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On ay;-products of nondeterministic tree automata*

B. Imrehf

Abstract

In this paper, we characterize the isomorphically complete systems of non-
deterministic tree automata with respect to the family of a;-products. In
particular, our characterization yields that any finite nondeterministic tree
automata can be embedded isomorphically into a suitable serial product of
two-state nondeterministic tree automata.
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1 Introduction

Isomorphic representation of automata by different compositions is one of the cen-
tral problems in the theory of automata. One line of the researches is to char-
acterize those systems of auntomata which are isomorphically complete, i.e., every
automaton is an isomorphic image of a subautomaton of a product from them.
Most of the studies regarding characterizations of isomorphically complete systems
concern deterministic automata or deterministic' tree automata. We quote only
[1),{3],{4],[7],[9],[10],[11], and [15]. On the other hand, together with the spread of
parallel computation, the importance of nondeterministic automata is increasing.
This is the motivation to deal with the representations of nondeterministic au-
tomata. The first description of the isomorphically complete systems of nondeter-
ministic automata with respect to the general product was given in [5]. In the work
[6], it is proved that the cube-product is equivalent to the general product regard-
ing isomorphically complete systems of nondeterministic automata. The isomorphic
representation of a special class of nondeterministic automata is investigated in [12].
The notion of a;-product (cf. [2],[3]) was extended to nondeterministic automata,
and the isomorphically complete systems were characterized with respect to this
hierarchy of products in [14]. From this characterization, it turns out that contrary
to the deterministic case, in the nondeterministic case, there exist finite isomorphi-
cally complete systems with respect to the ap-product, furthermore, the a;-product
is equivalent to the general product regarding isomorphically complete systems if
i > 1. The isomorphically complete systems of nondeterministic tree automata
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with respect to the general product and the cube-product are studied in [13] where
it is proved that these compositions are equivalent regarding isomorphically com-
plete systems. Here, using the characterization presented in [13] and extending the
notion of o;-product to nondeterministic tree automata, we generalize the result of
[14] for nondeterministic tree automata. Namely, we prove that there exist finite
isomorphically complete systems of nondeterministic tree automata with respect
to the ag-product, moreover, the a;-product is equivalent to the general product
regarding isomorphically complete systems of nondeterministic tree automata if
i>1.

The paper is organized as follows. In _Section 2, the necessary notions and
notations are introduced. The following part, Section 3, presents the characteri-
zation of the isomorphically complete systems of nondeterministic tree automata
with respect to the ag-product. Finally, Section 4 is devoted to the description of
the isomorphically complete systems of nondeterministic tree automata regarding
a;-product with ¢ > 1.

2 Preliminaries

To start the discussion, we introduce some notions and notations of relational
systems (cf. [8]). By a set of relational symbols, we mean a nonempty union
Y=%,U%U... where Z,,, m = 1,2,..., are pairwise disjoint sets of symbols.
For any m > 1, the set %,, is called the set of m-ary relational symbols. 1t is said
that the rank or arity of a symbol ¢ € X is m if ¢ € ¥,,. Now, let a set ¥ of
relational symbols and a set R of positive integers be given. R is called the rank-
type of T if, for any integer m > 0, &, # 0 if and only if m € R. In the sequel, we
shall work under a fixed rank-type R.

Now, let T be a set of relational symbols with rank-type R. By a nondetermin-
istic E-algebra A, we mean a pair consisting of a nonempty set A and a mapping
that assigns to every relational symbol o € % an m-ary relation 0 C A™ where
the arity of o is m. The set A is called the set of elements of A and o is the
realization of o in A. The mapping 0 = ¢ will not be mentioned explicitly, we
only write A = (A4,%). For every m € R, 0 € £, and (a1,...,am—1) € A™™L,
we denote the set {a : a € A & 0%(a1,...,am-1,a)} by (a1,...,am_1)0?. If
(a1,-..,am_1)0* is a one-element set {a}, then we write (ai,...,am-1)0* = a.

It is said that a nondeterministic ¥-algebra A is finite if A is finite, and it is of
finite type if ¥ is finite. By a nondeterministic tree automaton, we mean a finite
nondeterministic X-algebra of finite type. Finally, it is said that the rank-type of a
nondeterministic tree automaton A = (A,X) is R if the rank-type of ¥ is R.

Let A = (4,%) and B = (B, X) be nondeterministic tree automata with rank-
type R. B is called a subautomaton of Aif B C A and, for allm € R and 0 € %,,,
o8B is the restriction of 0 to B™. A one-to-one mapping u of A onto B is called
an isomorphism of A onto B if 0(ay,...,a.) if and only if 0% (u(a1), . . ., u(am)),
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for all m € R, (a1,.-.,am) € A™, 0 € Xy,. In this case, it is said that A and
B are isomorphic. It is easy to see that g is an isomorphism of A onto B if and
only if (ay,. .-, am-1)0n = (p(a1), .. ., p(am—1))o? holds, for all m € R, 0 € &,,,
(al, e ,am_l) € Am—l_

In the case of classical automata, a composition of automata can be visualized
as a network in which each vertex denotes an automaton and the actual input sign
of a component automaton may depend on the input sign of the whole composition
and only on those automata which have a direct connection to the component
automaton under consideration. From practical point of view, one of the most
self-evident networks is the well-known serial or cascade connection. In this case,
the composition can be considered as a chain in which each machine has a direct
connection with all the previous ones. Generalizing this concept, F. Gécseg (2]
introduced a family of compositions, the «;-products, where i is a nonnegative
integer which denotes the maximal admissible length of feedbacks. Now, we extend
the notion of a;-product to nondeterministic tree automata.

Let us denote the class of all nondeterministic tree automata with rank-type R
by Upg. In general, a composition of nondeterministic tree automata from Upg can
be visualized as a network in which each vertex denotes a nondeterministic tree au-
tomaton in Ug and the actual relation of a component automaton may depend on
the relational symbol of the whole composition and only on those nondeterministic
tree automata which have a direct connection to the component under considera-
tion. In particular, the formal definition of the a;-product of nondeterministic tree
automata can be given as follows.

Let ¢ be an arbitrary nonnegative integer. Let us consider the nondetermin-
istic tree automata A = (A,X) € Ug and A; = (Aj,E(J)) €Ug, 7=1,...,n.
Furthermore, let us take a family ¥ of mappings

Ui (AL X X A1) xS =20 meR, 1<j<n.

It is said that A is the a;-product of A;, j = 1,...,n, with respect to ¥ if the
following conditions are satisfied:

0 a=]4,

_ (ii) for any m € R, 0 € Zy, and ((a1,1,.--,81,n)5-- -5 (@m-1,1,-- -, @m-1,n)) €
Am—l, R
((@1,15---501,n)5 -5 (@11, -+, Gm—1,n))0? =

(alyl, ey am_l,l)o{h X ... X (al’n, ey am_l‘n)cr,f" 5
where
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g; = \I‘m]-((al,l, .. .,al,j+,-_1), ceey (am_l‘l, N ,am_l,iﬂ-_l),a), ] = 1, P 12

We shall use the notation

[1A4iz v
i=1

for the product introduced above. In particular, if A;, j = 1,...,n, are identical
copies of some nondeterministic tree automaton B, then we speak of an «;-power
and we write B"(3, ¥) for [T7_, 4;(Z, ¥).

Let B be a system of nondeterministic tree automata from Ug. It is said
that B is isomorphically complete for Ugr with respect to the a;-product if any
nondeterministic tree automaton from Upg is isomorphic to a subautomaton of an
a;-product of nondeterministic tree automata in B.

3 «g-product

In this section, we deal with the first member of this family of products, the ag-
product, which correspondes to the serial composition. In this case, the feedback
functions can be given as follows:

Uy, 8 -39 j=1,...,n, if 1eR,

Uy : 2 = S 1 £meR,

Ui (A1 X XA )" xS, 30, 1#meR, 2<j<n.

In what follows, we need a special two-state nondeterministic tree automaton
which is defined in the following way. For all m € R, let us assign a symbol to each
m-ary relation on {0,1}. Let £,, denote the set of these relational symbols and let
¥ = UmerZm. Let us define the nondeterministic tree automaton G = ({0, 1}, %)
such that, for every m € R and o € £,,, ¢9 is the corresponding m-ary relation on

{0,1}.
The following theorem provides necessary and sufficient conditions for a system

of nondeterministic tree automata from Ug to be isomorphically complete for Ug
with respect to the ap-product.

Theorem 1. A system B of nondeterministic tree automate from Up is iso-
morphically complete for Up with respect to the ag-product if and only if



On a;-products of nondeterministic tree automata 45

(a) there exists a nondeterministic tree automaton A* = (A*,X*) € B such that
A* has two different elements ao, a;, and for every 1 #m € R, thereis a 0, € 7,
for which (a%,,...,a},._ o 2 {a},aj} is valid, for all (s1,...8m—1) € {0,1}™1
furthermore, there is a 0y € £} with {a},a}} C of* if 1 € R,

(b) for allm € R and i = (i1,...,im) € {0,1}™, B contains a nondeterministic
tree automaton AN = (A(l > (Y satisfying the following conditions:

(b1) AD has two different elements al D and al?,

(b2) there exists a 0; € 25711) with (agll), R S}n) Do ;4(1) N {a ,all)} {a(l)}

(b3) for all 1 #u € R ands = (s1,..., 5u-1) € {0, 1}, there is a 0 g € =
for which {a((,l),all)} C( ) ag) ,)O’iA; ), furthermore, there is a 6; € 2(11) with

{aéi),a(ll)} - 6{4(1) ifle€R.

Proof. To prove the necessity, let us suppose that B is an isomorphically com-
plete system of nondeterministic tree automata for Ug with respect to the ag-
product. Then there are A; = (4;, @) eB,j=1,...,n, such that G is isomor-
phic to a subautomaton A = (4, ) of an ag- product Hj=1 A;(Z, ). Let p denote
a suitable isomorphism and let

M(O) = (040,1, P ;G'O,n) and M(l) = (0.1’1, PP ,al’n).

Let us denote by k the smallest index with agx # a1,x. Then we prove that A
satisfies condition (a). For this purpose, we distinguish two cases depending on m.

Let us suppose that m # 1. By the definition of G, each m-ary
relation on {0,1} has a relational symbol in ¥,. Thus, there exists a
Om € &, such that % is the complete m-ary relation on {0,1}. This

means that &9 (si,...,sm) is valid, for all (s1,...,sm) € {0,1}™. Therefore,
(15- -, Sm—1)8%, = {0,1}, and thus, (s1,...,8m-1)85u = {0,1}p = {u(0), u(1)}
is valid, for all (sl, .. y8m—1) € {0,1}™" 1. Since u is an isomorphism, we have
(512 $m-1)5% 1 = ((51), - - (5 1)) 2. Comseaquently,

(#(31)7 s ’#(sm-l))&rﬁ = {:U'(O)J‘(l)}

is valid, for all (s1,...,5m—1) € {0,1}™~1. By the definition of the ag-product, the
above equality implies

{ao,k) al,k} c (aslyk’ v ’a‘sm—l,’v)o'ghli
where s = (51,...,8m-1) and
US,k = ‘I’mk((asl,la ... 7a81,k—1): ceny (as,n_l,ly ey asm_l,k—l); 6711)

If k =1, then 05 ; = ¥n1(Gm). If & > 1, then let us observe that, by the definition
ofk,as,j =aoj, t=1,...,m—1,isvalid, for all j, j =1,...,k — 1. Therefore,
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s,k = ‘I’mk((ao,l, .- -,ao,k—l), . --,(ao,l, S ,ao,k-l),c_fm)-

In both cases, we obtain that os does not depend on s, and thus, there exists a
€ E("If) such that

{ao0k,01,6} C (Qsy by -3 Qsps k)T A

holds, for all (s1,...,8m—1) € {0,1}™~! which yields the validity of (a) if m # 1.

Now, let us suppose that 1 € R and m = 1. By the definition of G, there exists a
& € £, such that 39(0) and 9(1) are valid. Since p is an isomorphism, we obtain
that 64 ((0)) and 4 (u(1)) are, also valid. Therefore, 34 = {u(0), u(1)}. This
equality implies {agx, a1, k} C a7 A% where ; = ¥44(5), and thus, A satisfies (a)
in this case, too.

Regarding validity of (b), it follows from the proof of Theorem 1 in [13]. For
the sake of completeness, we present its proof here as well. For this purpose, let
us denote the set {k:1 < k <n&agxr # a1,1} by K. Obviously, K # 0. Now,
let m € Randi= (i1,...,im) € {0,1}™ be arbitrary elements. We distinguish the
following two cases depending on m.

Case 1: m > 1. By the definition of G, there is a &, € X, with
(31, .. ,%m—_1)8Y = im. Since p is an isomorphism, this yields
(1(51), - s lim—1))T3 = i)

Therefore, a;,, & € (ai &, - - - ,aim_l,k)af’“ holds, for all k € K, where

Ok = \I’mk((ail,la . 'aail,k—l); ) (a‘im-—x,l: B aaim—l,k—l);&m)'

But then there exists at least one index I € K such that

(@i by -+ @iy 1)07 " N {a0g, 010} = {ai,, 1}

Consequently, A®) satisfies (b1) and (b2). To prove (b3), let 1 # u € R and
s=(s1,...,5.1) € {0,1}¥" ! be arbltrary elements. By the definition of G, there
exists a os € &y, with (s1,...,84-1)08 = {0,1}. Since p is an isomorphism, this
implies

(1(51),- - plsumr))og = {u(0), u(1)}.

Then {_ao,k,alyk} C (s k- - - aasu—:,k)‘fs,’fc holds, for all k € K, where

s,k = ‘Iluk((asl,li cry a31,k—1)7 R (asu_l,la ey asu_l,k—l); US)'

Therefore, {ag,a1,1} C (@s 15+ 0sy_y0 )cr;‘l If 1 € R and v = 1, then, by the

definition of G, there is a 0; € £, w1th 69 = {0,1}. But then o7* = {u(0), u(1)},
and consequently, {aok, a1t} C ak , for all k € K, where 6 = ¥15(01). Thus
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{ao4,a1,4} C 6,’", ie., AY satisfies (b3) as well. This completes the proof of the
necessity when m # 1.

Case 2: 1 € R and m = 1. By the definition of G, there is a §; € £; with
&lg = 7;. But then 6{‘ = p(i1). Therefore, a;, 1 € a,f" is valid, for all k € K, where
or = ¥1(51). From this it follows that there exists at least one ! € K such that

dlA’ N {ao,z;al,z} = {ail,l}'

Now, let u € R and § = (s1,...,84-1) € {0,1}*"! be fixed arbitrarily. In a similar
way as above, it is easy to see that there is a 05 € EE,[) such that {ag;, a1} C
(@syt, - .,asu_ll)agf; ifu#1, and thereis a o} € 2§” with {ag s, a1, )07 if u = 1.
This completes the proof of the necessity.

For proving the sufficiency, let us assume that B satisfies the conditions of
Theorem 1. Let us define the sets W and W' by

W={{O,1}mm€R} and W’={(11,,2m)(11,,2m)€W & zm:O}

Let |W'| = n, and let v denote a one-to-one mapping of {1,...,n} onto W'. By

our assumption on B, for any p € {1,...,n}, there exists a nondeterministic tree
automaton AP = (40D $(P)) ¢ B satisfying conditions (b1), (b2), and
(b3) with 1 = (¢1,...,%m) = v(p) where i,, = 0. For the sake of simplicity, let us
denote the elements ag’(p ) and aﬁ”(” ) by 0 and 1, respectively. Furthermore, let
us denote by A4* = (4*,¥*) an automaton of B satisfying (a), moreover, let 0 and

1 denote the elements aj and a, respectively.

Now, let ¢ = (C,X) € Ug be an arbitrary nondeterministic tree automaton
with C = {¢y,...,¢cr}. We prove that C can be embedded isomorphically into an
ao-product of nondeterministic tree automata from {A*} U {A0®) : 1 < p <n).

For this purpose, let us take all the r-dimensional column vectors over {0,1}
and order them in lexicographically increasing order. Let Q(™) denote the matrix
formed by these column vectors. Then Q(™) is a matrix of type r x 2" over {0,1}, the
row vectors of Q(") are pairwise different, moreover, for any subset V of {1,...,7},
there exists exactly one index k € {1,...,2"} such that, forallt € {1,...,7},t eV

if and only if ¢{p) = 0. Let

Q=(Q"...qQ")

where the number of the occurences of Q(™) is n 4 1 in the partitioned form of Q.
Finally, let us define the one-to-one mapping p of {ci,...,c.} onto the set of the
row vectors of Q by p(ci) = (gi1,---,@i(ny1)2r), 1 =1,...,7, and let M = {u(c;) :
i=1,...,7}

Now, let us construct the ap-product 4 = (4,%) =
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_A* X o0 X A‘ X A('Y(l)) X oo X A('Y(l)) X o0 X A('Y(”)) X oeo X _A('Y(n))(z’ \Iy)

~ ~~ ~~
2T times 2rtimes 2"times

in the following way. First of all, let us observe that M C A. To define the feedback
functions, let us consider the following two cases.

Case 1: 1 € Rand m ='1. Let o0 € £;(C X) be an arbitrary relational symbol,
furthermore, let 0¢ = {cx,,...,cx,} where 0 < ! < r. Since 1 € R, the vector
i = (0) is contained in W', and thus, there exists a pp € {1,...,n} such that
v(po) = (0). On the other hand, by the definition of Q("), there exists exactly one
index d € {1,...,2"} such that, for each s € {0,...,n}, the following assertion is
valid:

forallt € {1,...,7}, gt,s2r4¢ = 0 if and only if t € {ky,..., Kk}
Now, the feedback functions ¥y, j =1,...,(n+1)2", are defined as follows:
a1 if1<7<2,
'\Illj(a) _ a(0) if j =po2” +d,

Gy ifpe2" <j < (po+1)2" & j # po2” +d,
Oyp fmo#EpeE{l,...,n} & p2" <j < (p+1)27,

where o, € E} satisfying (a), o(g) € >:§(°”
(b3), finally, 6., € 0P gatisfying (b3).

(0)

satisfying (b2), G(o) € 25 satisfying

Case 2: 1 # m € R. Let 0 € £,(C X) be an arbitrary m-ary relational

symbol and let us consider m — 1 elments from M denoted by (gs,,1,- - -, i, (n+1)27)>
t=1,...,m—1. Then, p(c;,) = (¢,1, -+ %, (n+1)2-)s t = 1,...,m — 1. Let us
suppose that (ci,,...,¢i,_,)0¢ = {ck,,---,Ck } where 0 <! <r. Then there is one

and only one integer d € {1,...,27} such that, for every s € {0,...,n}, we have
the following assertion:

forallt € {1,...,7}, gts2r+a =0if and only if t € {ky,..., Kk }.

On the other hand, let us observe that, for any v € {1,...,2"}, the column vectors of
Q with indices s2"+v, s = 0, ..., n, are identical copies of some r-dimensional vector
over {0,1}. Consequently, the vectors (gi, s2r+v, -+ @im—,,s27+v); $ = 0,...,7n, are
the copies of an (m — 1)-dimensional vector over {0,1}. Let us denote the vector
(Gir,ur -1 Qim_1,w) by Sy if 1 < v <27, v # d, and the vector (gi,,a, .-, Gin_1,d)
by (#,...,4—1). Let i = (i{,...,4,_,,0). Then i € W', and thus, there is a
po € {1,...,n} with v(pp) = i. Now, we define the feedback functions as follows.
For any j € {1,...,(n + 1)2"}, let

\I'mj((‘h'l,la---aQil,j—l);-~-,(Qim_1,ly---;Qim_l,j—l):a) =
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Om if1 <y <2,
o ifi=p2 44,
") Oyp)s. I FED2 +d&v=j(mod2T) &p2" < j < (p+1)27
&pe{l,...,n} .

where o, € X}, satisfying (a), o € =W satisfying (b2), and o.(;)s, € @)

satisfying (b3).
In all the remaining cases, let us define the feedback functions ¥,,; arbitrarily in
accordance with the definition of the ag-product.

Regarding above definition, we have to verify that it is really an ap-product. If
1 € R and m = 1, then our definition is obviously correct. Now, let 1 # m € R.
Then ¥.,; depends only on m if 1 < j < 2". Let us consider the case when
2" < j < (n+1)2". Since the row vectors of Q") are pairwise different, each
element of M is uniquely determined by its first 2" components. Therefore, the
indices 21,...,4m~1 are uniquely determined. Then ki,...,k; are determined by
o. Furthermore, d, i and py are determined uniquely by ki, ... k;, the definition of
Q™ and the first 2" components of the elements in M under consideration. Now,
if j = po2” + d, then the definition of ¥, ; is in accordance with the definition of
the ag-product. If § # pg2” + d, then j determines v and p uniquely, furthermore,
s, is determined by v and the first 2" components of the considered elements of M.
Consequently, the definition of ¥,,,; correspondes to the definition of the ay-product
in this case as well.

By the above observations, we have that A is an ag-product of nondeterministic
tree automata from {A*}U{AO®) : 1 < p < n}. Let us consider the subautomaton
of A determined by M and denote this subautomaton by M = (M, X). We prove
that C and M are isomorphic, moreover, the mapping p is a suitable isomorphism.

First, let us suppose that 1 € R and m = 1. Let 0 € ¥; be an arbitrary
relational symbol. We have to prove that o€ (cz) if and only if o™ (u(ck)), for all
ci € C, or equivalently, 0€pu = 0. We distinguish the following two cases.

Let us suppose that ¢€ = . Then d = 2", furthermore, Uy (pot1)27(0) = (o),
and thus, the (po + 1)27-th component of each element of ¢ is not equal to 1.
On the other hand, the (pp + 1)2"-th component of each element of M is equal to
1. Therefore, @ = 02N M = oM. Conversely, let us assume that o™ = (. If
o€ # 0, then 6¢ = {ck,,...ck, } for some 1 <1 <r. Then, by the definition of ¥, ;,
j=1,...,(n+1)2", we obtain that

UA 2 {0, 1}po2"+d—l X {0} x {0, 1}(n+1)2"_p02"—d’

and the right-side set of the above inclusion contains p(c,), for all ¢, t =1,...,1.
Therefore, 04 N M = o™ # () which is a contradiction. Consequently, c€ = §.

Now, let us suppose that o€ = {c,,...,cx, } for some 1 <1 < r. Then
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oA 2 {0, 1}Po2"+4=1 x {0} x {0, 1}(m+D2"—po2" ~d

and the right-side set contains p(cy,), for all ¢, ¢ = 1,...,[. On the other hand, by
the definition of d, for all ¢t € {1,...,7}, ¢ po2r+4 =0if and only if t € {ki,..., ki }.
This yields that oA N M = {u(ck,), .., plck,)}, ie., oM = {ulcr,),-- ., plek)}-
Consequently, 6pu = oM.

Now,let 12m € R, 0 €Ly, ¢, €C,t=1,...,m— 1, be arbitrary elements.
We have to show that

(Cil P & M )Uc.u = (P’(ch ): s ap'(cim—l ))UM

is valid. Let (ci,-.-,Ci,_,)0¢ = {ck,,---,Ck, } for some integer 0 < I < 7. Then,
by the definition of 5, j =1,...,(n +1)27,

Ciy)sy-- s M\Cip, _ UA:_) 0,1 po2"+d—1 o 1) x 0,1 ("+1)2F—Po2r—d,
/Jl 1 m—1

furthermore, {u(ck,), .., (ck)} = {(Qke,15 -+ Qky,(nt)2r 1 <t < 1} is a subset
of the right-side set. By the definition of d, for all ¢ € {1,...,7}, gt pp2r+4 = O if
and only if ¢t € {ki1,...,k}. This yields that

(I“L(cil )7 ‘. )p‘(cim—l))aA NM= {(qkz,la ey qu,(n-}—l)?"') 01 S t S l} =

= {:u'(ckl )a ce al”(ckl,)}'

Consequently, (Cil 3o 3 Ciy )Uc/'l' = (ll‘(cil ); s au‘(cim—l))aM’ and thus, p is an
isomorphism of C onto M. .

This completes the proof of Theorem 1.

Remark. In particular, if R = {2}, then Ug is the class of the nondeterministic
automata. Then as a special case of Theorem 1, we obtain the characterization of
the isomorphically complete systems of nondeterministic automata with respect to
the ag-product which was presented in [14].

It is easy to observe that the nondeterministic tree automaton G satisfies the
conditions of Theorem 1. Therefore, every nondeterministic tree automaton from
Ug can be embedded into an ag-power of §G. This implies the following corollary.

Corollary 1. Fvery nondeterministic tree automaton from Ug can be embed-
ded isomorphically into an ag-product of suitable two-state nondeterministic tree
automata.
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4 o;-product with 7 > 1

In this section, we study the a;-product with ¢ > 1. For this reason, let ¢ > 0 be
an arbitrarily fixed integer. Then the isomorphically complete systems of nonde-
terministic tree automata with respect to the a;-product can be characterized as
follows.

Theorem 2. A system B of nondeterministic tree automata from Ug is iso-
morphically complete for Ug with respect to the o;-product if and only if, for all
m € R andi= (i1,...,im) € {0,1}™, B contains ¢ nondeterministic tree automa-

ton AD = (A AD 3 l)) satisfying the following condztzons
) AD has two different elements a( ) and a1 ,

(II) there exists a 05 € Esn) with (ai1 oo oV )03 A(l) N {ag (l) (l)} = {a(l)}

’lml

(IIT) for all1#u € R ands = (s1,...,54-1) € {0,1}*7!, there is a 05 4 € 2(1)

for which {a(l) l)} C (as ), . ,ag‘) 1)0;‘; ' furthermore, there is a o; € Eg with

{a(()l),all)} Co A( : if 1 € R.

Proof. The necessity of the conditions follows from Theorem 1 in [13]; the proof
has the same idea as the proof of the necessity of (b) in Theorem 1 of Section 3.
In order to prove the sufficiency, let us suppose that B satisfies the conditions of
Theorem 2. Let us define the sets W and W' as above, i.e., let

W ={{0,1}":me R} and W' ={(t1,-..,tm): (G1,--.,im) €W & ip, =0}.

Let |W'| = n, and let v denote a one-to-one mapping of {1,...,n} onto W'. By

our assumption on B, for any p € {1,...,n}, there exists a nondeterministic tree
automaton A(7(P) = (40v@) £((#)) € B satisfying conditions (I), (II), and (III)
withi= (i1,...,im) = ¥(p) where im = 0. Again, let us denote the elements ah(p))
and aﬁwp ) by 0 and 1, respectively.

Now, let ¢ = (C,X) € Ug be an arbitrary nondeterministic tree automaton
with C = {c1,...,¢.}. We prove that C can be embedded isomorphically into an
a;-product of nondeterministic tree automata from {A®) : 1 < p < n}.

For this purpose, let

Q = (Q(T) o Q(T))

where the number of the occurences of Q(™ is n + 1 in the partitioned form of
Q’. Furthermore, let us define the one-to-one mapping p of {¢y,...,c,} onto the
set of the row vectors of Q' by p(ci) = (g1, -, 4,(mn+1)2), ¢ = 1,...,7, and let
M ={p(e):i=1,...,7}. .
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Let us construct the a;-product 4 = (4,%) =

AT 5 A0 5 40D 5o Loy AN L 40 L i A(w(n))(g’\p)

~~ ~~
27times 2 times 2T times

in the following way. First of all, let us observe that M' C A. To define the feedback
functions, let us consider the following two cases.

Case 1: 1 € R and m = 1. Let 0 € 31(C X) be an arbitrary relational symbol,
furthermore, let 0¢ = {ct,,...,c,} where 0 < [ < r. Since 1 € R, the vector
i = (0) is contained in W', and thus, there exists a po € {1,...,n} such that
v(po) = (0). On the other hand, by the definition of Q) there exists exactly one
index d € {1,...,2"} such that, for each s € {0,...,n}, the following assertion is
valid: '

forallte {1,... ,r},.qt,32r+d =0if and only if t € {k1,..., ki }.

Let jo = po2” + d. Now, the feedback functions ¥,;, 7 = 1,...,(n + 1)2", are
defined as follows:

T+(1) ifl1<y3<2,
Uyi(0) =4 o if 5= Jo,
Fypy ifjF#Jo & p2" <j<(p+1)2" for some pe€ {1,...,n}.
where 6.1, € =™ satisfying (I11), o(g) € = satistying (II), and 5.,y € £{"*)
satisfying (III).

Case 2: 1 # m € R. Let 0 € ¥,,(C X) be an arbitrary m-ary relational

symbol and let us consider m —1 elments from M’ denoted by (g;, 1, - -, @, ,(n+1)27),
t=1,...,m—1. Then, p(c;,) = (¢i,,1,-- 1%, (n+1)27), t = 1,...,m — 1. Let us
suppose that (ci,,---,¢i,._,)0¢ = {ck;,---,Ck, } where 0 <1 <r. Then there is one

and omnly one integer d € {1,...,2"} such that, for every s € {0,...,n}, we have
the following assertion:

forallt € {1,...,7}, qts2r4¢ = 0 if and only if ¢t € {k1,..., ki }.

On the other hand, let us observe that, for any v € {1,...,27}, the column vectors of
Q' with indices $2"+v, s =0, ...,n, are identical copies of some r-dimensional vec-
tor over {0,1}. Consequently, the vectors (¢, sor+vs- -+ Qim_1,5274v), § =0,..., 1,

are the copies of an (m—1)-dimensional vector over {0,1}. Let us denote the vector
(@iy 051 Gim_1,w) by 8y if 1 < v <27, v # d, and the vector (¢i,,d,---)@i,_y,d)
by (¢{,...,%,_1). Leti= (4},...,4,_,,0). Then i € W', and thus, there is a
po € {1,...,n} with y(po) = i. Let jo = po2” + d again. We define the feedback

functions in the following way. For any j € {1,...,(n +1)2"}, let

\I,nlj((qil,17 e ;Qil,j+i—1)a cey (Qim_l,la .- ~,f1i.,,_1,j+i—1),0') =
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04(1),8; f1<j<2,
Oy()(i),it, ) T =4,
= O'i lf] = jo,
T(p).Ss ifjAjo&v=7{mod2")&p2" <j < (p+1)2"

for some;p € {1,...,n},

€ S satistying (I11), o5 € D satisfying (II),

and o, p)s, € B ) satisfying (III). In all the remaining cases, let us define the
feedback functions ¥,,; in accordance with the definition of the a;-product.

where 0,(1)s;,04(1),(:

! N
Taeemrti

Regarding above definition, it is easy to verify that it is really an a;-product,
and thus, A is an a;-product of nondeterministic tree automata from {A(®) :
1 < p < n}. Let us consider the subautomaton of A determined by M'. Let
M’ = (M', %) denote this subautomaton. Then it is easy to prove that p is an
isomorphism of C onto M.

This completes the proof of Theorem 2.

Since the characterization of the isomorphically complete systems of nondeter-
ministic tree automata with respect to the general product (see Theorem 1 in [13])
contains the same conditions as Theorem 2, we immediately obtain the following
corollary.

Corollary 2. The o;-product is equivalent to the general product regarding
wsomorphically complete systems of nondeterministic tree automata provided that
> 1.
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