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On a^-products of nondeterministic tree automata* 

B. Imreht 

Abstract 
In this paper, we characterize the isomorphically complete systems of non-
deterministic tree automata with respect to the family of «¡-products. In 
particular, our characterization yields that any finite nondeterministic tree 
automata can be embedded isomorphically into a suitable serial product of 
two-state nondeterministic tree automata. 
Keywords: nondeterministic tree automata, composition, completeness 

1 Introduction 
Isomorphic representation of automata by different compositions is one of the cen-
tral problems in the theory of automata. One line of the researches is to char-
acterize those systems of automata which are isomorphically complete, i.e., every 
automaton is an isomorphic image of a subautomaton of a product from them. 
Most of the studies regarding characterizations of isomorphically complete systems 
concern deterministic automata or deterministic tree automata. We quote only 
[1],[3],[4],[7],[9],[10],[11], and [15]. On the other hand, together with the spread of 
parallel computation, the importance of nondeterministic automata is increasing. 
This is the motivation to deal with the representations of nondeterministic au-
tomata. The first description of the isomorphically complete systems of nondeter-
ministic automata with respect to the general product was given in [5]. In the work 
[6], it is proved that the cube-product is equivalent to the general product regard-
ing isomorphically complete systems of nondeterministic automata. The isomorphic 
representation of a special class of nondeterministic automata is investigated in [12]. 
The notion of c^-product (cf. [2], [3]) was extended to nondeterministic automata, 
and the isomorphically complete systems were characterized with respect to this 
hierarchy of products in [14]. From this characterization, it turns out that contrary 
to the deterministic case, in the nondeterministic case, there exist finite isomorphi-
cally complete systems with respect to the a0-product, furthermore, the a,-product 
is equivalent to the general product regarding isomorphically complete systems if 
i > 1. The isomorphically complete systems of nondeterministic tree automata 
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with respect to the general product and the cube-product are studied in [13] where 
it is proved that these compositions are equivalent regarding isomorphically com-
plete systems. Here, using the characterization presented in [13] and extending the 
notion of «¿-product to nondeterministic tree automata, we generalize the result of 
[14] for nondeterministic tree automata. Namely, we prove that there exist finite 
isomorphically complete systems of nondeterministic tree automata with respect 
to the a0-product, moreover, the «¿-product is equivalent to the general product 
regarding isomorphically complete systems of nondeterministic tree automata if 
i > 1. 

The paper is organized as follows. In Section 2, the necessary notions and 
notations are introduced. The following part, Section 3, presents the characteri-
zation of the isomorphically complete systems of nondeterministic tree automata 
with respect to the ao-product. Finally, Section 4 is devoted to the description of 
the isomorphically complete systems of nondeterministic tree automata regarding 
«¿-product with i > 1. 

2 Preliminaries 
To start the discussion, we introduce some notions and notations of relational 
systems (cf. [8]). By a set of relational symbols, we mean a nonempty union 
E = Ei U U . . . where £ m , m = 1,2, . . . , are pairwise disjoint sets of symbols. 
For any m > 1, the set £ m is called the set of m-ary relational symbols. It is said 
that the rank or arity of a symbol a £ E is m if a £ £TO. Now, let a set E of 
relational symbols and a set R of positive integers be given. R is called the rank-
type of E if, for any integer m > 0, £ m / 0 if and only if m £ R. In the sequel, we 
shall work under a fixed rank-type R. 

Now, let E be a set of relational symbols with rank-type R. By a nondetermin-
istic E- algebra A, we mean a pair consisting of a nonempty set A and a mapping 
that assigns to every relational symbol a £ E an m-ary relation aA C Am where 
the arity of a is m. .The set A is called the set of elements of A and aA is the 
realization of a in A. The mapping a aA will not be mentioned explicitly, we 
only write A = (A, E). For every m £ R, a £ E m , and (a i , . . . , a m _ 1) G A771"1, 
we denote the set {a : a G A & <rA(ai,..., aTO_i, a)} by ( a i , . . . , am-i)aA. If 
(a i , . . . ,am-x)aA is a one-element set {a}, then we write (a i , . . . , am_ i )crA = a. 

It is said that a nondeterministic E-algebra A is finite if A is finite, and it is of 
finite type if E is finite. By a nondeterministic tree automaton, we mean a finite 
nondeterministic E-algebra of finite type. Finally, it is said that the rank-type of a 
nondeterministic tree automaton A = (A, E) is R if the rank-type of E is R. 

Let A = [A, £ ) and B = (B, E) be nondeterministic tree automata with rank-
type R. B is called a subautomaton of A if B C A and, for all m G R and a £ E m , 
<Tb is the restriction of aA to Brn. A one-to-one mapping p, oi A onto B is called 
an isomorphism of A onto B ifaA(ai,... ,am) if and only if aB(/j.(ai),... ,fi(am)), 
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for all m E R, (ai, • • • , a m ) E Am, o E Em . In this case, it is said that A and 
B are isomorphic. It is easy to see that p, is an isomorphism of A onto B if and 
only if (a i , . . . ,am-i)crAiJ. = (Mai)> • • • > M a m - h o l d s , for all m E R, a E E m , 
( a i , . . . , a m _ i ) E A™-1. 

In the case of classical automata, a composition of automata can be visualized 
as a network in which each vertex denotes an automaton and the actual input sign 
of a component automaton may depend on the input sign of the whole composition 
and only on those automata which have a direct connection to the component 
automaton under consideration. From practical point of view, one of the most 
self-evident networks is the well-known serial or cascade connection. In this case, 
the composition can be considered as a chain in which each machine has a direct 
connection with all the previous ones. Generalizing this concept, F. Gecseg [2] 
introduced a family of compositions, the aj-products, where i is a nonnegative 
integer which denotes the maximal admissible length of feedbacks. Now, we extend 
the notion of «¿-product to nondeterministic tree automata. 

Let us denote the class of all nondeterministic tree automata with rank-type R 
by U f i . In general, a composition of nondeterministic tree automata from UR can 
be visualized as a network in which each vertex denotes a nondeterministic tree au-
tomaton in UR and the actual relation of a component automaton may depend on 
the relational symbol of the whole composition and only on those nondeterministic 
tree automata which have a direct connection to the component under considera-
tion. In particular, the formal definition of the «¿-product of nondeterministic tree 
automata can be given as follows. 

Let i be an arbitrary nonnegative integer. Let us consider the nondetermin-
istic tree automata A = (A, E) E Ur and Aj = E UR, j = L , . . . ,n. 
Furthermore, let us take a family of mappings 

:<{Ai x . . . x Aj+i- ! )™- 1 x Em £ « , m E R, 1 < j < n . 
> 

It is said that A is the «¿-product, of Aj, j = 1 , . . . ,n, with respect to if the 
following conditions are satisfied: 

n 
(i) A = l [ A j , 

j=i 

(ii) for any m E R, a E £ m and ((01,1,..., o i , n ) , . . . , (am - i , i , • • •, am - i ,n)) £ 
A" ' - 1 , 

((al,l> • • • > al,ra), • • • , (Om-1,1) • • • , Om-l.n))«7"4 = 

(«1,1,..., flm—x . . . x (a i , n , . . . , , 
where 
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= ^7ni((ai ,ii • • • , a i j + i - i ) , •. -, (am-i,i, • • •, am_i i i + : )_i), a), j — 1 , . . . ,n . 

We shall use the notation 

n 

3 = 1 
for the product introduced above. In particular, if Aj, j = 1 , . . . ,n, are identical 
copies of some nondeterministic tree automaton B, then we speak of an ai-power 
and we write $ ) for []"=i * ) . 

Let B be a system of nondeterministic tree automata from U^. It is said 
that B is isomorphically complete for UR with respect to the oii-product if any 
nondeterministic tree automaton from UR is isomorphic to a subautomaton of an 
«¿-product of nondeterministic tree automata in B. 

3 ao-product 
In this section, we deal with the first member of this family of products, the a 0 -
product, which correspondes to the serial composition. In this case, the feedback 
functions can be given as follows: 

:E i - > E i i ) , j = l , . . . , n , if 1 £ R , 

1 ¿meR, 

<Hmj : (Ai x . . . x A , - ! ) " 1 - 1 1 / m e f l , 2 < i < n . 

In what follows, we need a special two-state nondeterministic tree automaton 
which is defined in the following way. For all m € R, let us assign a symbol to each 
m-ary relation on {0 ,1} . Let S m denote the set of these relational symbols and let 
S = U m 6 f iE m . Let us define the nondeterministic tree automaton Q = ( {0 ,1 } , E) 
such that, for every m £ R and a € E m , is the corresponding m-ary relation on 
{0 ,1} . 

The following theorem provides necessary and sufficient conditions for a system 
of nondeterministic tree automata from UR to be isomorphically complete for U / j 
with respect to the ao-product. 

Theorem 1. A system B of nondeterministic tree automata from U/f is iso-
morphically complete for U^ with respect to the ao -product if and only if 
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(a) there exists a nondeterministic tree automaton A* — (A*, £*) £ B such that 
A* has two different elements aj, a{, and for every 1 / m £ fi, there is a om £ £*, 
for which (a*Sl,... ,a*Srnl)o£* D { a j , a i } is valid, for all ( s i , . . . s m _ i ) £ {0, l } m _ 1 , 
furthermore, there is a o\ £ Ej with {aQ,aJ} C of if 1 £ R, 

(b) for all rn £ R and i = (¿1,... ,im) £ {0, l}m, B contains a nondeterministic 
tree automaton AW = (¿(D ,EW) satisfying the following conditions: 

(bl) A'*' has two different elements a^ and a'1^, 

(b2) there exists a <7; € with (a^,.. • .a j^Jai 4 ' 1 ' (~1 {a^^.a^} = { a j j } , 

(b3) for all 1 u £ R and s = ( s i , . . . , s„_i ) £ {0, l } 1 1 - 1 , there is a trj s £ E«^ 

for which { a ^ a ^ } C (ai*', . . . , K f g 1 ' > furthermore, there is a ctj £ E ^ with 

{a£\a?}Cofh iflER. 

Proof. To prove the necessity, let us suppose that B is an isomorphically com-
plete system of nondeterministic tree automata for U « with respect to the ao-
product. Then there are Aj = £ B, j = 1 , . . . ,n, such that Q is isomor-
phic to a subautomaton A — (A, E) of an ao-product n£=i Let p denote 
a suitable isomorphism and let 

M(0) = (ao,i,- • • ,a0,„) and /u(l) = ( a l t l , . . . ,ai,„). 
Let us denote by k the smallest index with ao:k ^ ai.fc- Then we prove that Ak 
satisfies condition (a). For this purpose, we distinguish two cases depending on m. 

Let us suppose that m ^ 1. By the definition of Q, each m-ary 
relation on {0 ,1} has a relational symbol in Em . Thus, there exists a 
o m 6 2jm such that CT^ is the complete m-ary relation on {0,1} . This 
means that d^(si,... ,sm) is valid, for all ( s i , . . . , s m ) 6 {0, l } m . Therefore, 
(s i , . . . , sm_! )5-5 = {0,1} , and thus, ( s 1 ; . . . , sm-i)ofn n = {0, l } / i = {/¿(0),/x(l)} 
is valid, for all ( s i , . . . , s m _ i ) £ {0, l } m _ 1 . Since /x is an isomorphism, we have 
(s i , . . = (n{s i ) , . . . , / i ( s m _i ) )o£ . Consequently, 

(p(si), . . . , / i(sm_i))CT^ = { / i (0) , / i ( l ) } 

is valid, for all ( s i , . . . , s m - i ) £ {0, l } m _ 1 . By the definition of the ao-product, the 
above equality implies 

{ao,fc,ai,*} C (aS l i*, . . . ,aSm_uk)cr£kk 

where s = ( s i , . . . , sTO_i) and 

fs,k — ®mfc((o«i,i> • • • ,aSi,A-i),..., (aSm_ui,..., aSm_uk-i),om). 
If k = 1, then oSlk = imi(ffm)- If k > 1, then let us observe that, by the definition 
of k, aSt,j = a0j, t = 1 , . . . , m - 1, is valid, for all j, j = 1 , . . . , k - 1. Therefore, 
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Os,k = ®m*((ao,l, . . - , ao,fc-l), • • • , (ao.l, • • • , «O.fc-l), 

In both cases, we obtain that as,k does not depend on s, and thus, there exists a 
c m £ S™ such that 

{ao,fc>ai,fc} £ (aSuk,---,a,Sm_ukWmh 

holds, for all ( s i , . . . , s m - i ) € {0, l } " 1 - 1 which yields the validity of (a) if m ^ 1. 
Now, let us suppose that 1 6 iJ and m = 1. By the definition of Q, there exists a 

a € Si such that frG(0) and are valid. Since /i is an isomorphism, we obtain 
that aA(/j,(0)) and aA(fi( 1)) are also valid. Therefore, aA = {//(0),//(1)>. This 
equality implies {ao,i : ,a^fc} C aAk where o\ = 'fit; (a-), and thus, Ak satisfies (a) 
in this case, too. 

Regarding validity of (b), it follows from the proof of Theorem 1 in [13]. For 
the sake of completeness, we present its proof here as well. For this purpose, let 
us denote the set {k : 1 < k < n & a0tk £ ai.fc} by K. Obviously, K ^ 0. Now, 
let m £ R and i = (?i , . . . ,im) £ {0, l}™1 be arbitrary elements. We distinguish the 
following two cases depending on m. 

Case 1: m > 1. By the definition of Q, there is a am £ STO with 
(¿ i , . . . ^ m - i ) ^ — im. Since n is an isomorphism, this yields 

( / i ( i i ) , . . . , /i(iTO_!))aA = fi(im). 

Therefore, aim:k £ (ail<k, • • - ,aim-i,k)&£k holds, for all k £ K, where 

<?k = ^mi:((aii,l, • • • , a«i,k-l), • • • , (a»m_i,l, • • • ; aim-i,k-l), &m)-

But then there exists at least one index I £ K such that 

(cnui,.. • ,aim_ui)af' D {a0 ,i,ai, ;} = {«¿m,i}. 

Consequently, satisfies (bl) and (b2). To prove (b3), let 1 ^ u £ R and 
s = ( s i , . . . , s u _ i ) £ {0 ,1 } U _ 1 be arbitrary elements. By the definition of Q, there 
exists a crs £ £ „ with ( s i , . . . , su-i)<rf = {0,1}. Since fi is an isomorphism, this 
implies 

( / ¿ ( s i ) , . . . , / i ( s u - l ) ) ^ = {^(0),/x(l)}. 

Then {a0,fc,ai,fc} C (aS l i j t , . . . , aSu_ 1:k)(^s,k h o lds, for all k £ K, where 

0S,fc = $ufc((a«i,l, • • • > 0«i,fc-l), • • • i (Os„_i,l> • • • i aSu_uk-i), crs)-

Therefore, {a0,i,ai,i} C (aSl,i, • • • ,aSu_lii)<Tg'r If 1 £ R and u = 1, then, by the 
definition of Q, there is a ctj 6 

Si with fff = {0,1}. But then a f = { /¿(0), / i ( l)} , 
and consequently, {a0,i:, ai,*} C aAk, for all k £ K, where dk = i'ifc(o'i). Thus 
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{«o,/: «1,;} Q of', i.e., A^ satisfies (b3) as well. This completes the proof of the 
necessity when m / 1 . 

Case 2: 1 6 R and 771 — 1. By the definition of Q, there is a <j\ £ Si with 
of = '¿i. But then aA = fi(ii). Therefore, ailtk € aAk is valid, for all k £ K, where 
crjt = i'i/t(a"i). Prom this it follows that there exists at least one I £ K such that 

afl n {ao , i ,a i , i } = { « i i , i } -

Now, let u € R and s = ( s i , . . . , s u - i ) £ {0 ,1} U _ 1 be fixed arbitrarily. In a similar 
way as above, it is easy to see that there is a as,/ £ such that {«oi, i iz} C 
(aSli,..., aSu_1i)ag'l if u ^ 1, and there is a a* £ S^' with {a0)z, aiti}afA' if u = 1. 
This completes the proof of the necessity. 

For proving the sufficiency, let us assume that B satisfies the conditions of 
Theorem 1. Let us define the sets W and W' by 

W = {{0,l}m:meR} and W' = {(h, ..., im) : fa,..., im) £ W & im = 0}. 

Let \W'\ = n, and let 7 denote a one-to-one mapping of { 1 , . . . , n} onto W'. By 
our assumption on B, for any p £ { l , . . . , n } , there exists a nondeterministic tree 
automaton Ail,{p)) = £ B satisfying conditions (bl), (b2), and 
(b3) with i = (¿1,..., im) = 7(p) where im = 0. For the sake of simplicity, let us 
denote the elements ag7^^ and by 0 and 1, respectively. Furthermore, let 
us denote by A* = (A*, S*) an automaton of B satisfying (a), moreover, let 0 and 
1 denote the elements a3 and a*, respectively. 

Now, let C = (C, S) £ Ujj be an arbitrary nondeterministic tree automaton 
with C = { c i , . . . , c r } . We prove that C can be embedded isomorphically into an 
ao-product of nondeterministic tree automata from {A*} U {^'TM) . j < p <n}. 

For this purpose, let us take all the r-dimensional column vectors over {0,1} 
and order them in lexicographically increasing order. Let denote the matrix 
formed by these column vectors. Then is a matrix of type r x 2r over {0,1}, the 
row vectors of Q ^ are pairwise different, moreover, for any subset V of { 1 , . . . , 7 }, 
there exists exactly one index k £ { 1 , . . . , 2 r } such that, for alii € { 1 , . . . , 7-}, t € V 
if and only if q^ = 0. Let 

Q = ( Q W . . . Q W ) 

where the number of the occurences of is n -I-1 in the partitioned form of Q. 
Finally, let us define the one-to-one mapping /i of { c i , . . . , cr} onto the set of the 
row vectors of Q by /i(a) = (qia,... ,gj,(n+i)2-)> « = 1, . . . and let M = {n(ci) : 
i - l , . . . , r } . 

Now, let us construct the ao-product A — (A, S) = 
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A* x • • • x A* x X ( 7 ( 1 ) ) x • • • x .A'7'1» x • • • x AMn)) x • • • x .4 ( 7 ( n ) ) (E , $ ) 
> ,, ' V ' » V ' 

2 rtimes 2rtimes 2rtimes 

in the following way. First of all, let us observe that M C A . To define the feedback 
functions, let us consider the following two cases. 

Case 1: 1 E R and TO = 1 . Let a E £ i ( C E) be an arbitrary relational symbol, 
furthermore, let ac = {cjt, , . . . ,c/t,} where 0 < I < r. Since 1 E R, the vector 
i = (0) is contained in W', and thus, there exists a po E { l , . . . , n } such that 
-y(po) = (0). On the other hand, by the definition of Q ' r \ there exists exactly one 
index d E { 1 , . . . , 2 r ] such that, for each s E { 0 , . . . , n } , the following assertion is 
valid: 

for all t E { 1 , . . . , r } , qt,S2r+d = 0 if and only if t E {h,..., A;*}. 

Now, the feedback functions j = 1 , . . . , (n + 1)2'', are defined as follows: 

= 

( if 1 < j < 2 r , 
o"(o) if j = Po2r + d, 
<7(0) if po2r < j < {po + l )2 r & j ± po2r + d, 
al(p} if po^pE {!,...,n} & P2r <j < (p+l)2r, 

where o\ E EJ satisfying (a), ct(o) 6 satisfying (b2), <j(0) E E j ' 0 " satisfying 
(b3), finally, ff7(p) e E^7(p)) satisfying (b3). 

Case 2: 1 ^ TO E R. Let a E £ m ( C E) be an arbitrary m-ary relational 
symbol and let us consider TO- 1 elments from M denoted by (qit<i,..., 1)2'-), 
t = 1 , . . . , T O - 1. Then, fi(at) = {qu,i,. (n+i)2-)» t = l,...,m-l. Let us 
suppose that ( c ^ , . . . , Cim_1)ac = { c , • • •, Ck,} where 0 < I < r. Then there is one 
and only one integer d E { 1 , . . . , 2 r } such that, for every s E { 0 , . . . , n } , we have 
the following assertion: 

for all t E { 1 , . . . , r } , qt,s2r+d. = 0 if and only if t E { f c i , . . . , kt}. 

On the other hand, let us observe that, for any u g { l , . . . , 2 r } , the column vectors of 
Q with indices s2r+v, s = 0 , . . . , n, are identical copies of some r-dimensional vector 
over {0 ,1} . Consequently, the vectors {qiuS2r+v, • • • ,qim-i,s2r+v), s = 0 , . . . ,n, are 
the copies of an (to — l)-dimensional vector over {0 ,1} . Let us denote the vector 
(qiuv, •• -,Qim-i, v) by s„ if 1 < i; < 2 r , v ^ d, and the vector (qiud, •• ,qi„,.ud) 
by (i[, • • • ,i'm_i). Let i = (¿1, • • . , im_i ,0) . Then i E W', and thus, there is a 
po E {1 , . • • ,n} with 7(po) = i- Now, we define the feedback functions as follows. 
For any j E { 1 , . . . , (n + l )2 r } , let 

*mj((g»i,i, • • • 19»i,j-i)> • • • > (g»m_i,i> • • • j-i)>°') = 
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' ffm if 1 < 3 < 2r, 
£7j if j = Po 2r + d, 

' 07(P),s„ if 3 Po2r + d&iv = j(mod 2r) & p2r < j < {p + l )2 r 

where crTO £ satisfying (a), cfj G Sm satisfying (b2), and (^(p^s,, £ Snl^^ 
satisfying (b3). 
In all the remaining cases, let us define the feedback functions TOJ arbitrarily in 
accordance with the definition of the o0-product. 

Regarding above definition, we have to verify that it is really an a0-product. If 
1 £ R and m — 1, then our definition is obviously correct. Now, let 1 / m 6 ii. 
Then if>mj depends only on m if 1 < j < 2 r . Let us consider the case when 
2r < j < (n + l)2 r . Since the row vectors of Q ' r ' are pairwise different, each 
element of M is uniquely determined by its first 2r components. Therefore, the 
indices ii,... ,im-i are uniquely determined. Then ki,...,ki are determined by 
<7. Furthermore, d, i and po are determined uniquely by k\,... fcj, the definition of 

and the first 2r components of the elements in M under consideration. Now, 
if j — p02r + d, then the definition of is in accordance with the definition of 
the ao-product. If j ^ p02r + d, then j determines v and p uniquely, furthermore, 
s„ is determined by v and the first 2r components of the considered elements of M. 
Consequently, the definition of correspondes to the definition of the ao-product 
in this case as well. 

By the above observations, we have that A is an ay-product of nondeterministic 
tree automata from : 1 < p < n}. Let us consider the subautomaton 
of A determined by M and denote this subautomaton by M = (M, E). We prove 
that C and M. are isomorphic, moreover, the mapping /i is a suitable isomorphism. 

First, let us suppose that l e i ? and 
Tii — 1. Let & E Ei be an arbitrary 

relational symbol. We have to prove that crc(ck) if and only if <jM((i(ck)), for all 
Ck € C, or equivalently, ocfi = crM. We distinguish the following two cases. 

Let us suppose that ac = 0. Then d = 2r, furthermore, ,i,i,(p0+i)2'-(o') = cr(o), 
and thus, the (po -I- l)2r-th component of each element of a A is not equal to 1. 
On the other hand, the (po + l)2r-th component of each element of M is equal to 
1. Therefore, 0 = aA n M = aM. Conversely, let us assume that aM = 0. If 
ac ^ 0, then ac = {cJt1,... q , } for some 1 < I < r. Then, by the definition of ^ , 
j = 1 , . . . , (n + l)2 r , we obtain that 

(JA D {0, l}P02"+d-l x x | 0 ) 1 j ( n +l)2 ' -p 0 2 ' -d i 

and the right-side set of the above inclusion contains fi(ckt), for all t, t = 1 , . . . ,1. 
Therefore, aA fl M = oM / 0 which is a contradiction. Consequently, ac = 0. 

Now, let us suppose that ac = { c , . . . ,ckl} for some 1 < I < r. Then 
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aA D {0, l}P02-+<i-l x {q} x ^01|(n+l)2'--Po2"-d ; 

and the right-side set contains p(ckt), for all t, t = 1 , . . . ,1. On the other hand, by 
the definition of d, for all t E { 1 , . . . , r } , qt^^+d = 0 if and only if t E { f c i , . . . , kt}. 
This yields that aA n M = { /x(c f c l) , . . . ,n(ck,)}, i.e., aM = {fi(ckl),... ,/x(cfc,)}. 
Consequently, aCfi = a M . 

Now, let 1 m € R, a € E m , cit E C, t = 1 , . . . ,m - 1, be arbitrary elements. 
We have to show that 

(ciL-.-.Ci^JffS = {p(cil),...,fJ,{cim_1))aM 

is valid. Let (cll,..., Ciin_1 )<rc = {ckl,..., ck,} for some integer 0 < I < r. Then, 
by the definition of 3 = 1, •••,(« + l )2 r , 

[ix{cil),...,p{cim_1))aA 2 { O . l } « ' 2 ' ^ - 1 x {0} x { 0 , i }(n+i)2'-Po2'-d j 

furthermore, {n(ckl),... ,fi{ck,)} = {(qkt,i, • • •, 9*t,(n+i)2' : 1 < i < / } i s a subset 
of the right-side set. By the definition of d, for all t E { 1 , . . . , r } , qt,P02'+d = 0 if 
and only if t E {ki,... ,ki}. This yields that 

inici,),..., ))<JA n M = {(g*t,i,...,gjfet,(„+i)2-) : 1 < t < 1} = 

= {(i{ckl),..., /x(cfc,)}. 

Consequently, (c^,... ,cim_1)ac/j, = ((¿(c^),..., ¡j,(cim_1))aM, and thus, fj, is an 
isomorphism of C onto M.. 

This completes the proof of Theorem 1. 

Remark. In particular, if R = {2} , then UJJ is the class of the nondeterministic 
automata. Then as a special case of Theorem 1, we obtain the characterization of 
the isomorphically complete systems of nondeterministic automata with respect to 
the ao-product which was presented in [14]. 

It is easy to observe that the nondeterministic tree automaton Q satisfies the 
conditions of Theorem 1. Therefore, every nondeterministic tree automaton from 
U R can be embedded into an ao-power of Q. This implies the following corollary. 

Corollary 1. Every nondeterministic tree automaton from U^ can be embed-
ded isomorphically into an ao-product of suitable two-state nondeterministic tree 
automata. 
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4 «¿-product with i > 1 
In this section, we study the «¿-product with i > 1. For this reason, let i > 0 be 
an arbitrarily fixed integer. Then the isomorphically complete systems of nonde-
terministic tree automata with respect to the «¿-product can be characterized as 
follows. 

Theorem 2. A system B of nondeterministic tree automata from U/ j is iso-
morphically complete for U/j with respect to the ai-product if and only if, for all 
m E R and i = ( « i , . . . ,im) G {0, l } m , B contains a nondeterministic tree automa-
ton = (A'1», E'1') satisfying the following conditions: 

(I) AW has two different elements üq1' and a^, 

(II) there exists a a-x E Em with (a i f , . . . , o£¡_1 )af1) n { a ^ a ? } = { a ^ } , 

(III) for all 1 ^ u E R and s = ( s i , . . . , s u _ i ) E {0 ,1 } U _ 1 , there is a a¡ g G £ « ' 

for which {üq1', a ^ } C ( o ^ , . . . , o«^-i)<T¡4g '> furthermore, there is a <r¡ G E ^ with 

{ a ^ a f t c ^ ' if leR. 

Proof. The necessity of the conditions follows from Theorem 1 in [13]; the proof 
has the same idea as the proof of the necessity of (b) in Theorem 1 of Section 3. 
In order to prove the sufficiency, let us suppose that B satisfies the conditions of 
Theorem 2. Let us define the sets W and W' as above, i.e., let 

W — { { 0 , 1 } " ' : m E R} and W' = { ( ¿ i , . . . ,im) : [iu ..., im) E W & im = 0}. 

Let \W'\ = n, and let 7 denote a one-to-one mapping of { 1 , . . . ,n} onto W'. By 
our assumption on B, for any p E { 1 , . . . ,n}, there exists a nondeterministic tree 
automaton _4<7(p)) = (AW?)), E ^ » ) e b satisfying conditions (I), (II), and (III) 
with i = (¿1,... ,im) = ~f(p) where im = 0. Again, let us denote the elements 
and <47(p)) by 0 and 1, respectively. 

Now, let C = (C, E) G UR be an arbitrary nondeterministic tree automaton 
with C = { c i , . . . ,cr}. We prove that C can be embedded isomorphically into an 
«¿-product of nondeterministic tree automata from {_4(T(P)) : 1 < p < n). 

For this purpose, let 

Q' = ( Q M . . . Q W ) 

where the number of the occurences of is n + 1 in the partitioned form of 
Q'. Furthermore, let us define the one-to-one mapping p, of { c j , . . . , cr} onto the 
set of the row vectors of Q' by /J(C¿) = (qitl,..., g¿)(n+i)2'-), i = l , . . . , r , and let 
M' = {/i(c¿) : i = l,...,r}. 



52 B. Imreh 

Let us construct the «¿-product A — [A, E) = 

_4(7(1)) x . . . x _4(7(1)) x _4(7(1)) x . . . x _4(7(D) x . . . x _4<7(n)) x .. 
* ,, ' v ' " ' 

2 'times 2rtimes 2rtimes 

in the following way. First of all, let us observe that M' C. A. To define the feedback 
functions, let us consider the following two cases. 

Case 1: 1 G R and m = 1. Let a G Ei(C E) be an arbitrary relational symbol, 
furthermore, let crc = { c ^ , . . . , c^,} where 0 < I < r. Since 1 G R, the vector 
i = (0) is contained in W', and thus, there exists a po G { l , . . . , n } such that 
j(p0) = (0). On the other hand, by the definition of Q ' r ) , there exists exactly one 
index d G { 1 , . . . , 2 r } such that, for each s G { 0 , . . . , n} , the following assertion is 
valid: 

for all t G { 1 , . . . , r } , qt,s2r+d = 0 if and only if t G { f c i , . . . , h}. 

Let jo = Po2r + d. Now, the feedback functions , j = 1 , . . . , (n + 1)2'', are 
defined as follows: 

p 7 ( i ) i f l < j < 2 r , 
^ii(cr) = < °"(0) if J = Jo, 

[ o-7(p) if j # jo & p2r < j < (p + 1)27' for some p G { 1 , . . . , n}. 

where cr7(1) G E<7(1)) satisfying (III), a{0) G E^(0)) satisfying (II), and d l { p ) G s [ 7 b ) ) 

satisfying (III). 

Case 2: 1 ^ m G R. Let a G E r a(C E) be an arbitrary m-ary relational 
symbol and let us consider m —1 elments from M' denoted by (g j , , i , . . . , 9jil(,i+i)2'-), 
t = 1,... ,m — 1. Then, fx(at) = (qiull ...,qiti („+1)2"), t = - 1. Let us 
suppose that (c» 1,..., Cim_1)ac = {ckl,..., ckl} where 0 < I < r. Then there is one 
and only one integer d G { 1 , . . . , 2 r } such that, for every s G { 0 , . . . , n } , we have 
the following assertion: 

for all t G { 1 , . . . , r } , qt,s2r+d = 0 if and only if t G {h,..., ki}. 

On the other hand, let us observe that, for any v G { 1 , . . . , 2 r } , the column vectors of 
Q' with indices s2r + v, s = 0 , . . . ,n, are identical copies of some r-dimensional vec-
tor over {0 ,1} . Consequently, the vectors ( q ^ ^ + v , • • • ,9im_1,«2'-+v), s = 0 , . . . ,n, 
are the copies of an (m —l)-dimensional vector over {0 ,1 } . Let us denote the vector 
(gti,*, • • -Aim-i,v) by s„ if 1 < v < 2 r , v ± d, and the vector (qiud, • • • ,9im_i,d) 
by (-¿i,... Let i = (¿i, . . . ,i'm_1,0). Then i G W', and thus, there is a 
Po G { 1 , . . . with 7(po) = i- Let j0 = Po2r + d again. We define the feedback 
functions in the following way. For any j G { 1 , . . . , (n -h l )2 r } , let 

^mj( (9t i , l , • • • , 9 » i , j + i - l ) , • • • > (<7im_i,l, • • • , 9 i m _ i , j + i - l ) , 0 ' ) = 



On ai-products of nondeterministic tree automata 53 

^7(1),Si if 1 < J < 2r , 
^ ( l ) , « , . . . ^ ! ) 1 {J=d> 

if j = jo, 
07(p),8. if j^jo&vEE j (mod 2 r) & p2r <j <(p + 1)2'-

for some;p € { 1 , . . . , n} , 

where tr7(I),Si,cr7(I),(I'II...II^_I) E £™ (1 ) ) satisfying (III), CTJ <E satisfying (II), 
and crT(p)is„ G satisfying (III). In all the remaining cases, let us define the 
feedback functions 9 r n j in accordance with the definition of the «¿-product. 

Regarding above definition, it is easy to verify that it is really an «¿-product, 
and thus, A is an «¿-product of nondeterministic tree automata from {A^1'^ : 
1 < p < n}. Let us consider the subautomaton of A determined by M'. Let 
M ' = (M' ,E) denote this subautomaton. Then it is easy to prove that ¡jl is an 
isomorphism of C onto M'. 

This completes the proof of Theorem 2. 

Since the characterization of the isomorphically complete systems of nondeter-
ministic tree automata with respect to the general product (see Theorem 1 in [13]) 
contains the same conditions as Theorem 2, we immediately obtain the following 
corollary. 

Corollary 2. The ai-product is equivalent to the general product regarding 
isomorphically complete systems of nondeterministic tree automata provided that 
i > 1. 
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