6 ^ , l < i < n, xi £ Tf, we write 
( x i , . . . , x „ ) ==>• ( t / i , . . . , yn) if one of the next two cases holds: 

(i) = 0,1 < i < n, and for each i, 1 < i < n, we have Xi yi in the 
grammar Gi, or Xi E T* and x,- = yi; 

(ii) there is an i, 1 < i < n, such that > 0; then for each such i, we write 
Xi = ziQilz2Qi2 • • .ztQitzt+i,t > 1, for zj € Vp,\zj\K = 0,1 < j < t + 1; 
*/ l^ijlif = 0,1 < j < t, then yi = ziXilz2Xi1... ztXitzt+\, providing that 
yi € V*, [and yi:j = Si:j, 1 < j < t]; when, for some j, 1 < j < t, Ix.Jk # 
then yi = xa for all i, 1 < i < n, for which yi is not specified above, we have 
yi - Xi. 

Point (i) defines (componentwise) derivation steps, whereas point (ii) defines 
communication steps. * In a communication operation, when the communicated 
string Xj replaces the query symbol Qj, we say that Qj is satisfied. The com-
munication has priority over the effective rewriting. If some query symbols are not 
satisfied at a given communication step, then they will have to be satisfied at a 
next one. No rewriting is possible when at least one query symbol is present. 

The work of a PC grammar system with separated alphabets is blocked in three 
cases: (1) when a component x,- of the current n-tuple ( x i , . . . , x „ ) (sometimes we 
shall call it a configuration) is not terminal with respect to Gi, but no rule of Gi can 
be applied to Xj, or (2) when a circular query appears, that is (*?,-, introduces Qi3,Gi3 

introduces Qi3, and so on, until Gik_1 introduces Qik and Gik introduces Qj, 
(because only strings without query symbols can be communicated), or (3) when 
after satisfying a query, the sentential form of a grammar is not a string over the 
alphabet of that grammar, that is, in case (ii) we have z\Xilz2Xi3.. .z (x, (z(+i ^ V̂ -* 
(we recall that for usual PC grammar systems case (3) does not appear). 

Definition 3 The language generated by a PC grammar system T as above is 

L(T) = {x € T ; | (Si, S2,..., Sn) (x, a2,..., an), G Vr*, 2 < i < n} . 
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Observe that due to the definition of the language generated by a PC grammar 
system of type s we have that the terminal set of the system is actually the same 
as the terminal set of the first component of the system. From the definition of 
the derivation relation it follows that once the sentential form of Gi has become a 
terminal string, the derivation cannot continue anymore in the system. 

Just as in the case of usual PC grammar systems, one distinguishes several 
variants. 

Definition 4 If in Definition 2 only grammar G\ is allowed to introduce query 
symbols, then we say that T is a centralized PC grammar system of type s; in 
contrast, the unrestricted case is called non-centralized. 

A PC grammar system of type s is said to be returning (to axiom) if, after 
communicating, each component returns to axiom. A PC grammar system of type 
s is non-returning if in point (ii) of Definition 2, the brackets, 

[and yi} = S{j, I < j <t], 

are omitted. 

A PC grammar system is said to be regular, context-free, A-free, etc., when the 
rules of its components are of these types. 

For n > 1 and X £ {REG, CF}, we shall denote the families of languages 
generated by non-returning centralized, non-returning non-centralized, returning 
centralized, and returning non-centralized, respectively, PC grammar systems of 
type s, of degree at most n and with components of type X by 

L(NCPCnX, s) ; L(NPCnX,s) •, L(CPCnX,s) • L(PCnX,s). 

When an arbitrary number of components is considered, we shall use * instead of 
n. 

If we still require in point (ii) of Definition 2 that those Xij which are to be 
communicated must be terminal strings in the grammars whose sentential forms 
they are, that is x^. G Tf, then we say that T derives in the terminal mode. The 
language generated by T in this way is denoted by LT(V) and the family corre-
s p o n d i n g t o L(YNX, s), L(YMX, s) as a b o v e is d e n o t e d by Lx(Y„X, s), LT(Y*X, S). 
Here and in the sequel Y ranges over {NCPC, NPC, CPC, PC) or some specified 
subset of it. 

If we replace point (i) in Definition 2 by 
(i')!®«!^ = 0,1 < i < n and, for each i, 1 < i < n, we have either Xj =>• yi in 

grammar Gi, or Xi = j/,-, then, just as in the case of usual PC grammar systems, 
we get a PC grammar system of type s deriving in an unsynchronized manner. 

Denote by ¿ t / ( r ) the language generated by T in this way. The family of lan-
guages generated by unsynchronized PC grammar systems of type s corresponding 
to a family L(Y N X, s), L(Y,X, s) as above is denoted by LU(YNX, s), LU(Y,X , s). 
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In order to illustrate the difference between usual PC grammar systems and the 
ones studied here, let us consider an example. 

Example : Let T = ( K , G\, G2), be the returning non-centralized PC grammar 
system with 

Gj = ({SuA,B,Y},{X,a,b,c}, 
{Si XA, A XA, Si —• aB, B -+ aB, B aQ2, Y 6}, Si) 

G2 = ({S2, X , A}, {Y, c}, {S2 —* YS2,S2 YQi,X —> c,A c} , S2) 

If we start a derivation by using in G\ the production Si —• aB, then we have 
either (Si, S2) ^(ak+1Q2,Yk+1Z), k> l,Ze{Qi,S2}, 

and then the derivation is blocked due to circular query, if Z is Q1, or due to 
S ^ N t U T i , when attempting to satisfy the query in G1, if Z is S2, 

or (Si,S2) (ak+1B, y f c + 1 Q i ) , ib > 0, 
and then the derivation is blocked because B £ N2 LI T2, and hence we cannot 
satisfy the query in G2. 

The only successful derivation is the one which starts as 
(Si ,S 2 ) ( . X k + 1 A , Y k + 1 Q 1 ) => ( S i , Y * + 1 X * + U ) (a'Q2,Yk+1a) => 
( a ' y ' + ^ . S a ) , 
where k > 1 and a is obtained from the string Xk+1A by replacing some of the AT-s 
and/or A with c, and / = |a|c, if a £ T2*, or / > k + 2, if a e T2* (i.e. a = ck+2). 
If a ^ T2, in order to rewrite it as a terminal string, after a number of steps G2 

must ask for the sentential form of Gi . But this sentential form contains symbols 
a, which are not in the alphabet of G2 , and hence the query would not be satisfied. 
This implies that it must be the case a 6 T2, and then the configuration above is 

(a'Yk+1ck+2,S2),l >k + 2. 

Because, as we have made the observation, G2 cannot accept a sentential form of 
Gi containing symbol a, then the derivation has to end as 

(a'Yk+1ck+2,S2) ^ (a'bk+1ck+2,Yk+1Z). 

Thus we have that 

L(r) = {ak+1+'bkck+1 | s > 0, k > 1}, 

a language which is not context-free. Note that what increases the power of the 
system (for the usual PC grammar systems we have L ( P C 2 R E G ) C L ( C F ) , see 
[13]) was the possibility of a component to rewrite symbols which are considered 
terminals in another one, as well as the restriction that a communicated string has 
to be a string over the alphabet of the grammar which required it. 

3 Generative Capacity 
We first present some general properties for parallel communicating grammar sys-
tems of type s, which are true also in case of usual parallel communicating grammar 
systems. 
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L e m m a 1 For any Y G {PC, CPC, NPC, NCPC) and for any class X of gram-
mars, we have 

(i) L(Y1X,s) = L(X); 
Lu(Y1X,s) = L(X); 
1LT(Y1X,s)=HX); 

(ii) L ( Y n X , s ) C L (Y n + 1 X, s),n > 1, 
Lu(YnX,s) C Lu(Yn+1X,s),n> 1, 
LT(YnX, s) C LT(Yn+1X, s), n> 1, 

(Hi) L { C P C n X , s ) C L { P C n X , s ) ; L ( N C P C n X , s ) C L(NPCnX,s),n > 1; 
Lu(CPCnX, s) C L u ( P C n X , s); L u ( N C P C n X , s) C L v { N P C n X , s), 
n > 1; 
L T { C P C n X , s) C L T ( P C n X , s); L T ( i V C P C n X , s) C L r (ATPC„X, s), 
n > 1; 

(iv) L{CPC*X,s) C L ( P C t I , s ) ; L ( iVCPC,X ,s ) C L ( iVPC,X , s ) ; 
L c / i C P C ^ , « ) C L [ / ( P a X , s ) ; L ^ J V C P C . ^ . s ) C L y ( J V P C , I , s ) ; 
L r ( C 7 P a X , s ) C L r ( P C J , i ) ; LT(NCPCtX, s) C LT(NPCtX,s). 

Proof : Directly from definitions. • 

Each usual PC grammar system can be considered a PC grammar system of 
type s (we simply skip N,T when writing T =' ( N , K , T , G \ . . ,Gn) ), hence we 
also have 

L e m m a 2 For any Y € {PC, CPC, NPC, NCPC} and for any class X of gram-
mars, 

(i) L(YnX) C L(YnX,s),n > 1; 

(ii) L u ( Y n X ) C L u ( Y n X , s ) , n > 1; 

(Hi) L T ( Y n X ) C L T { Y n X , s ) , n > 1 ; 

Just as in the case of usual PC grammar systems, we have relations between 
the families of generated languages, when considering various modes of derivation. 

L e m m a 3 (i) L u { Y n X , s ) C L(YnX, s), for any class X of grammars allowing 
chain rules (that is rules of the form A —» B) and for any Y G {CPC, PC, 
NCPC, NPC}-, 

(ii) L T { Y n X , s ) C L(YnX, s), for any class X of grammars and for any Y G 
{CPC, NCPC}. 

Proof : The proofs are entirely the same as for usual PC grammar systems, [3]. 
• 

We next survey the properties known so far about regular PC grammar systems 
with separated alphabets. For the proofs we refer to [9]. 
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Propos i t ion 1 (i) The family 1J(PCZREG,S) contains one-letter non-regular 
languages. 

(ii) The families L(NCPC2REG, s), L(NPC2REG, s) contain one-letter non-
regular languages. 

(Hi) The families LU(NCPC2REG, S),L,U(NPC2REG,S) contain non-semi-
linear languages. 

(iv) The family LT(CPC2REG, s) contains non-semi-linear languages. 

Corollary 1 L ( C P C n R E G ) C L ( C P C n R E G , s ) , strict inclusion, for any n > 2. 

So just as in the case of cooperating distributed grammar systems, by consid-
ering distinct terminal sets for the grammar components of the system, also in the 
case of PC grammar systems, the generative power is increased (at least in the 
regular centralized returning case). 

But even if centralized returning PC grammar systems with regular components 
of type s are able to generate non-finite index matrix languages, we still can find an 
upper-bound for the languages generated by them among the regulated rewriting 
tools with context-free rules. More exactly, we have 

T h e o r e m 1 (i) L ( C P C „ R E G , s) C L(MATac). 

(ii) Lu(CPC*REG,s) c L(MATac). 

(in) L T ( C P C . R E G , a) C L ( M A T a c ) . 

One can observe that although the preceding theorem is for the regular PC 
grammar systems, it is true as well for the right linear case, and the proof is 
entirely the same. 

As we shall prove in the following, for unsynchronized derivation we can actually 
find a more specific relation. First, we have the theorem 

T h e o r e m 2 L u ( C P C 2 R E G , s) - L(REG) 

Proo f : Consider the following PC grammar system of type s with regular 
components 

T = (K,GuG2), 

where 

Gi = ({S1,A,B},{a,b},{S1-+aQ2,A^aQ2,B ^^A-.a}^!), 
G 2 = ( { S 2 , B } , { A } , { S 2 - ¿ B } , S 2 ) , 

and consider the derivation mode to be the unsynchronized one. 
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Then a terminal derivation has to proceed as follows: 

(Si , Sa ) (aQ2, AB) => (aAB, S2) ( a 2 Q 2 X , AB) => (a2ABX, S 2 ) 

where X G { 6 , 5 } , a e {6,S}*,|a| = k - 1 and /3 G {S2 > J4B}. 
We then have 

L(T) = {ak+1bk | k > 1}, 

which is not a regular language. • 

As a corollary, we obtain that also in the unsynchronized derivation, centralized 
returning PC grammar systems are more powerful when considering distinct sets 
of terminal and non-terminal symbols then in the case when we do not. 

Corollary 2 Lv(CPCnREG) C Lu(CPC„REG, s), strict inclusion, for any n > 
2. 

Proof: The inclusion is by Lemma 2, and the strictness of it follows from the 
above theorem and from L u ( C P C , R E G ) = L ( R E G ) , which is known from [3]. • 

Our intention in the following is to present other properties concerning PC 
grammar systems of type s deriving in the unsynchronized mode. We need to 
recall the following definition. 

Definition 5 Let F = (N, K, T, G\,G2,..., Gn) be a usual parallel communicating 
grammar system. We say' that T is with multiple queries if there is a component 
of T with a production A aQiPQa,a, 0,-f G (N U I< U T)*,i G { l , . . . , n } . 
Otherwise, we say that F is without multiple queries. 

The class of such grammar systems is denoted by WYnX, for Y G {PC, CPC, 
NPC, NCPC}, n > 1, X a class of grammars. 

Theorem 3 For any Y G {CPC, PC, NCPC, NPC) and for any n > 1, 

(i) Lu(YnREG,s) C Lu(WYnCF); 

(ii) Lu(YnCF,s) = Lu(YnCF). 

(itt) Lu(WYnCF,s) = Lu(WY„CF). 

Proof: To prove point (i), take a PC grammar system of type s with regular 
components 

T = (K, Gi,G2, ..., Gn), 

with Gi = (Ni,Ti,Pi,Si), for any t, 1 < i < n. 
Denote n 

l/ = U ^ U T i ) . 
¿=1 
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For each symbol a (E V, consider anew symbol a', denote by V' their set and define 
the substitution h. as 

h(a) = {<*,<*'}, for a G Ti, 
h(a) = { a ' } , f o r a G V - Tu 

h{Qi) = {Q , } , for 1 < i < n. 

Construct the PC grammar system 

r ' = (V'!K!T1,(P[,S[),...>(P^S'n))! 

where 
P< = {A' -+ y \ A x € Pi,y e h(x)}, for any 1 < i < n. 

Note that even if we have started from a PC grammar system T with regular 
components, because this is of type s, the resulted system, T', is with context-
free components and not with regular. This happens because we can have in a 
component Gi,i > 1 a production A —* BC, where B is a terminal symbol with 
respect to G, but is not a terminal symbol with respect a grammar to which it will 
communicate a string containing that B. 

Moreover, note that if T is returning, centralized, non-returning or non-
centralized, then T' is of the same type. 

Because in any production of any grammar at most one query symbol can 
appear, we have that T' is without multiple queries. 

One can see that ¿[ / (T) = Lu(T'), and thus point (i) follows. 

For point (ii), we have Lu(YnCF) C L u ( Y n C F , s ) by Lemma 2. To prove the 
reverse inclusion, we only need to observe that the same construction that we have 
considered for the proof of point (i) transforms a context-free PC grammar system 
of type s into a corresponding usual context-free PC grammar system. 

Point (iii) is a consequence of the relation in point (ii), by the observation that 
the construction we have considered does not introduce multiple queries. • 

Corollary 3 Lu(WCPC»CF,s) = L ( C F ) . 

Proo f : It is simply a consequence of the preceding theorem, point (iii), by 
Theorem 1 of [8], which states that LV(WCPC,CF) = L ( C F ) . • 

Now we can improve the relation obtained in Theorem 1, for the case of unsyn-
chronized derivation. That is, we have 

T h e o r e m 4 L ( R E G ) C L v ( C P C t R E G , s ) C L ( C F ) . 

Proo f : The first inclusion is from Lemma 1 and from Theorem 2. The second 
inclusion is a consequence of the preceding theorem, point (i), by Theorem 1 of [8]. 

• 
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Note that once again parallel communicating grammar systems of type s are 
more powerful, but still not "too powerful" (from the generative capacity point 
of view) than usual PC grammar systems, in case of regular components, because 
we have L u ( C P C „ R E G ) = L ( R E G ) . But in case of context-free components, for 
unsynchronized derivation, systems of type s are only as powerful as usual systems 
are. 

It is known, [8], that matrix languages can be generated by usual returning 
non-centralized PC grammar systems with context-free components. When sepa-
rated terminal and nonterminal alphabets are considered for the components of the 
system, one can simulate matrix grammars with appearance checking. 

T h e o r e m 5 L(MATac) C L ( P C t C F , s). 

Proo f : The proof bears resemblance with the corresponding one in [8]. Let 

G = (N,T,S, M,F) 

be a context-free matrix grammar with the appearance checking set F . It is known 
([4]) that for each matrix grammar there is an equivalent matrix grammar, of the 
same type, in the 2-normal form, that is with 

N = {S}UN!UN2l TViniV2 = 0, S^NiUNi, 

and each matrix of M has one of the following forms: 

(0 ( s ^ x ) , Ae Nu x e N2 

(ii) (A —* a, X ^ Y), AeNu ae(N1UT)+,X,Y eN2, 
(Hi) (A^a,X^a), A G Nu a G (JVi U T ) + , X G N2,a G T, 
(iv) ( S ^ i ) , i e r . 

Moreover, the productions of F are only of the form A. —• o;, with A. £ Ni^cx £ 
(NUT)\ 

Let P\(M) be the set of matrices of type (i), let P2(M) be the set of matrices 
of types (ii), (iii) and let r be the cardinality of P2(M). A matrix of P2(M) will 
be denoted in the following by 

mk : (Ak — ak,Bh -»• Ck) , 1 < k < r. 

Denote 

N' = N U {S ' , W, V, Z, Lu L2, L3j U {5 , , S„i , S a 2 } U { 5 l t , S2k | k = 1 , . . . , n] 

(S', W, V,Z,LI,L2,L3 are new symbols). We construct the PC grammar system 

T = (K, G,, Gii, G2I, GI2, G22,..., Gir, G2r, G a i , Ga2) 
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as follows: 

P,, - { S . 11(5, — x) G M, x G T * } U 
U{5 , —• S', S' -* Q2k I & = 1, • • •, r } U 
U{S, - » AB | (S - AB) G PI(M)} U 

Pik = {Sit 
U{Afc -+ CTK | m t : (AK -* AK,BK C t ) } U 

U { X Z\X G Ni UA^2}U 
U f V — Q i t } , for each k = 1 , 2 , . . . , r, 

P2k = 
U{B f c — C* | m* : ( i4 t a f c l B t — Ck)} U 

U { X Z | X G iVi U AT2}, for each Jfc = 1, 2 , . . . , r, 
Pal = {Sai -Q2iQ22...Q2r}U{K- V), 

Pa2 = {S02 —1" Li, L\ —+ L2, L2 —• L3, L3 —• LiQ2iQ22...Q2r}. 

The terminal sets of the components grammars of T are defined as 

T, = Tai = Ta2 = T2k = T, for any k — 1,2,... ,r, 

while for any k — 1 , 2 , . . . , r, 

'TUNTUNX- {AK\MK :(AK ^AK,BK^CK)}, 
_ I if this occurrence of 

14 ~ the production AK —>• AK G F 
T, otherwise. 

As for the nonterminal sets of the components of T, they are defined as 

N, = N'-T,, 

Nu = N' — T\k, for any k 

N2k = N' — T2k, for any k 

Nai. = N'-Ta 1, 

Na2 = N' — Ta2. 

One can verify that L(T) = L(G), and therefore the theorem follows. • 

As an immediate corollary of the above theorem, characterization of recursively 
enumerable languages results when A-productions are allowed in the system. 

Corollary 4 L ( P C . C F x , s ) = L ( R E ) , where the notation PC,CFX stands for 
returning non-centralized PC grammar systems with A-rules. 
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The similarity between PC grammar systems with separated alphabets and 
usual PC grammar systems let us think that any proof of a relation between two 
classes of usual PC grammar systems can be adapted as to result in a relation 
between the corresponding classes of PC systems of type s. More precisely, we 
conjecture that if L ( Y n C F ) C L ( Y ^ C F ) for two classes Y,Y' of PC grammar 
systems, m,n,> 1, then L ( Y „ C F , s ) C L ( Y „ C F , s ) . 

In particular, by [6], [12], 

L { N P C . C F , s) C L ( P C . C F , s) 

would result. 
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