
Acta Cybernetica 12 (1996) 397-409. 

On Regular Characterizations of Languages by 
Grammar Systems* 

Lucian ILIE t A r t o S A L O M A A * 

Abstract 

We show that grammar systems with communication by command and 
with extremely simple rewriting rules are able to generate all recursively enu-
merable languages. The result settles several open problems in the area of 
grammar systems. 

1 Introduction 
The purpose of this paper is to investigate the power of cooperation in rewriting 
systems. This is done using the abstract model of a grammar system, [3]. We 
show that grammar systems with the most simple components, all rewriting rules 
being letter-to-letter, possess the power of generating all recursively enumerable 
languages. This result and its corollaries settle several open problems in the area 
of grammar systems. We now describe the contents of the paper in non-technical 
terms. 

A parallel communicating grammar system, as introduced in [12], consists of sev-
eral grammars which work synchronously, each of them rewriting its own sentential 
form, the communication being made by request: when a component introduces a 
query symbol (from a special set) for another component, then the latter one sends 
its current sentential form to the former which rewrites it in place of the query 
symbol. The language generated by -the system is the set of terminal strings gen-
erated (using communication or not) by a distinguished component called master. 
(For results and references see [3].) 

Another kind of parallel communicating grammar systems, with communication 
by command, is introduced in [4] with suggestions from the WAVE paradigm for 
data flow in highly parallel machines ([5], [6], [14]), Boltzmann machine ([7]), the 
Connection Machine ([8], [15]), and other well-known parallel machines. 
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The communication by command means that when the current sentential form 
derived in a component coresponds to another component, i.e., belongs to the 
regular language associated to the respective component or fits the pattern (in the 
sense of [1], [11]) associated to that component, then the sentential form is sent 
to the other component. The language generated by the system is also the set of 
terminal strings generated by a component designed as master. Here we investigate 
only the case when each component has associated a regular language. 

In [4] it is proved that any context-sensitive language can be generated by a 
grammar system with communication by command with context-free components 
while in [10] it is shown that the grammar systems with context-sensitive com-
ponents and the same type of communication can generate only context-sensitive 
languages. The characterization of the family of context-sensitive languages as the 
family of languages generated by grammar systems with context-free components 
and communication by command follows. We shall strengthen this result by show-
ing that the family of context-sensitive languages is exactly the family of languages 
generated by the grammar systems with regular components and communication 
by command. 

We consider also the case when the splitting is allowed in communication, that 
is, if the current sentential form of a component is a concatenation of strings each 
belonging to the regular language associated to another component, then the com-
munication can still be performed: each factor of the sentential form can be sent 
to the respective component, with the restriction that only one factor can be sent 
to one component. 

As already mentioned in [4], this type of communication is natural: following 
the logic flow paradigm proposed in [6] as a basic architecture for parallel symbolic 
processing, we deed with a symbolic process which develops in a virtually complete 
graph having processors which are able to handle data, in its nodes. The process 
starts by injecting data in a node and each node having data can perform a local 
processing; under well defined conditions, the local data are spread to other nodes 
by replication or by splitting. 

In this case we prove a characterization of recursively enumerable languages 
by grammar systems with (non-erasing) regular rules. In fact, the rules have a 
particularly simple form: a letter (nonterminal) always goes to a letter (terminal 
or nonterminal). 

2 Grammar systems 

We shall denote by V* the set of all finite strings over the alphabet V, the empty 
string is denoted by A, and V+ = V* — {A}. The set of regular, context-free, context-
sensitive, and recursively enumerable languages will be denoted by REG, CF, CS, 
and RE, respectively. For further elements of formal language theory we refer to 
[9] and [13]. 

A parallel communicating grammar system with communication by command o f 



On RegulcLr Characterizations of Languages by Grammar Systems 413 

degree n > 1 is a construct of the form 

T = (N, T, (Si,P\,Ri),..., (Sn,Pn, Rn))> 

where N is the nonterminal alphabet, T is the terminal alphabet, and (Si, Pi, Ri), 
1 < t < n, are the components of the system: Si is the axiom, P; is the (finite) set 
of rules, (note that we do not allow A-rules, that is rules in which the right-hand 
member is empty), and Ri £ REG is the selector language for the component i. 

Such a system works as follows: 
- start from the initial configuration (Si, S2, • • •, Sn), 
- at each step, the configuration of the system will be described by an n-tuple 

(x1,x2,...,xn) e ( ( j v u t ) * ) " , 
- the configuration of the system can be modified either by rewriting steps or 

by communication steps, 
- rewriting steps are performed componentwise and the derivation must be 

maximal in each component (that is the component can not rewrite its sentential 
form any longer), 

- communication steps are performed as follows: 
(i) communication without splitting: when (after maximal derivations) some com-
ponents Si1,Si2,... ,Sik, 1 < ¿1 < »2 < • • • < n < n, have derived the strings 
tf»i, u>2 , . . . , Wk £ Ri, for some 1 < i < n, i 0 {»1,»2, • • •) »*} (a component may not 
communicate with itself) and these are all the components, at that moment, able to 
communicate their sentential forms to the component i, then the string w\w2 • • • u>k 
will replace the sentential form of the component i becoming the current senten-
tial form of this component; the components which send their sentential forms will 
restart from the initial symbol, 
(ii) communication with splitting: similar to the one without splitting, the difference 
being that if the sentential form of a component is a catenation of strings each of 
them belonging to the regular set associated to another component, then each factor 
of the current string can be sent to the respective component with the following 
restrictions: 

1. only one string can be sent to one component, 
2. a component cannot send a factor of its current sentential form to itself 

(also not the entire string), 
3. the catenation of the factors of the current string which are sent must be 

the entire string (nothing is lost). 
- if, after a sequence of rewriting/communication steps, the string on the first 

position in the current configuration is a terminal one, then it belongs to the gen-
erated language (so the master is always the first component). 

Formally , a rewriting step is 

( x i , . . . , x „ ) =i> ( y i , . . . , i / n ) iff Xi = > * y, in Pi and 
there is no 2,- £ (N U T)* with y, => 2,- in Pi. 

In order to define a communication step without splitting, let us denote 

S(r. - f A' if Xi^Rj ori = j , 
K X " J ) ~ \ x i , ifxi £Rj andt^ j, 
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for 1 < i,j < n, 

A ( i ) = 6(xi,i)6(x2,i) • • • 6(x„,i), 

6(i) = 6(xi,l)6(xi,2)...6(xi,n), 

for 1 < i < n. 
A communication step without splitting is: 

( A( i ) , i f A ( i ) # A , 
( x i , . . . , x „ ) h (yi,...,yn) i f fyj = < xi, if A(t') = A and 6(i) = X, 

{ Sit if A(») = A and S(i) # A. 

Because the splitting will not be used very much, we define it rather informally. 
A communication step with splitting is 

(xltx2,...,xn) I " S ( y i ) J / 2 i • • • ) î / n ) 

if and only if there is a set 0 ^ M Ç { 1 , 2 , . . . , n } ( M is the set of indices of those 
components which send their sentential forms) such that 

(i) for any i £ M there is a permutation of n elements ir» £ Sn and a 
decomposition x, = i,,» j(i)Xi i* i(2) • • :CiiTi(n) such that xt i, = A and, for any 
1 < k < n, k ï irt~1(t")» *i,*i(k) G Rri(k) or xiiViW = X 

(ii) for any i G { 1 , 2 , . . . , n } — M and any 1 < j < n, j = A, 
(iii) for any 1 < j < n, if A ̂  Rj, then 

x\,jx2,j •••xn,j, ^x\,jx2,j ^ A 
if (there is no i £ M with Xij £ Rj) and j ^ M, 

Sj, if (there is no i £ M with x,-j £ Rj) and j £ M. 

If A G Rj, then, nondeterministically, the component j can receive A or can work 
as in the case when X £ Rj. 

Note that the communication without splitting is a particular case of the com-
munication with splitting and also that the empty string can be sent. 

The generated language is 

Le(T) = { w € T * I (Slt...,Sn)=> («i0, • • •, X™) h e (yW ..., => 

(.«,..., xL2)) hc (y?\ . . . , „ £ » ) ) = = » . . . = > ( , « . . . , x<*>), 
for some it > 1 such that w = x ^ } , 

where, for c = X, we identify £a(T) with £(T) and h* with h and, for c = 5 , we 
have ¿ 5 ( r ) and I-5. 

We denote by CCPCnX the family of languages L(r ) , generated by grammar 
systems of degree at most n, n > 1, with components of type X £ {REG, CF, C S } , 
working with communication without splitting, and by SCCPCnX the family of 
languages L s ( r ) , generated by grammar systems of degree at most n ,n > 1, with 
components of type X , working with communication with splitting. When the num-
ber of components is arbitrary, we write CCPCoqX and, respectively, SCCPCNX. 
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3 The characterization results 
We begin with the following simple observation. Because in the case when the 
system has only two components no communication by splitting can be done, we 
have 

Lemma 1 For any family X, CCPC2X = SCCPC2X. 

Our first theorem shows that, in the case of communication with splitting, any 
recursively enumerable language can be generated using a system with four regular 
components. Because the languages associated to the components are regular too, 
we can say that this is a fully regular characterization of recursively enumerable 
languages. (Note that we do not allow A-rules and also not the rewriting of the. 
terminal symbols. The sets of nonterminals and terminals are defined at the level 
of the system.) 

Actually, three regular components suffice, as seen in Theorem 2 below. From 
the point of view of exposition, it is convenient to consider first the weaker version. 
A further reduction to two components is not possible because of Lemma 1 and a 
result in [4] which shows that in the case of communication without splitting, using 
two components, only regular languges can be produced. 

Theorem 1 SCCPC^REG = RE. 

Proof. Let L be a recursively enumerable language over the alphabet T. Then, 
by a slight modification of Theorem 9.9 in [13], there is a context-sensitive language 
L\ and two symbols a\,a2 &.T, such that: 

(i) L\ consists of words of the form wa2a",n > 0, w G L, and 
(ii) for every w G L, there is a n > 0 such that wa2a" G L\. 
The main idea of our proof is: we construct a system (with four regular com-

ponents) which generates in one component (which is not the master) any string 
tua2a" G L\ and then, by splitting, the string w is communicated to the master 
and the garbage a2a" is communicated to another component. (In fact this is the 
only moment when the splitting is used, the entire derivation, excepting this, being 
as in a usual grammar system with communication by command.) 

So let G = (N, TU {ai , <12}, S, P) be a context-sensitive grammar generating 
L\. Suppose that G is in Kuroda normal form, that is, all productions in G are of 
the form AB —• CD, A —• BC, and A —• a where A, B, C, D are nonterminals 
and a is a terminal symbol. By introducing, whenever needed, productions of the 
form A —• B, A, B nonterminals, we may suppose that if a production of the form 
AB —• CD appears in P, then A ^ B. 

For a reason that will be seen later, we introduce also the production S —• 
S. We label all productions in P by natural numbers r, 1 < r < card(P). (We 
construct a bijection between P and the set { 1 , 2 , . . . , card(P)}, each production 
being uniquely identified by its associated number.) 

Let S i ,S2 ,S3 ,X, and Y be symbols not in A ^ U T U { a i , a 2 } and let us put 

N' = {A' I A G N} U { X ' } 
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V = {Ar | A 6 N, r : AB —• CD E P or r : BA —• CD € P } U 
U {Ar \AEN,r: A — • a € P) U 
U{Xr \ r:A — > B C e P } U 

U {Za,Wa\AEN}. 

We consider the system 

T = ( A r u T V ' U i S i . S ^ S ^ X . y j u V . T U i a x , ^ } , 
(S'i,Pi,RÎ), (S'2,P2, R2), (S3, P3, R3), (S4, P4, R4)) 

where S4 = S and 

Pi = 0, 
R! = T* U { y } , 

P2 = { S ^ X . S ^ Y } , 
R2 = a2a\, 

P3 = {A'—>A I A E i V U { X } } U 

U{A- — > a \ r \ A — » a e P j U 
U{Ar —• B\r : A —> B E P}U 
U{Ar —» C, Br —• D I r : AB — > C D £ P ] U 
U{Xr —• B,Ar —• C I r : A —• BC E P) U 
U { Z a ^ A , W a ^ X \ A e N } , 

R3 = {axAra2 I a i , a 2 € ( W U TU {ai,a2})*, r : A—»a£P}U 
U{ai^ r a 2 I ai,a2 E (N'uTl) { a i , a2})*, r : A —> B E P) U 
U{a\ArBTa2 I a i ,a 2 G (N' UT U {ai, a2})*, r : AB —• CD E P] U 
U{aiXri4ra2 | ax , a2 E (N' U T U {c^, a2})*, r : A —> BC E P} U 
U { a i Z A W A a 2 I ai ,a:2 E (N'UTU {a i , a2 } )* , A £ N}, 

P4 = {A—>A! \AE Nl){X}}U 
U{yl —> Ar\r:A —* a E P 01 r : A —»fiePjU 
1){X ^ X r , A ^ A r |r : A^BCEP}U 
U { y l — — B r I r : AB—*CDeP) U 
U{X —• Za,A —• WA I A E N), 

R4 = (N U { X } U 71 U {ai, o 2})+ -

(Note that A ^ R4, hence the fourth component cannot be restarted by receiving 
A in a communication with splitting.) 
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Let us prove that the construction is correct, that is Z-s(T) = L. We shall do 
this by showing inclusion in both directions. 

Claim 1. If wa2a" £ L\, then the system T can reach a configuration which has 
in the third position the string wa2a". 

Remark. If Claim 1 holds, then L C Ls(T). Indeed, for any w £ L, there is 
an n > 0 such that wa2a" £ L\. But, by Claim 1, T can reach a configuration 
with wa2a" as the current sentential form of the third component. In this case, 
as w £ T* C Ri and a2a" £ R2, by splitting, w is communicated to the first 
component and a2a" to the second one. Consequently, w is a terminal string and 
it is the current sentential form of the master, hence w £ Ls(T). 

Proof of Claim 1. Let wa2a" be a string in L\. It follows that there is a 
derivation in G generating it. We show that if a and /? are two sentential forms of 
G such that a = > G P, then, having a as the current sentential form of the third 
component of T, we can obtain also /3 as the sentential form of the third component 
of T. 

Because the case when a = S requires some additional explanations, we shall 
investigate it separately. (In fact, in the first case it will be shown that the deriva-
tion in T can simulate any beginning of a derivation in G, that is, we can obtain 
any ¡3 with S =>G 0 as the sentential form of the third component of I\) 

Case 1 a = S. Depending on the form of ¡3, we have three cases: 
(i) /? = a £ T U {01,02} and r : 5 — • a £ P. (As an observation, because 

L\ C La2a\, a cannot be aj.) We simulate this in T by 

(Si, SJ, S3, S) = > r (Si, y, S3, Sr) (Y, S'2,Sr,S) = * r (Y, Y, a, S r ) . 

(ii) ¡3 = A £ N and r : S — • A. In T we have 

(Si,S'2,S'3,S) =>r (Si, y , S3 , S r ) Hr (Y, S'2,Sr, S) = > r (Y, Y, A, S r ) . 

(iii) 0 = AB, A,B £ N and r : S — • AB. Supposing that p : S — • S G P, we 
perform in T 

(Si, S2, S3, S) (Si, Y, S3 , S p ) h r (Y, S'2,SP,S) =>r (Y, X , S, Sp) h r 

h r (Y,S'2,SP,XS) =>r (Y,Y,S,XrST) hr ( Y , S 2 , X r S r , S ) (Y,Y,AB,SP). 

In words, we have added the rule S —• S to P in order to be able to perform 
this type of rule (S — • AB) with S on the left-hand side. If the rule S — • S is 
not provided, then we are forced to apply in the fourth component another rule 
instead of S — • Sp (p : S — • S) and, as at this moment we did not yet get an 
X in the sentential form of the fourth component, after sending the current string 
of the last component to the third one, only rules of the form S — • a, a £ T or 
S — • A, A £ N, can be applied. Consequently, we would not be able to apply a 
rule of the form S — • AB, A,B £ N, in this case. 

Case 2 a £ (N U T U {ai , a 2 } ) + - {S } . Depending on the form of the applied 
production, we have four cases here. 
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(i) a = a i A A 2 , A £ N , 0 = a iaa 2 , a € T U { a i , a 2 } , r : A — • a £ P . We 
simulate this in T as follows. If the current sentential form of a component is not 
important at some moment, we shall replace it by —. 

(-,Y,aiAa2,-) h r (Y,S'2,-,a^a,) =>r (Y,Y,-,ct\Ara'2) h r 

h r (Y, S'2,a\Ara'2, -) (Y, Y, aiaa2, - ) 

(where for a £ (N U { X } U T U {a ! ,a 2 } )* we have denoted by a' the string h(a) 
where h : (N U { X } U T U {aia 2 } )* — • (JV'UTU {aia 2 } )* is the homomorphism 
defined by h(A) = A', for any A £ N U { X } , h(a) = a, for any a £ T U {a i , a 2 } ) . 

(ii) a = a i A a 2 , 0 = a i B a 2 , A , B £ N,r : A —• B £ P. This is handled as 
Case 2 (i). 

(iii) a = a\ABa2,f3 = axCDa2,A,B,C,D £ N,r : AB —• CD £ P- This 
rule is simulated in T by 

( - , Y, aiABa2, - ) hr (Y, S'2, - , aiABa2) =*r (Y, Y, - , a'^Br^) h r 

hr (Y, S'2,a[ArBra'2, - ) = » r (Y, Y, aiCDa2, -). 

(iv) a = axAa2,(3 = <* iBCa 2 ,A ,B ,C € N,r : A —> BC £ P. Because 
the string generated by P2 (X or Y ) is communicated by the second component 
(to the fourth component or to the first one, respectively) at each communication 
step, the derivation in the second component is restarted after each communication 
performed in the system. Therefore, after each communication step, the second 
component is able to produce a new X, if needed. (It can also produce a Y if 
an X is not needed.) As a / S, there exists a sentential form 7 of G such that 
7 « and we can suppose that (*) when the current sentential form of the third 
component of T is a, then the current string in the second component is X . (We 
can suppose, for instance, that the second component has introduced an X when 
7 was obtained in the third one. It is essential here that a ^ 5 ; we have seen in 
Case 1 (iii) how the alternative a = S is handled.) 

We may also suppose that the string a contains only nonterminal symbols. 
(We may obviously suppose that, in a derivation in G, 'we can apply first only 
productions of the form A —• B or A —• BC or AB —• CD, A, B,C,D 6 N, 
and, after that, only productions of the form A —• a, A £ N,a £ T U { a i , a 2 } . ) 
Consequently, we can put a j = AXA2 ... Ak, A\,A2,..., At £N,k>0(k = 0 
implies ai = A) and we can write (using (*)) 

( - , X, a, - ) = ( - , X, AXA2 ... AKAA2,-) h r ( - , S'2,XAXA2 ... AKAA2) =»R 

= > r ( - , Y , - , WALA'2 .. .A'KAW2) h r ( Y , S'2,ZALWALA'2 ... A'KA'A'2, - ) =>R 

= > r ( Y , Y, AIXA2 .. .AKAA2, - ) h r ( Y , S2,—,AIXA2 ... AKAA2) 

= > r (Y, Y, A i . ..Au.iXAUa,, - ) h r (Y,S'2,-,A1.. .Ak^XAkAa2) 
= > r (Y,Y,-,A[ . . ¿ i . A ' a ' 3 , - ) = > r 

= > r ( Y , Y , AI. ..AK.IATXAA,, - ) h r ( Y , S ' 2 , -,AL .. AK^AKXAA2) 
= > r ( Y , Y, - , A\... A'KXRARA'2) h r ( Y , S'2,A\... A'KXRARA'2, - ) =>R 

= » r (Y, Y, AIA2 • • • AKBCA2,-) = ( Y , Y , 0, - ) . 

(1) 
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Thus Claim 1 is proved. 

Claim 2. If w E T* was communicated to the msister component in T (by the 
third one - this is the only possibility), then, at the moment of communication, the 
current sentential form of the third component was wa2a" £ L\ and , by splitting, 
w was communicated to the master and a2a" to the second component. 

Remark. Obviously, Claim 2 implies Ls(T) C L. 

Proof of Claim 2. Observe that the only possible communications among the 
components of T are represented by the following graph. (An arrow from » to j is 
present if and only if it is possible that the component i communicates, at some 
moment, its sentential form to the component j ; some arrows are labeled by the 
regular sets which control the communication.) 

We make the following further observations: 
1. The second component can communicate to the first one only the string Y 

which is not terminal. (This communication takes place in order to restart the 
second component, making it able to produce an X at any moment.) 

2. The second component can communicate to the fourth one only the string 

3. The communication from the third component to the first and the second 
ones can be done only in the same time by splitting and only when the sentential 
form of the third component is of the form wa2a.y, n > 0, w being communicated to 
the master and a 2a" to the second component. (Note that the string communicated 
to the first component can be empty.) 

4. Always, after a maximal derivation in the third component, its current 
sentential form can be communicated to the fourth component. 

5. Due to the form of R3, if the current sentential form of the fourth component 
is communicated to the third one (and only to the third one) then a production 
in P will be correctly applied at the next step in the third component. Indeed, 
everything should be clear in what concerns the productions of the form A —• a 
or A —• B,A,B £ N,a ET U {ai , a 2 } . A discussion is needed only for the other 
two types of productions. 

(i) For r : AB —• CD E P; A, B,C,D £ N. In order to apply this production, 
in the fourth component one performs A —• Ar and B —• Br (providing, of 

1 

X. 
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course, that these productions can be applied). After that, the current sentential 
form is communicated to the third component if and only if the occurrences of Ar 

and Br appear consecutively and in this order (i.e., ArBr). In the third component, 
using the rules AT —• C and Br —• D, the string CD is obtained. Because we 
have supposed that A £ B, there is no danger to apply the production AB —• DC 
instead of AB —• CD. 

(ii) For r : A —• BC G P,A,B,C€ N. As it was already seen, for applying 
a production of this type an occurrence of an X in needed. Without it, the fourth 
component applies A —• Ar but the current sentential form cannot be communi-
cated to the third component because an occurrence of the string ATXr is asked 
by R3. 

Because an occurrence of the symbol X can be communicated by the second 
component to the fourth one at each communication step (we can apply in P2 

only S2 —• X) there is only the danger that too many X ' s are contained in the 
sentential form communicated between the last two components. But if the number 
of X ' s communicated by the second component to the last one is strictly greater 
than the number of productions of the form A —• BC applied, then the string can 
be never communicated to the master (no string in R\ contains X). Hence nothing 
will be produced in this case. 

From the observations above, it should be clear that no parasitic string can be 
obtained in T. Consequently, Claim 2 is proved so we have Ls(T) = L. 

• 
As said before, the number of the components can be reduced to three. 

Theorem 2 SCCPC3REG = RE. 
Proof. We use the same notations as in Theorem 1 with the only difference 

that we consider here one new nonterminal symbol, Z , which is added to the set of 
nonterminals of the system T (with three components) 

r = (Nl>N'U{S[, S'2, X,Y, Z}L>V,Tu{ai,a2}, (ff^PuRi), (S'2, P2, R2), (S3, ft, R3)) 

where S3 = S and, supposing that p : S -—• S G P, 

Pl = { y —• X, Y —• Z}, 
Ri = T* U { y } , 

Pi = {Sp —• Y } U 
U { A ' —• A I A E N U { X } } U 
U {Ar —* a\r : A —kiGP}U 
U { A r — > B \ r : A — • B G P] U 
U{ i4 r — C, Br —• D I r : AB —• CD 6 P) U 
U { X r — - B, Ar —> C I r : A —• BC G P) U 
U{ZA —> A, —» X \A £ N}, 
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R2 = {aiArQ2 | <*i,<*2 G (N'UT\J { a i , a 2 } ) * , r : A—• a € P) U 
U { « i ^ r a 2 | a b a 2 £ (N' U T U {a i , a 2 } ) * , r : A — • В £ P} U 
U{aiArBra2 | ai ,ct2 G (N' U T U { a b a 2 } )* , r : AB — • CD £ P} U 
U { a i X r A r a 2 | a b a 2 G (N' U T U { a b a2 } )* , r : A — • ВС € P) U 
U{ai ZAWAa2 \aua2£(N'uTU {аиа2})*,А £ N}, 

P3 = U { A —• A' | A £ N U { X } } U 

и { Л —у A T \ r - . A — * а £ Р ox г : А — • .В € .Р} U 
U { X — • ХТ,А —• Аг | г : А —у ВС £ Р} U 

и { Л — > А Т , В — > В г \ г : А В — • CD £ Р } U 
U{X ^Za,A^Wa\A£N}, 

R3 = ( Л Г и { Х " } и Г и { а ь а 2 } ) + Ua2aJ. 

The system is working similarly to the one in the proof of Theorem 1. The only 
differences are the following two: 

1. Any string wa2a" £ L\ is produced here in the second component (instead of 
the third) and, by splitting, w is sent to the master and а2а" to the third component 
(instead of the fourth one). But, because the communication by splitting from the 
second component to the other two is made only in the case when the sentential 
form of the second component is of the form wa2a", w being necessarily sent to the 
master and а2а" to the last component, this step is correctly performed. 

2. The way in which the occurrences of X are handled in order to help us to use 
the productions of the form A — • ВС, А, В, С £ N, is slightly different. However, 
if the number of X's is too big, then no string will be produced (see observation 5 
(ii) in the proof of Claim 2 above). We have only to show that indeed we can get 
sufficiently many X ' s to be able to apply a rule of the form A — • В С anytime it 
is needed. Supposing that the derivation in G is axAa2 =>G a\BCa2, we have 
two cases: 

(i) a i = а 2 = А,Л = S,r : S —у ВС £ P\B,C £ N. We have in Г (with 
p:S ^SEP) 

(S[ ,S'2,S) =>r (S[, S'2,SP) hr (S[,SP,S) =>r (Si , Y, Sp) b r 

hr (У,S p ,S) = > г (X, S, Sp) K r (Si, S p , X S ) = > r ( S i , S , X r S r ) h r (2) 
hr (Si, X r S r , S) = > r (Si, ВС,S p ) . 

(ii) ariAa2 ф S,r : A —• ВС £ P,A,B,C £ N. Let us prove first that we can 
have an X as the current sentential form of the first component anytime needed. 

Any simulation in Г of a derivation in one step, say A =>G P, consists of one 
or several iterations of the following sequence of steps: being the current sentential 
form of the second component, a is sent to the third one, is rewritten there, is sent 
back to the second component, and again rewritten. Because p : S —• S £ P, 
we have Sp — • S £ P2 and S — • Sp 6 Рз- Thus, we can suppose that when 
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the main string (that is the string which is at the beginning a and, rewritten and 
communicated between the last two components, will be ¡3) is communicated from 
component 2 to the component 3 (or from 3 to 2), then the string Sp is commu-
nicated from the component 3 to the component 2 (or from 2 to 3, respectively). 
That can be also seen in (2). 

Because we can perform in T 

( - , - , Sp) br ( - , Sp, - ) =>r ( - , Y, - ) h r (Y, - , S) = * t (X, - , Sp), 

using the observations above, it should be clear that we can get an X as the current 
sentential form of the first component whenever we need one. (It is also seen that 
the role of the production S —• S introduced in P is much more important here.) 

Going back to our case, we can suppose (as in the proof of Claim 1, Case 2 (iv)) 
that when the current sentential form of the second component is a x A a 2 , then the 
current string in the first component is X . We can also suppose (also as in the 
proof of Claim 1, Case 2 (iv)) that « i = A\A2 .. .At £ N*. The derivation goes 
now similarly to (1). 

Consequently, the system constructed here generates the same language as the 
one in the proof of Theorem 1. It follows that Ls(T) = L and the proof is over. 

o 
We notice that in the system T in Theorem 2, the splitting communication is 

used only at the end when the string tu £ L is sent to the master and it will be 
the output of the system and the garbage a2a" is sent to the third component. In 
fact, the splitting communication is done in order to allow a workspace as big as 
needed. 

If the splitting communication is not allowed, we can still obtain (using only 
regular rules) any context-sensitive language. The following result is a strength-
ening of Theorem 1 in [4] or of Corollary 3.4 in [10] (which establish that 
CCPCooCF = CS.) It solves also the problem, open so far, of the hierarchy 
('CCPCnREG)n>0. 

Theorem 3 CCPC3REG = CS. 

Proof. The construction is very similar to the one in Theorem 2. The difference 
is that the second component there is the master one here because we do not need 
any communication after obtaining the terminal string in the given language. 

Let L be a context-sensitive language and let G = (N, T, S, P) be a context-
sensitive grammar generating L. We have seen in the proof of Theorem 1 that any 
production of G can be supposed to be of one of the following forms: AB —• CD 
with A^B, A —• BC, A —• B, or A —• a for some A,B,C,D £ N,a£ T. 

Let S2, S3, X, and Y be symbols not in N UT and 

N' = {A I A£ JVjufY'}, 

V = {Ar\AeN,r:AB —*CD £ P or r : BA —• CD £ P}U 
\j{Ar \ A £ N ,r \ A — > a £ P}U 
U{Xr I r : A —* BC £ P}U 
U {Za,Wa\A£N}. 
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The system is here: 

r = (N U N' U S3,X, Y} U V, T, (Si, Pu fix), (S'2,P2, R2), (S'3, P3, R3)) 

where 5i = 5 and 

Pi = {Sp — • Y } U 
— A | A £ i i U { X } } U 

U{Ar —> a\r \ A — > a £ P } U 
U{ylr —> B\r: A —• B G P} U 
U{Ar —• C, Br —>D\r:AB —• CD G P} U 
U{Xr — B, Ar —* C | R : A — BC G P} U 
U{Za —• A, WA —• X \Ae N}, 

Ri = {aiAra2\a1,a2€(N'uTy,r:A—• a G P} U 
U{aiAra2 \alta2e(N'uTy,r:A —• B G P} U 
U{ai^ r f l r a 2 | « i , «2 G (N'UTy,r : AB —• CD G P} U 
U{«iX ryl ra2 | a i ,a 2 G (N'uT)*,r : A —• BC G P} U 
U{aiZAWAai\al,ai€(N'uT)*,AeN}t 

P2 = {A—* A' \Ae JVU{.Y}}U 

U{A —y Ar\r\ A —• a G P or r : .A —• P £ P} U 
U{A"—> XT, A—y AT |r :A—• BC G P} U 
U{yl —• Ar, B —• Br I r : AB —• CD G P} U 

—• Za,A —• Wa\A£ N), 
fi2 = ( J V U { I } U T ) + . 

P3 = {Y^X,Y-+Z}, 

Rs = {Y}, 

The proof for L(T) = L is very similar to the proof of Theorem 1 and therefore 
omitted. 

• 
It is proved in [4] that CCPC2REG = REG hence, using Lemma 1, we obtain 

that the results in Theorem 2 and Theorem 3 are optimal. Using also the results 
CCPCooCS = CS from [10] and CS C CCPC2CF from [4], we can draw the 
following diagram which shows the generative power of all types of systems with 
communication by command investigated so far by comparing them with the fam-
ilies in Chomsky hierarchy. (The place of the families SCCPCnX, CCPC„X not 
mentioned in the diagram is obvious.) 
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SCCPC3REG 
SCCPC3CF 
SCCPC3CS 

R E 

SCCPC2CF 
SCCPC2CS }- - •{ 

CCPC3REG = • • • = CCPCooREG 
CCPC2CF =••• = CCPCooCF 
CCPCxCS = ••• = CCPC00CS 

SCCPCiCF = C F = CCPCiCF 

SCCPC2REG= R E G =CCPC2REG 
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